NiceLabel Automation 2019 U
Guide

Rev-2020-11 ©NicelLabel 2020.

Table of Contents

1. Welcome to NiceLabel AUtOMAtioN i 7
2.Setting Up APPLICATION ...t e 9
2.0 AFCRITECEIUIE o et e 9
2.2. SYSTEM REQUIMEMENTS ...iitiiiiii i e e e e e et e et e e et e e e e e e e e eaa s 9
2.3, INSTAlIATION .eeeiee et a e 10
2.4, ACTIVATION .eeeeie e e 10
2.5, THAIMOAE ..o ettt et e e et e e et e et e e e e een 11
2.6, FIlE TAD oo 11
B O 01T o IO PP PPTR PP 12
2.6.2. Compatibility with NiceWatch Productscccceveiiiiiiiiiiii e, 12

A e S Y- 1V PP PPTR 14
2.8.4. SAVE @S ..uuiiiiiii i 14
2.8.5. OPTIONS ..ot aas 14
2.6.6. ADOUL «.coee i 20
2.6.6.1. Losing your Label Cloud connectionccooeveiiiiiiiiiinicieeeeeen, 21

3. UNAerstanding FilLEIS ...uu i e 22
3.1. Configuring Structured TeXt Filter ..o 24
3.1.7. Structured TEXE FIlTEr ..oovveiiii e 24
3.1.2. DEfiNING FIEIAS ..o e 25
3.1.3. Enabling Dynamic StrUCTUIEccuiiiii i 27

3.2. Configuring Unstructured Data Filterooooeri i 29
3.2.7. Unstructured Data Filterc. i 29
3.2.2. DEfiNING FIEIAS . .ceeeeeeeee e 31
3.2.3. DEfiNiNg SUD AF€aS ...uuiiiiiiii e 34
3.2.4. Defining ASSIGNMENT AFCASuuuiieeii it 36

3.3. Configuring XML filEI c...eie e e e e e e e een 38
GG TRt I Y | R =T PO 38
3.3.2. DEfiNiNG XML FIEIAS ...cievviiiiiiiie ettt 39
3.3.3. Defining Repeatable Elementsin XML Filterccoovviiiiiiiiieee 41
3.3.4. Defining XML ASSIGNMENT AI€a ...cvuiiviiiiiii e 43

3.4. Configuring JSON filterue e 46
Bu4. 1. JSON FIIEEE et e ab s 46
3.4.2. Defining JSON FIelds ...c.vuiiiiiiiiceee e 47
3.4.3. Defining Repeatable Elements in JSON Filtercccccoviiiiiiiiiiiiicein e, 49
3.4.4. Defining JSON AsSignMENt Areaooveiiiiiiii e 51

3.5. Setting Label and Printer Names from InputDataccooveeviiiiiiiiii e 54
N Ofe] gl lo 1] aTe B g oo [T o= TP 55
4.7.UNderstanding TriggersS ...t 55
D L 1o g Te I T o= < PP 57
ot B 1 1= g T T =T PSP 57
4.2.2. Serial POt THQOET «uu ettt e e e 61
4.2.3. Database TriggEr cuuiuuiiiiii e e 64
4.2.4. TCP/IP SErver TrGQUET .o.uuieeeeiieeeeei e eeee e et e e e e e e e e e e e e ena s 71

4.2.5. TCP/IP ClieNt THQOET eerrniieeeeiie et e e e e s 74

N T o I I R Y= T Y=Y gl g T o =T 77
4.2.7.Web ServiCe TrIgQEI ..couvniiiieiiii e 84
V8 < T O [0 T o I I 4 o T =Y P 94
4.2.8.1. Deploying Cloud Trigger with Label Cloudcccooeviiiiiiiiiinieeieen. 94
4.2.8.2. Deploying Cloud Trigger with your on-premise Control Center 104
ViR IS o] o= To (0] =] gl g {e o 1T TP 107
4.2.9.7. GENETAI ..eivuiieiiii et 108
e I =Y od U] =Y o o= R 108
4.3.USING Variablesc.iiiiiiiii i 110
4.3.1.VArADIES ... 110
4.3.2. Using Compound ValUESiiiiuiiiiiiiiiiie et 111
4.3.3.INternal Variables ... 112
4.3.4. Global Variablescocuuuiiiiiii e 114
N U 1< oo I X 1[0] o < TP 115
4. 4.7, ACHIONS .o 115
4.4.1.7. DefiNiNg @CtiONS ... cieviiiiiii e 115
4.4.1.2. NeSted @CiONSoiiiiiiii et 115
4.4.1.3. ACLION BXECULION ...uiiiiii e e e e eas 116
4.4.1.4. ConditioNal aCHIONSociivuiiiiiiiiii e 116
4.4.1.5. Identifying actions in configuration error stateoocoeiiiiiennnnnn. 117
4.4.1.6. Disabling @CtioNsocviiiiiiiii 117
4.4.1.7. COPYING ACHIONS ..cuiiiiiiiiii ettt e a e e ea s 117
4.4.1.8. Navigating the action listccociiiiiiiiiii 118
4.4.1.9. Describing the actions ... 118
44,2, GENETAI ..t 118
4.4.2.7.0PENLADEI ...ceii e 118
4.4.2.2.Print Labelcooeieiiiiiii e 120
4.4.2.3. Run Oracle XML Command Fileccccooiiiiiiiiiii e, 124
4.4.2.4, Run SAP All XML Command Fileccovviiiiiiiiiiiiici e 126
4.4.25. RUNCommand File ..o 128
4.4.2.6. Send Custom ComMmMAaNAScccuvuiiiiiiiiiiiiiiine e 130
O T {4 01 (= R 131
4.4.3.7. SEEPIINTET Luuiiiiii e 131
4.4.3.2.SetPrint JOb NamMe ... 133
4.4.3.3. Redirect Printing tO Fileocviiiiiiii e 134
4.4.3.4.Set Print Parameter ..o 137
4.4.3.5. Redirect Printing tO PDFcvniii e 144
4.4.3.6. Printer STatuscouiiiniii i 145
4.4.3.7. Store Label to Printercuuiiiiiiiii e 149
4.4.3.8. Print PDF DOCUMENT ...cviiiiii et eae e eas 151

4. 4.4.VaArADIES ..o 153
4.4.4.1.S€tVariable ..o 153
4.4.4.2.Save Variable Dataovviiiiiiiiiiiii 154
4.4.4.3. Load Variable Dataccccoeiiiii i 156
4.4.4.4. String Manipulationcocouiiiiiii e 158

4.4.5.BatCh Printing ..cccoee i 161

W0t I o T g o Yo T T PP 161
4.4.5.2.Us€Data Filteroiiieiiiii e 163

4.4.5.3. FOr EVEry RECOIA ...iiviiiiiiiiie et aa 166

4.4.6. Data & CONNECTIVILY ..ieviiiiiiii e 168
4.4.6.1. Open DocumMeNt/Programceeeuieiiiieeei e ee e e e e e e e eaaaes 168
4.4.6.2.5ave DatatoO Fileoooveii 170
4.4.6.3.Read Data from Filec.uiiiiiiiiiiii e 171
4.4.6.4.DEIETE FIle ..ueeeieiiiee e 174

4.4.6.5. Execute SQL Statementc.cuvviiiiiiiiiiiiiin e 175
4.4.6.6.5end Datato TCP/IP POrt....cc.uviieiii e 179
4.4.6.7.Send Data to Serial POrtcocuviiiiiiiiiiiiii e 181

4.4.6.8. Read Data from Serial POrtc.ooiiiiiiiiiii e 183

4.4.6.9. Send Data to Printercuuiiiiiiiiiiciiii e 185

4.4.6.T0. HTTP REQUEST ..cvnniiiiiiiii ettt ei e 187
4.4.6.17.WED SEIVICE ..ovuiiiiiiii it 190

o @ 1 1= PP 193
4.4.7.1. Get Label INformationccoooeuiiiiiiiiiiii e 193

4.4.7.2. EXECULE SCIIPT ..iitiiiiiiieeie ettt e e e 199

4.4.7.3. MESSATE ivuiiuiitiii ettt 202
4.4.7.4.VErify LICENSE ..ieiiiii ettt 204

O T I Y PR 206

4.4.7.6. XML TransSfOrmM ..oouuiiiie e ea s 209

N R €10 0 o PP 211

4.4.7.8. LOGEVENT ..o 212

4.4.7.9. Preview Label ... 214

4.4.7.10. Create Label Variantoovieuiiiiiiiii e 216

T 1= g Ve [g T T =T = PPN 218
4.6. Protecting Trigger Configuration from Editingcoovviiiiiiiii e, 221
4.7. Configuring Firewall for Network TrigQerscccuoiviiiiiiiiiiiii e 221
4.8. Using Secure Transport Layer (HTTPS) ... 222
5. RUNNiNg and Managing TrHgOEIS ...iuiiuiiiiii et aeas 225
5.1. Deploying Configurationu oo 225
5.2. Event Logging OPtiONSuiiiuiiiii i et e e e e s e e e e e et e e e eaa e 226
SR \V =T aF= o 1 aTo B [[o =T o= PP 226
5.4, USING EVENT LOQ otiiiiiii it e 228
5.5. If your configuration fails to 10ad...oooiiiiiiii s 230
6. Performance and Feedback OptioNSoiiiiiiiii i e 234
6.1. Parallel PrOCESSINGuiiiiiiieieei e e r e e e ne e eneas 234
07 0= ol o 11 T I8 i1 = 235
LSRG T = g ro T gl o F= T o |11 T N PP 237
6.4. Synchronous PriNEMOGAEc.uuiiiiiiiii e 238
6.4.1. Asynchronous Print MOdEooouiiiiiii e 238
6.4.2. SyNnchronous Print MOdEcccuuiiiiiiiiiii e e 239

6.5. Print JOb Status FEEADACKcouniiiiiiieie e 240
6.6. Excluding printers from automated printingccoocoviiiiiin 242

6.7. Using Store/Recall Printing MOdeooiiiiiiiiiei e 243

6.8. High-availability (Failover) CIUSTENccuuiiiiii e 244
6.9. Load-balanCing CIUSTENocieiiiii e e 245
7. Understanding Data StrUCTUrESccevuiiiiiiiii e e 247
T, BiNAry FIlES .o e e ea 247
T EXAMPIE it 247
7.2.ComMMANA FIlES . .ceniii e 248
7.2, EXAMPIE et 248
7.3.ComMPOUNT CSV ..ttt e e e 249
7. 3.1 EXAMPIE et 249
T.4.LegaCY Data ... 249
T4 EXAMPIE ettt 250

7.5. TeXt DAtabasecceuiiiiiiii e 250
7. EXAMPIE it 250

T.B8. XML DAtA .oeuiietiei ettt et e e 251
7.6, 1. EXAMPIES ettt 251

T.T. JSON DAtA ..ttt ea e 253
8. Reference and TroublesShOOtiNG ... 256
8.1. ComMmMaANd File TYPES .uniiiiiiii i e e 256
8.1.1. Command Files Specificationsccccceuiviiiiiiiiiiiiir e 256
8.1.2. CSV COMMANA Fileeiiiiiei e e 256
8.1.2.1. Sample CSV Command Filecoeiviiiiiiiiiiie e 256

8.1.3. JOB CommaNnd Fileuiiiiiiii e 257
8.1.3.1. Sample JOB Command Fileccoviiiiiiiiiiii e 257

8.1.4. XML CommaNd Fil@c..iiiiiii e 258
8.1.4.1. Sample XML Command Fileccooviiiiiiiiii e 258

8.1.5. Oracle XML SpecCificationscouuiiiiiiiiiiiiii e 263
8.1.5. 1. XML DTD ottt 263

8.1.5.2. SampPle Oracle XMLccouiiiiiiiic e 264

8.1.6. SAP All XML SpecifiCationscccviiiiiiiiiii e 265
8.1.6.1. Sample SAP Al XML ...t 265

8.2. CUSLOM COMMANGS ...iiiiiiiiiiiiii e e et e e et e e e era s 266
8.2.1. Using Custom COMME@ANGASuiiieiiiieieiiiieeeei e 266

8.3. Access to Network Shared RESOUICESviviiiiiiiiiii e 272
8.4. Document Storage and Versioning of Configuration Filescccooovviiiiiiiinnnnnn. 273
8.5. ACCESSING DAtabasEsuiivuiiiiiiii e 274
8.5.1. 32-Dit WINAOWS ..vuuiiiiiiiiiiiiiii et e e e s e et e e et e e e aaa s 274
8.5.2. B4-DIit WINAOWS ...euuiiiiiiiiiiiiiii ettt e s 274

8.6. Automatic FONt RePIaCEMENTuiii e 275
8.7. AUTOMAtING REPOITS iiiiiiiiii i e 276
8.7.1. Creating temporary databasesccoooeuiiiiiiiiiii 277
8.7.2. Designing automated REPOITSvvuiiiiiiiiii i 278
8.7.3. Creating data filtersc.oooeeei i 279
8.7.4. Creating triggers for your new data filterc.coccoviiiiiiiiicii i, 279

8.8. Changing Multi-threaded Printing Defaults ..o, 280
8.9. Compatibility with NiceWatch Productsccooeeiiiiiiiiiin e 281

8.10. Controlling Automation Service with Command-line Parameterscc...c..... 283

8.11. Database Connection String Replacementcocooviiiiiiiiiiiiin e 286
8.12. Entering Special Characters (Control Codes)coviviiiiiiiiiiiiiii e 287
8.13. LiSt Of CONLIOI COOES ...vvuiiiiiiiiiiiii ettt 288
8.14. Licensing and Printer USAQecuuiiiiiiiii e 289
8.15. RUNNING IN SEIVICE MOEuiiiiiiiii e e e e e e 290
8.16. Search Order for Requested FileS ... 292
8.17. Securing ACCESS t0 YOUI THIGEIS wuuiirniiiiii i ee i e e e e e e e e e et e e e e eaaaees 292
8.18. S€SSION PrINTING ..eveiiiieiiii et 293
8.19. Tips and Tricks for Using Variables in ACtIONSccooviviiiiiiiniiii e 295
8.20. TraCING MOTE ... e e e e e e e e e e e ena s 295
8.21. Understanding Printer Settings and DEVMODEcccoooiiiiiiiiiiicce e 297
8.22. Using the Same User Account to Configure and Run Triggerscccoovvvviieeennnnnn. 298
O XML S ettt 300
LR I=Yod gl a1 or=] BTN o] o o] o A PP PTRPPTTUPRPR 301

1. Welcome to NicelLabel
Automation

NicelLabel Automation is an application that automates repetitive tasks. In most cases, you will be
using it to integrate label printing processes into existing information systems, such as various
business applications, production and packaging lines, distribution systems, and supply chains. With
NicelLabel Automation, all applications across all divisions and locations in your company can print
labels using authorized labels templates.

NicelLabel Automation helps you deploy and run an optimal business label printing system by
synchronizing business events with label production. Automated printing without human interaction is
by far the most effective way to remove user errors and to maximize performance.

Label printing automation using a trigger-based application revolves around the following three core
processes:

Trigger
Triggers are a simple but powerful function that help automate your work. At its core, a trigger is a
cause and effect of the statement: "If a monitored event happens, do something."

Here, we are talking about IF .. THEN processing. Triggers are good at handling repetitive events.

Automated label printing is triggered by a business operation. NiceLabel Automation is set to monitor
a folder, file, or a communication port. If a business operation takes place, a file change or incoming
data is detected. This triggers the label printing process.

Learn more about various Triggers:
* File Trigger
» Serial Port Trigger
» Database Trigger
* Scheduler Trigger
» TCP/IP Server Trigger
* TCP/IP Client Trigger
e HTTP Trigger
* Web Service Trigger

* Cloud Trigger

Data Extraction and Placement

Once a trigger starts the printing, NiceLabel Automation extracts label data and inserts it into variable
objects that are placed on a label.

Data extraction Filters support:

e Structured text files
¢ Unstructured text files

¢ Various XML files

JSON files

* Binary data: printer replacement, export from legacy software, data from hardware devices, etc.

Action Execution

After matching the data with variable objects on a label, NiceLabel Automation starts performing
actions. Basic set of actions usually includes Open Label and Print Label to print the extracted data
on a label. You can also send data to custom local or network file locations, Web servers, hardware
devices, and much more.

There are more than 30 actions available. Together, they cover a vast majority of scenarios that are
common in today's business environments.

Learn more about basic and advanced printing Actions.

2. Setting Up Application

2.1. Architecture

NiceLabel Automation is a service-based application. Execution of all rules and actions runs as a
background process under credentials of the user account that is defined for the Service.

NiceLabel Automation consists of three components.

» Automation Builder: Developer uses this application to create triggers, filters and actions, and to
use them in a working configuration. Actions that belong to such a configuration execute after a
trigger receives data. This application always runs as a 32-bit application.

* Automation Manager: This is the management application that monitors the execution of

triggers in real time, and orders the triggers to start or stop. Automation Manager always runs as
a 32-bit application.

* NicelLabel Automation Service: This is the 'print engine' that executes rules defined in the
triggers. There are two service applications: NiceLabel Automation Service and NiceLabel Proxy
Service. The Service always detects 'bitness' of the Windows machine and runs it at the same

level (e.g. as a 64-bit application on 64-bit Windows), while the Proxy Service always runs as a
32-bit process.

File Action View Help
e |EEc=Hmz » = nw

2 Services (Local)

. Services (Local)

a:

Network Access Protection Agent Name Description Status Startup Typ
* % Network Location Awareness Collects an... Started Automatic
Start the service S Network Store Interface Service This service... Started Automatic
L Nicelabel Automation Proxy Service Servicefor c.. Started Automatic
Description: 4 Nicelabel Automation Service Servicefor.. Started Automatic

The Network Access Protection

Eﬁi?;egsi:;:a:;:ﬂ;‘[;;afr;? of reoscopic 30 Driver Service Provides sys... Started Automatic

Started Automatic (
O2Mlicro 5. Started Automatic ([
€. Office Source Engine Saves install... Manual

Driver Service Provides sys... Started Automatic

client computers on a network,
Infor

Two services running for NiceLabel

%, Office 64 Source Engine Saves install... Manual
Automation.

% Office Software Protection Platform Enables the ...

Manual

2.2. System Requirements

NOTE

Always double-check for the latest system requirements on this web page: https://
www.nicelabel.com/products/specifications/system-requirements.

https://www.nicelabel.com/products/specifications/system-requirements
https://www.nicelabel.com/products/specifications/system-requirements

2.3. Installation

@ NOTE

Below is the summarized version of the installation procedure. For more information,
see the NicelLabel Automation Installation Guide.

Before you begin with the installation, make sure your infrastructure is compatible with System
Requirements.

To install NiceLabel Automation, do the following:

¢ Download the installation file from NiceLabel website, then run the downloaded executable file.
* Insert NiceLabel DVD.

1. Main application menu starts automatically.
If the main application menu does not start, double click the START. EXE file on the DVD.

2. Click Install NicelLabel.

3. Follow Setup Wizard prompts.
During the installation, Setup prompts for user name under which NiceLabel Automation
service is going to run under. Make sure you select a real user name, because the
service inherits privileges associated with that specific user name. For more information,
see section Running in Service Mode.

Version upgrading

To upgrade NicelLabel Automation to the latest release, install the new version on top of the installed
one by overwriting it. During the upgrade, the old version is removed and replaced with the new one.
All existing settings are preserved. Upgrade deletes the log database content.

2.4. Activation

Activate NicelLabel Automation to enable processing of configured triggers. Activation procedure
requires Internet connection - if possible on the same machine that runs the software. Use the same
activation procedure to activate the trial license key.

@ NOTE

You can activate the software either from Automation Builder or Automation Manager.

10

https://www.nicelabel.com/downloads/user-guides
https://www.nicelabel.com/downloads/nicelabel

Activation in Automation Builder

1. Run Automation Builder.

2. Goto File > About > Activate Your License.
This starts the Activation Wizard.

3. Follow the on-screen instructions.

Activation in Automation Manager

1. Run Automation Manager.
2. Goto About tab.
3. Click Activate Your License.

4. Follow the on-screen instructions.

2.5. Trial Mode

Trial mode allows you to test NiceLabel Automation for up to 30 days. Trial mode offers the same
feature set as a licensed version, and therefore enables complete evaluation of the product before
you purchase it. Automation Manager continuously displays the trial notification message and the
number of remaining trial days. After the trial mode expires, NiceLabel Automation service stops
processing triggers. The countdown of 30 days begins with the day of installation.

@ NOTE

You can extend the trial mode by contacting your NicelLabel reseller and requesting
additional trial license key. You have to activate the trial license key. For more
information, see section Activation.

2.6. File Tab

File tab serves as document management panel. The below listed options are available:

* New: creates a new configuration file.

* Open: opens existing configuration files.

* Open NiceWatch File: opens a legacy NicelLabel NiceWatch configuration.
» Save: saves the active configuration file.

* Save as: allows saving the active configuration file by defining its name and location.

11

* Options: opens the dialog for configuring the program defaults.
* About: provides license and software version information.

» Exit: closes the application.

2.6.1. Open

Open dialog allows you to open the existing configurations in Automation Builder.
Browse allows selecting the configuration files on local or connected network drives.

Document Storage opens the document storage location of the connected NiceLabel Control
Center. If document versioning is enabled for this location, additional tab opens. The Document
Storage tab allows you to manage your copy of the stored configuration file.

Recent Files field lists the latest configuration files that have been edited. Click any of them to open
the file.

2.6.2. Compatibility with NiceWatch Products

NiceLabel Automation allows you to load trigger configurations that were built using legacy
NiceWatch products. In the majority of cases, you can run NiceWatch configuration using NicelLabel
Automation without any modifications.

NicelLabel Automation products are using a new .NET based print engine optimized for performance
and low memory footprint. The new print engine does not support each label design option that is
available in the label designer. Each new release of NiceLabel Automation is closing the gap, but you
might still come across certain unavailable features.

Resolving Incompatibility Issues
NiceLabel Automation warns you if you try to print existing label templates that contain design
features which are not supported with the new print engine.

If there are incompatibilities with NiceWatch configuration file or label templates, Automation notifies
you about:

» Compatibility with trigger configuration: While opening the NiceWatch configuration (MIS
file), NiceLabel Automation checks it against the supported features. Not all features from
NiceWatch are available in NiceLabel Automation. While some are not available at all, some of
them are configured differently. If the MIS file contains unsupported features, you will see them
listed. Automation removes these features from the configuration.

If you come across such a case, open the .MIS file in Automation Builder and resolve the
incompatibility issues. You will have to use the available NiceLabel Automation features to re-
create the removed configuration items.

12

» Compatibility with label templates: If your existing label templates contain unsupported print
engine features as provided by NiceLabel Automation, you will see error messages in the Log
pane. This information is visible in the Automation Builder (when designing triggers) or in
Automation Manager (when running the triggers).

In this case, you have to open the label file in label designer and remove unsupported features
from the label.

@ NOTE

For more information about incompatibility issues with NiceWatch and label
designers, see Knowledge Base article KB251.

Opening NiceWatch Configuration for Editing
Open the existing NiceWatch configuration (.MIS file) in Automation Builder and edit it in Automation
Builder. You can save the configuration as a .MISX file only.

To edit the NiceWatch configuration, do the following:

1. Start Automation Builder.

2. GotoFile > Open NiceWatch File.

3. Inthe Open dialog box, browse for the NiceWatch configuration file (.MIS file).

4. Click OK.

5. If the configuration contains unsupported features, they are displayed in a list. Automation

removes them from the configuration.

Opening NiceWatch Configuration for Execution

You can open NiceWatch configuration ((MIS file) in Automation Manager without conversion to the
NiceLabel Automation file format (MISX file). If the triggers from NiceWatch are compatible with
NicelLabel Automation, you can start using them right away.

To open and deploy NiceWatch configuration, do the following:

1. Start Automation Manager.

2. Click +Add button.

3. In Open dialog box, change the file type into NiceWatch Configuration.
4. Browse for the NiceWatch configuration file (MIS file).

5. Click OK.

6. Automation Manager will display the trigger from the selected configuration. To start the
trigger, select it and click Start.

13

http://kb.nicelabel.com/index.php?t=faq&id=251

@ NOTE

If there are compatibility issues with NiceWatch configuration, open it in Automation
Builder and reconfigure it.

2.6.3. Save

Save saves the active configuration using the same file name that was used for opening it.

E NOTE

If a configuration has been opened for the first time, Save directs you to the Save as
dialog.

2.6.4. Save as

Save as allows saving the active configuration file by defining its name and location.

Recent folders field lists the folders that were recently used for saving the configuration files.

2.6.5. Options

Use settings in this dialog box to customize the application. Select a group from the left-hand panels

and configure its settings.

Folders

This panel allows you to select the default storage folders for labels, forms, databases, and picture

files. The default folder location is current user's Documents folder. These are also the default folders
in which NicelLabel Automation searches for files if you provide file names without their full path. For

more information about the file search order, see section Search order for the Requested Files.

Folder-related changes propagate to NiceLabel Automation Service within a minute. To apply
changes immediately, restart the service.

|§ NOTE

The settings that you apply here are saved into the profile of the currently logged-in
user. If your NiceLabel Automation Service runs under a different user account, you
have to log into Windows using that other account, and change the default label
folder. You can also use Windows command-line utility RUNAS to run Automation
Builder as that other user.

14

Language
Language panel allows selecting the NiceLabel Automation interface language. Select the
appropriate language and click OK.

|§ NOTE

The change is applied after you restart the application.

Global Variables
Global Variables panel defines which location with stored global variables should be used:

* Use global variables stored on the server (NiceLabel Control Center): Sets the global variable
storage location to be on the NicelLabel Control Center.

@ NOTE

This option becomes available with LMS Pro or NiceLabelLMS Enterprise
licenses.

* Use global variables stored in a file (local or shared): Sets the global variable storage location
in a local or shared folder. Enter the exact path or click Open to locate the file.

Licensed Printers

@ NOTE

Keeping the information on the use of licensed printers is available with multi-user
licenses.

Licensed Printers panel provides logged information about the number of printers that have been
used in your printing environment.

Details on Licensed Printers group displays how many of the permitted printer seats are in use after
printing on multiple printers.

* Number of printers allowed by license: Number of permitted printers to be used with the
current NiceLabel 2019 license.

* Number of used printers in the last 7 days: Number of printers that have been used with

NicelLabel 2019 during the last 7 days.

TIP

During a 7-day period, NiceLabel 2019 license allows only the specified number
of different printers to be used.

15

A WARNING

Purchased license defines the number of allowed printers. After you exceed this
number, a warning appears. After doubling the number of allowed printers, you can no
longer print on additional printers.

See printing statuses in multiple columns:

* Printer: Name or model of the printer that was selected for the print job.

@ NOTE

If the connected printer is shared, only printer model is displayed.

* Location: Name of the computer from which the print job has been sent.
* Port: Port used by the printer.
* Last Used: Time passed since the last print job.

* Reserved: Prevents the printer from being removed after idling for more that 7 days.

|§ NOTE

If a printer remains unused for more then 7 days, it is removed automatically unless
the Reserved option is enabled.

Permissions panel allows you to lock printer usage on local workstation.

» This workstation can only use reserved printers: With this option enabled, only reserved
printers are allowed for label editing and printing in NiceLabel 2019.

@ TIP
Use this option to avoid exceeding the number of available licensed printer seats
by printing on unwanted printers or print-to-file applications. Reserve dedicated
thermal or laser labeling printers and limit printing only to them. This ensures
continuous printing of labels with a multi-user license.

This option can also be enabled using the product.config file:

1. Navigate to the System folder.
%PROGRAMDATA%\NiceLabel\NiceLabel 2019

2. Make a backup copy of the pr oduct . confi g file.

3. Openproduct. confi gina texteditor. The file has an XML structure.

16

4. Add the following lines:

<Confi gurati on>
<Acti vati on>
<ReservePrint ers>Example Printer Name</ ReservePrinters>
</ Activation>
<Conmon>
<Cener al >
<ShowOnl yReser vedPri nt er s>True</ ShowOnl yReser vedPri nt er s>
</ Gener al >
</ Conmon>
</ Configuration>

5. Save thefile. The Example Printerisreserved.
Control Center
Control Center panel allows you to enable and configure the monitoring of events and print jobs.

NiceLabel Control Center enables centralized event and print job reporting, and centralized storage of
global variables.

@ NOTE

This tab becomes available with LMS Pro or LMS Enterprise licenses.

Address group defines which NicelLabel Control Center server should be used.

» Control Center server address: URL of the connected NiceLabel Control Center server. You
can select from the list of automatically discovered servers on the network, or enter a server
address manually.

@ NOTE

NiceLabel Control Center license keys on server and workstation must match to
enable the connection.

Event Monitoring group defines what types of events should be logged by the connected NicelLabel
Control Center.

* Print Events: Logs the print related events from the workstation.

* Error Events: Logs all reported errors.

@ NOTE

By default, Print Events and Error Events are logged by the NiceLabel Control Center.

17

» Trigger Activity: Logs all fired triggers.

* Trigger Status Change Events: Logs the trigger status changes which have been caused by
the fired triggers.

Print Job Monitoring group enables you to log the completed and ongoing print jobs to NiceLabel
Control Center.

* Enable Print Job Logging to Server: Activates print job logging.

* Detailed printing control: Enables monitoring of statuses that are reported by the connected
printer.

§ NOTE

There are two requirements to make this option available:

* The printer must support bidirectional communication.

* NicelLabel printer driver must be used for printing.

Automation
These settings define the application's advanced features.

S NOTE

The changes become active after you restart the application.

Service Communication

* Service communication port:Automation Manager controls the service using TCP/IP protocol
on the selected port. If the default port is not suitable for you to be used on the computer, select
another port number. Be careful not to select a port number that is already in use by another
application.

Log

* Clear log entries daily at: Defines the start of the housekeeping process. Old events are erased
from the log database.

» Clear log entries when older than (days): Specifies event retention in the log database. All
events older than the specified number of days are erased from the database at each
housekeeping event.

* Log messages: Specifies the scope of event recording in the log. During the development and
testing phases, you might want to enable verbose logging. In this case, enable all messages to
improve the tracing of trigger execution. Later on, while in production phase, minimize the
amount of logging and enable logging of errors only.

18

Performance

@ PRODUCT LEVEL INFO

The functionality from this section is available in LMS Enterprise.

Cache files from document storage and network shares: To improve the time-to-first label
and to increase performance in general, NiceLabel Automation supports file caching. After you
load the labels, images, and database data from network shares, all required files must be
fetched before the printing process can begin.

TIP

If you enable local caching, the effect of network latency is reduced as label and
picture files are loaded from your local disk.

Automation service uses the following local folder to cache the remote files: ¥PROGRAMDATA%
\NiceLabel\NicelLabel 2019\FileCache.

* Refresh intervals (minutes): Defines the time interval within which the files in the cache
are synchronized with files in the original folder. This is the time limit for the system to use
a version which may not be the latest.

* Delete unused cached files after (days): Defines the time interval after which all files are
removed from cache.

@ NOTE

File caching supports label and picture file formats. After you enable file caching,
restart Automation service to make the changes take effect.

Precache folders from document storage allows you to locally cache the files from Control
Center document storage folders on your computer. With enabled precaching, the content of
local cache keeps synchronizing with the selected document storage folders.

g NOTE

In comparison with caching, precaching reduces the printing time for your first
printed label.

Add each document storage folder in a separate line.

/Labels/Folderl

/Labels/Folder?2

19

S NOTE

Your Automation Builder must be connected to the Control Center to enable the
offline synchronization of cached files.

Cluster Support

@ PRODUCT LEVEL INFO

The functionality from this section is available in LMS Enterprise.

This setting enables support for high-availability (failover) type of cluster in NiceLabel Automation.
Select the folder which both nodes in the cluster will use to share information about real-time trigger
statuses.

Designer
Designer panel enables you to configure the opening behavior of NiceLabel 2019.

* Display each document in its own window: If enabled, additionally opened documents appear
in separate windows of NiceLabel 2019. This applies to both — newly created and existing
documents.

If you decide to disable this option, additionally opened documents appear within the currently
active instance of NicelLabel 2019.

* Printer Settings Source allows you to choose the source of printer settings.

» Use printer settings from the printer driver: Select this option if you prefer printing using
the printer driver settings. This option allows you to standardize the printer settings in your
working environment.

* Use custom printer settings saved in the label: Each label may have its own printer
settings defined and saved by the user. Select this option to use custom settings for your
labels while printing.

2.6.6. About

About dialog provides information about your NiceLabel product license, enables license purchasing
(when in trial mode) and activation, provides software details, and enables you to change the product
level of NiceLabel 2019.

License information group includes:

* Trial mode duration: Information about the remaining days for product evaluation. This segment
is no longer visible after purchasing and activating the product license.

* Purchase License: Button directs you to the NicelLabel online store.

20

» Activate license: Button opens the NiceLabel 2019 license activation dialog. See NicelLabel
2019 installation guide for details about the license activation process. After activating the
license, this button is renamed to Deactivate License — after clicking it and confirming the
deactivation, your copy of NiceLabel 2019 is no longer activated.

* Change product level: Opens the product level selection dialog. When in trial mode, you can
choose and evaluate all product levels. With an activated license, you can change your product
level only to lower levels.

g NOTE

Product level changes take effect after restarting the application.

» Upgrade license: Opens the product level upgrade dialog. See NicelLabel 2019 installation
guide for details about the license upgrade process.

Software information group includes information about the installed software version and build
number.

2.6.6.1. Losing your Label Cloud connection

If your Automation Manager is signed in to the Label Cloud, and you lose the internet connection, you
must reestablish the connection in up to five days. Without reconnecting with your Label Cloud,
Automation Manager closes automatically.

After losing the internet connection, and if your computer stays offline, a warning appears in 5 days.
Automation Manager closes 5 minutes after you see the warning.

After you reestablish the internet connection, open Automation Builder or Automation Manager and
sign in to Label Cloud. This makes your copy active again.

A WARNING

Save your work to an offline location (your computer) to prevent losing any changes.

21

http://www.nicelabel.com/Redirect?Id=88&Link=www.nicelabel.com
http://www.nicelabel.com/Redirect?Id=88&Link=www.nicelabel.com
http://www.nicelabel.com/Redirect?Id=88&Link=www.nicelabel.com

3. Understanding Filters

NiceLabel Automation uses filters to define structure of the data received by triggers. Each time a
trigger receives data, one or many filters parse the received data. This process extracts relevant
values for your configuration. Each filter includes rules to identify fields within received data.

NOTE

As a result, the filter provides a list of fields and their values (nane: val ue pairs).

Filter Types
For more information, see sections Structured Text Filter, Unstructured Data Filter, XML filter, and
JSON Filter.

Data Structure

Filter complexity depends on the data structure. Files with structured data, such as CSV or XML files,
make data extraction easy. In this case, field names are already defined by the data. Extraction of
nane: val ue pairs is quick. In case of data without a clear structure, it takes more time to define the
extraction rules. You might come across such data when exporting documents and reports from
legacy systems, intercepted communication between devices, and captured print streams.

The filter defines a list of fields that are extracted from the incoming data once you run the filter.

NicelLabel Automation supports various types of input data that can all be parsed by one of the
supported filter types. Make sure you select the correct filter to match the type of incoming data. For
example, you would use Structured Text filter for incoming CSV data, JSON filter for incoming JSON
data, and XML filter for incoming XML data. For any unstructured data, you would use Unstructured
Data filter. For more information, see section Understanding Data Structures.

Extracting Data
Filter is a set of rules and doesn't do any extraction by itself. To run the filter, run the Use Data Filter
action. This action executes filter rules against the data and extracts the values.

Each trigger type can execute as many Use Data Filter actions as necessary. If you receive compound
input data that cannot be parsed by a single filer alone, define multiple filters and execute their rules
using a sequence of Use Data Filter actions. Finally, use the extracted values from all actions on the
same label.

Mapping Fields to Variables

To use the extracted values, you have to store them in variables. The Use Data Filter action does both
- extracts values and saves them in variables. To configure this process, map each variable with
respective field. Value of the field is then saved in the mapped variable.

22

m ® # Data Mapping f
Settings Variables Actions
Field name Variable name
1 4
VP Use Dats Filter label_name D LABEL @
1 4 = Foreachline
= label_count @ arv -
4 [_l|| Open Label
printer_name) PRINTER -
B9 Set printer
. art_code @ Code -
112 F Print Label
art_name [Article =
D Ean -
) Weight -

In this area you have to create a connection between a field
(defined in the filter) and a variable (imported from a label or
created manually in the trigger). utonap

@ TIP
It's a good practice to define fields and variables with matching names. In this case,
the auto-mapping feature links variables to the fields of the same names, eliminating
the need for manual mapping.

Auto-mapping is available for all supported filter types. With auto-mapping enabled, the Use Data
Filter action extracts values and automatically maps them to the variables with the same names as
field names. For more information, see section Enabling Dynamic Structure for Structured Text filter,
Defining Assignment Area for Unstructured Data filter and Defining Assignment Area for XML or
JSON filters.

Running Actions with Extracted Data

Usually, you want to run actions using the extracted data, such as Open Label, Print Label, or some of
the outbound connectivity actions. It is critically important that you nest your actions under the Use
Data Filter action. This ensures that the nested actions are run for each data extraction.

0 Ny, e 3 Filter f

Settings Variables Actions

MName: | Structural definition of LABELS.TXT
Vi1 4 P Use Data Filter
Warning: Changing filter will remo:
v 1.1 4 [; For each line

/1 111 4 [Open Labe! Data Source

® Lse data received by the trigger

File name:

Make sure to nest the actions under the correct
placeholder ("For each line" in this case).

23

Example

If you have a CSV file with 5 lines, the nested actions also run for 5 times; once for each data
extraction. If the actions are not nested, they only execute once and only contain data from the last
data extraction. As for the example above, the 5th CSV line would be printed leaving out the first four
lines unprinted. If you use Sub Areas, make sure you nest your action under the correct placeholder.

3.1. Configuring Structured Text Filter

3.1.1. Structured Text Filter

To learn more about filters in general, see section Understanding Filters.

Use this filter whenever you receive a structured text file. These are the text files in which the fields
are identified by one of the following methods:

* Fields are delimited by a character: Usual delimiter characters are comma or semicolon. CSV
(comma separated values) is a typical example of a delimited file.

* Fields contain fixed number of characters: In other words, fields are defined by fixed-width
columns.

For examples of structured text data, see section Text Database.

Defining Structure
To define the structure of a text file, you have the following options:

* Importing structure using the Text File Wizard: In this case, click the Import Data Structure
button in the ribbon and follow the on-screen instructions. After you finish the wizard, the type
of text database and all fields are defined. If the first line of data contains field names, the Wizard
can import them. This is the recommended method, if the trigger always receives data whose
structure does not change.

* Manually defining the fields: In this case, you have to manually define the type of data
(delimited fields or fixed-width fields) and then define the field names. For more information, see
section Defining Fields.

* Dynamically read the fields: In this case, the trigger might receive data that is structured in a
different way. An example for this are new field names — dynamic structure eliminates the need
to update the filter for each structural change. Support for dynamic structure automatically
reads all data fields, no matter if new fields exist or if some of the old fields are missing. It maps
them automatically with the variables using the same names. For more information, see section
Enabling Dynamic Structure.

24

Data Preview section simplifies the configuration. In the preview pane, the result of a defined filter rule
highlights the area along with every configuration change. Data Preview enables you to check what
data is extracted with each rule.

3.1.2. Defining Fields

For structured text files, the definition of fields is very straightforward. There are two options:

* Delimiter defines the fields: In this case, you have a delimiting character, such as comma or
semicolon separating the fields. You just have to define the field names in the same order as
they appear in the data received by a trigger.

* Fixed-width fields: In this case, define the field names in the same order as they appear in the
data received by a trigger, and define the number of characters the field would occupy. That
many characters are going to be read from the data for this field.

Configuration Items IDa1a from simple CSV X
1] ﬁ Field Properties Data Preview
Structure

Settings

A

Name: | Product ID Previewfile name: Pasta.csv

£S5 Open Y Refresh

. EAN
oduct desc oduct desifackage
5 Package 3 i ’
: 8; 05
6 8021228310
List of fields in the filter. The only propel
of afield is its name.
Live data preview of filter execution

Data Preview
This section provides preview of the field definition. If the defined item is selected, the preview
highlights its placement in the preview data.

* Preview file name: Specifies the file that contains sample data that is going to be parsed by the
filter. The preview file is copied from filter definition. If you change the preview file name, the new
file name is saved.

* Open: Selects another file upon which you want to execute the filter rules.

* Refresh: Re-runs the filter rules upon the contents of the preview file name. Automation updates
the Data Preview section with the result.

Formatting Options

This section defines string manipulation functions that apply on the selected variables or fields. You
can select one or several functions. These functions are applied in the same order as selected in the
user interface — from top to bottom.

* Delete spaces at the beginning: Deletes all space characters (decimal ASCII code 32) from the
beginning of a string.

* Delete spaces at the end: Deletes all space characters (decimal ASCII value 32) from the end of
a string.

25

* Delete opening and closing character: Deletes the first occurrence of the selected opening,
and closing characters that are found in a string.

Example

If you use "{" for the opening character and "}" for the closing character, the input string
{{sel ection}} convertsto{sel ection}.

» Search and replace: Executes standard search and replace function upon the provided values
for find what and replace with. You can also use regular expressions.

@ NOTE

There are several implementations of the regular expressions in use. uses
the .NET Framework syntax for the regular expressions. For more information,
see Knowledge Base article KB250.

* Replace non printable characters with spaces: Replaces all control characters in the string
with space character (decimal ASCIl code 32). The non printable characters are characters with
decimal ASCII values between 0-31 and 127-159.

* Delete non printable characters: Deletes all control characters in the string. The non printable
characters are characters with decimal ASCII values between 0-31 and 127-159.

* Decode special characters: Special characters (or control codes) are characters that are not
available on the keyboard, such as Carriage Return or Line Feed. uses a notation to encode such
characters in human-readable form, such as <CR> for Carriage Return and <LF> for Line Feed.
For more information, see section Entering Special Characters (Control Codes).

This option converts special characters from syntax into actual binary characters.

Example

When you receive the data sequence "<CR><LF>", uses it as a as plain string of 8 characters.
Enable this option to interpret and use the received data as two binary characters CR (Carriage
Return - ASCII code 13) and LF (Line Feed - ASCII code 10).

* Search and delete everything before: Finds the provided string and deletes all characters from
the beginning of the data until the string. The found string itself can also be deleted.

» Search and delete everything after: Finds the provided string and deletes all characters from
the string until the end of the data. The found string itself can also be deleted.

* Change case: Changes all characters in your strings to uppercase or lowercase.

26

http://kb.nicelabel.com/index.php?t=faq&id=250

3.1.3. Enabling Dynamic Structure

Structured Text filter has the ability to automatically identify fields and their values within the received
data. This eliminates the need for manual variable-to-field mapping.

Dynamic structure functionality is helpful if the trigger receives data with changing structure. In such
cases, main data structure remains unchanged (e.g., fields are delimited by a comma), or retains the
same structure, but the order and/or the number of fields changes. There might be new fields, or
some of the old fields could no longer be available. Because of enabled Dynamic structure, filter
automatically identifies structure of the received file. At the same time, filter reads field names and
values (nane: val ue pairs) from the data. This eliminates the need for manual mapping of fields to
variables.

Use Data Filter action does not offer any mapping possibilities, because it performs the mapping
dynamically. You don't even have to define label variables in the trigger configuration. The action
assigns field values to the label variables of the same name without requiring the variables to be
imported from the label. However, this rule applies to the Print Label action alone. If you want to use
the field values in any other action, you have to define variables in the trigger, while still keeping the
automatic variable-to-field mapping.

E NOTE

There is no error if the field available in the input data doesn't have a matching label
variable. silently ignores the missing variables.

Configuring the dynamic structure
To configure the dynamic structure, enable the Dynamic structure option in Structured Text filter
properties.

L =} General

Settings Structure

Y

MName: Structural definition of LABELS.TXT
General

Description:

Enabling thedynamic structure

Data Struc/ ’
—

Dynamic structure (first imported line contains field names)

® Delimited

Delimiter: Semicolon () v
Text qualifier " 7
Fixed column widths
The first line of data must .
contain field names. Options
" Startimport at line: 1 :

Encoding: Auto -

¢ The first line of data must contain field names.

27

* The line that you select for Start import at line must be the line with the field names (usually the

first line in data).
¢ Data structure must be delimited.

* You can format the data, if necessary.

Formatting Options

This section defines string manipulation functions that apply on the selected
variables or fields. You can select one or several functions. These functions are
applied in the same order as selected in the user interface — from top to bottom.

* Delete spaces at the beginning: Deletes all space characters (decimal ASCII
code 32) from the beginning of a string.

* Delete spaces at the end: Deletes all space characters (decimal ASCII value 32)
from the end of a string.

* Delete opening and closing character: Deletes the first occurrence of the
selected opening, and closing characters that are found in a string.

Example

If you use "{" for the opening character and "}" for the closing character, the input
string {{ sel ecti on}} convertsto{sel ection}.

» Search and replace: Executes standard search and replace function upon the
provided values for find what and replace with. You can also use regular
expressions.

S NOTE

There are several implementations of the regular expressions in
use. uses the .NET Framework syntax for the regular
expressions. For more information, see Knowledge Base article
KB250.

* Replace non printable characters with spaces: Replaces all control characters
in the string with space character (decimal ASCIl code 32). The non printable
characters are characters with decimal ASCII values between 0-31 and 127-
159.

* Delete non printable characters: Deletes all control characters in the string.
The non printable characters are characters with decimal ASCII values between
0-31and 127-159.

* Decode special characters: Special characters (or control codes) are
characters that are not available on the keyboard, such as Carriage Return or
Line Feed. uses a notation to encode such characters in human-readable form,

28

http://kb.nicelabel.com/index.php?t=faq&id=250

such as <CR> for Carriage Return and <LF> for Line Feed. For more information,
see section Entering Special Characters (Control Codes).

This option converts special characters from syntax into actual binary
characters.

Example

When you receive the data sequence "<CR><LF>", uses it as a as plain string of
8 characters. Enable this option to interpret and use the received data as two
binary characters CR(Carriage Return - ASCIl code 13) and LF (Line Feed - ASCII
code 10).

» Search and delete everything before: Finds the provided string and deletes all
characters from the beginning of the data until the string. The found string itself
can also be deleted.

» Search and delete everything after: Finds the provided string and deletes all
characters from the string until the end of the data. The found string itself can
also be deleted.

* Change case: Changes all characters in your strings to uppercase or lowercase.

3.2. Configuring Unstructured Data Filter

3.2.1. Unstructured Data Filter

To learn more about filters in general, see section Understanding Filters.

Use this filter whenever a trigger receives non-structured data, such as documents and reports
exported from legacy system, intercepted communication between devices, and captured print
stream. The filter allows you to extract individual fields, fields in repeatable sub areas, and even nane-
val ue pairs.

For examples of the structured text data, see sections Legacy Data, Compound CSV and Binary Files.

29

Configuration Items I H: Header Data X
tH] ﬁ Field Properties Data Preview

Settings Structure

Name: | DOCNUM Preview file name: CA\Projects\SAP\Certification\,..\Example_FI_Lrdi
4 Root -
RDIVERSION Field has binary data £5 0pen G Refresh
MANDT 1 H046A018500000003742D2140_ACC_STAT 01PRINTER WL 4|
DOCNUM Field Start % S" DEPAGE 1100 JNGUAGE DE
TOSPRAS Field start: |Position in document ~ E'}EIMMEx;g;ﬁT
TOFORM Position: x:;; T
TDDEVICE Line: 17 :ég

523
523
523
523

HOST
Character: us

BATCH

TDPAGESLCT

Field End

TDCOPIES

Highlighting the result of the filter rules

Extraction logic for each field.

555 RF140-
555 RF140-

555

Characters: 103

555
TDNOPRINT CINC-BEGIN LDRS_SENDER TEXT ADRS DE

|
:
|
:

Show formatting options 27 DEDDRESS X
TONEWID B Show formatting options 2& DEDDRESS
22 DADDRESS ULINE
TEDATASET 30 DRDDRESS
31 CINC-END ADRS_SENDER TEXT ADRS DE i
TOSUFFIXL coic-an .

33 DADDRESS STHADL

TDSUFFIX2
List of fields defined as output from the

TOIMMED filter. Line: 1 Columm: 1

OO oo e O o e e e e e

Defining Structure

The items you can use to configure the filter:

* Field: Specifies the location of field data between field-start and field-end locations. There are
various options to define the field location, from hard-coding the position to enabling relative
placements. You must map the defined fields to respective variables in the Use Data Filter
action. For more information, see section Defining Fields.

Sub area: Specifies the location of repeatable data. Each sub area defines at least one data
block, which in turn contains data for labels. There can be sub areas defined within sub areas,
which allows you to define complex structures. You can define fields within each data block. You
must map the defined fields to respective variables in the action. For each sub area, Automation
defines a new level of placeholder within the Use Data Filter action, so you can map variables to
fields of that level. For more information, see section Defining Sub Areas.

Assignment area: Specifies the location of repeatable data containing the nane- val ue pairs.
Automation reads field names and their values simultaneously. Automation also automatically
performs mapping to variables. Use this feature to accommodate filter to the changing input
data, eliminating the maintenance time. You can define the assignment area at the root level of
the document, or inside the sub area. For more information, see section Defining Assignment
Areas.

Data Preview section simplifies the configuration. The result of a defined filter rule gets highlighted in
the preview area along with every configuration change. You can observe which data items would be

extracted with each rule.

The fields can be defined at the root level as document fields. The fields can be defined inside a data

block. The nane- val ue pairs can be defined inside assignment area.

Document field
e

Document field

Data block

Data block field
Data block field

Assignment area

Wariablel = Valuel
Wariable? = Value?
YWariable3 = Value3

Document field Document field

General
This section defines general properties of the unstructured data filter.

* Name: Specifies the filter name. Use a descriptive name that identifies the role of the filterin a
configuration. You can change it anytime.

» Description: Allows you to describe the purpose of this filter. You can use it to write a short
explanation about what does the filter do.

* Encoding: Specifies the encoding of the data this filter works with.

* Ignore empty lines in data blocks: Specifies not to raise errors if the filter extracts empty field
values from the data blocks.

3.2.2. Defining Fields

After you define a field, you have to define its name and rules for extracting field values from the data.
When the filter executes, the extraction rules apply to the input data and assign result to the field.

31

Configuration Items | Patient Data X

List of defined fields

Date

m = Data Preview
Settings ructure
Preview file name: Patientixt i
ses ¢
4 |l Patient Document > Fild has binary data £30pen 5 Refresh
[Sumame 1 HAWLEY AWNIE ERL2
5 Patient Bload Type Field Start 3 BRE OF 0711712 F 277
[Sample Date Field start: | Pasition in data block - s
= Firs 034 134 557 564 9 - 08/11/12
rst name Position: S 134 654 234 0 - 08/11/12
B Hosptal Number e 8 D15 134 324 563 C S 08/11/12
Sparel Character: Live data preview displaying result of the {
] Weard extraction rules 2
= Hospho2 E
= Field End
Stage /

17 Store Sample :
Tt ‘Leng(h - | it SEMFLE VALID FOR 24 HOURS, NO TRANSE]

et Position in data block
jth 07/11/12 B,31.0001245.E

Extraction rules (field start/stop

location).

RACTER JOHN ER1234

— - 27 R OF 0306711 T 03
4 |l ltems in document EHl Show formatting aptions e /080

G number

0 G045 234 168 283 I A+ 04/04/11
Donor Blood type 1 Ghes 234 348 123 2 2+ 04/04/11

Date2

Field Properties
* Name: Specifies the unique name of the field.

* Field has binary data: Specifies that the field contains binary data. Don't enable this option
unless you really expect to receive binary data.

Field Start

* Position in document: Hard-coded position in the data determines the start/end point. The

coordinate origin is upper left corner. The character in the defined position is included in the
extracted data.

End of document: The start/end point is at the end of the document. You can also define an
offset from the end for a specified number of lines and/or characters.

Find string from start of document: Position of searched-for string defines the start/end point.
After Automation finds the required string, the next character determines the start/end point.

The searched-for string is not included in the extracted data. The default search is case
sensitive.

» Start search from absolute position: You can fine-tune searching by changing the start
position from data-start (position 1,1) to an offset. Use this feature to skip searching at the

beginning of data.

* Occurrence: Specifies which occurrence of the search string should be matched. Use this
option if you don't wait to set start/stop position after the first found string.

» Offset from string: Specifies the positive or negative offset after the searched-for string.

Example

You would define the offset to include the searched-for string in the extracted data.

32

Field End

* Position in document: Hard-coded position in the data determines the start/end point. The
coordinate origin is upper left corner. The character in the defined position is included in the
extracted data.

* End of document: The start/end point is at the end of the document. You can also define an
offset from the end for a specified number of lines and/or characters.

* Find string from start of document: Position of searched-for string defines the start/end point.
After Automation finds the required string, the next character determines the start/end point.
The searched-for string is not included in the extracted data. The default search is case
sensitive.

» Start search from absolute position: You can fine-tune searching by changing the start
position from data-start (position 1,1) to an offset. Use this feature to skip searching at the
beginning of data.

* Occurrence: Specifies which occurrence of the search string should be matched. Use this
option if you don't wait to set start/stop position after the first found string.

» Offset from string: Specifies the positive or negative offset after the searched-for string.

Example

You would define the offset to include the searched-for string in the extracted data.

* Find string after field start: The start/stop end point is defined by the position of the searched-
for-string as in the option Find string from start of document, but the search starts after the
start position of the field/area, not at the beginning of the data.

* Length: Specifies the length of the data in lines and/or characters. The specified number of
lines and/or characters will be extracted from the start position.

* End of the line: Sets the configuration to extract the data from the start position until the end of
the same line. You can define a negative offset from the end of the line.

Formatting Options

This section defines string manipulation functions that apply on the selected variables or fields. You
can select one or several functions. These functions are applied in the same order as selected in the
user interface — from top to bottom.

* Delete spaces at the beginning: Deletes all space characters (decimal ASCII code 32) from the
beginning of a string.

* Delete spaces at the end: Deletes all space characters (decimal ASCII value 32) from the end of
a string.

* Delete opening and closing character: Deletes the first occurrence of the selected opening,
and closing characters that are found in a string.

33

Example

If you use "{" for the opening character and "}" for the closing character, the input string
{{sel ection}} convertsto{sel ection}.

» Search and replace: Executes standard search and replace function upon the provided values
for find what and replace with. You can also use regular expressions.

@ NOTE

There are several implementations of the regular expressions in use. uses
the .NET Framework syntax for the regular expressions. For more information,
see Knowledge Base article KB250.

* Replace non printable characters with spaces: Replaces all control characters in the string
with space character (decimal ASCII code 32). The non printable characters are characters with
decimal ASCII values between 0-31 and 127-159.

* Delete non printable characters: Deletes all control characters in the string. The non printable
characters are characters with decimal ASCII values between 0-31 and 127-159.

* Decode special characters: Special characters (or control codes) are characters that are not
available on the keyboard, such as Carriage Return or Line Feed. uses a notation to encode such
characters in human-readable form, such as <CR> for Carriage Return and <LF> for Line Feed.
For more information, see section Entering Special Characters (Control Codes).

This option converts special characters from syntax into actual binary characters.

Example

When you receive the data sequence "<CR><LF>", uses it as a as plain string of 8 characters.
Enable this option to interpret and use the received data as two binary characters CR (Carriage
Return - ASCII code 13) and LF (Line Feed - ASCIl code 10).

* Search and delete everything before: Finds the provided string and deletes all characters from
the beginning of the data until the string. The found string itself can also be deleted.

» Search and delete everything after: Finds the provided string and deletes all characters from
the string until the end of the data. The found string itself can also be deleted.

* Change case: Changes all characters in your strings to uppercase or lowercase.

3.2.3. Defining Sub Areas

Sub area is a section of data that includes several blocks of data identified by the same extraction
rule. Each data block provides data for a single label.

34

http://kb.nicelabel.com/index.php?t=faq&id=250

All data blocks must be identified by the same configuration rule. Each data block can contain another
sub area. You can define an unlimited number of nested sub areas within parent sub areas.

If the filter contains definition of a sub area, the Use Data Filter action displays sub areas with nested
placeholders. All actions nested below such placeholder execute only for data blocks at this level. You
can print different labels with data from different sub areas.

Configuration Items I Patient Data X

] ﬁ Field Properti . Data Preview
ettings ructure Patient Document is a sub-area
@ containing data foreach patient. Preview file name: Patientit

€9 Open G5 Refresh
EAWLEY ANNIE ER12345678

Patient Blood Type Field Start

PRE OP 07/11/12 F 27/06/47

Sample Date Field start: | Position in data block
557 564
54 234 C
324 563

0g/11/12 LDBS
08711412 LDES
08/11/12 1DBS

First name Position:

jrgrin
i

Hospital Number Line:

Sparel Character: Data block for 1st record (patient 1)

;
Ward
HospNa2 14
Field End 15

g

Stage 16 Entibody
17 Store Sanple :
Date Field start: | Length - hs SAMPLE VALID FOR 24 HOURS, NO TRANSFUSION

St Offset:
07711412 B,31.0001245.E

BACTER 208N ER12345679
5376543210
PRE OP 03/06/11 F 05/02/81

234 168 283 2 04704711 1DBS
D45 234 323 123 2 B+ 04/04/11 1DBS

Data block for 2nd record (patient 2)

Configuring Sub Area
The sub area is defined with similar rules as individual fields. Each sub area is defined by the following
parameters.

* Sub Area Name: Specifies the name of the sub area.

» Data Blocks: Specifies how to identify data blocks within the sub area. Each sub area contains
at least one data block. Each data block provides data for a single label.

* Each block contains fixed number of lines: Specifies that each data block in a sub area
contains the provided fixed number of lines. Use this option if you know that each data
block contains exactly the same number of lines.

* Blocks start with a string: Specifies that data blocks begin with the provided string. All
content between the two provided strings belongs to a separate data block. The content
between last string and the end of the data identifies the last data block.

* Blocks end with a string: Specifies that data blocks end with the provided string. All
content between the two provided strings belongs to a separate data block. The content
between the beginning of data and the first string identifies the first data block.

* Blocks are separated by a string: Specifies that data blocks are separated with the
selected string of characters. All content between the two selected strings belongs to a
separate data block.

* Beginning of First Data Block: Specifies the starting position of the first data block. At the
same time, it defines the starting position of the sub area. Usually, the starting position is also
the beginning of the received data. The configuration parameters are the same as for defining
fields. For more information, see section Defining Fields.

35

* End of Last Data Block: Specifies the ending position of the last data block. At the same time, it
defines the ending position of the sub area. Usually, ending position is at the end of the received
data. The configuration parameters are the same as for defining fields. For more information,
see section Defining Fields.

Configuring Fields Inside Sub Area
Fields inside the sub area are configured using the same parameters as fields defined at root level.
For more information, see section Defining Fields.

|§ NOTE

The field lines numbers refer to the position within data block, not position within the
input data.

Data Preview
This section provides preview of the field definition. If the defined item is selected, the preview
highlights its placement in the preview data.

* Preview file name: Specifies the file that contains sample data that is going to be parsed by the
filter. The preview file is copied from filter definition. If you change the preview file name, the new
file name is saved.

* Open: Selects another file upon which you want to execute the filter rules.

* Refresh: Re-runs the filter rules upon the contents of the preview file name. Automation updates
the Data Preview section with the result.

3.2.4. Defining Assignment Areas

Unstructured Data filter automatically identifies fields and their values in the received data. This
makes manual variable to field mapping unnecessary.

Dynamic structure functionality is helpful if the trigger receives data with changing structure. In such
cases, main data structure remains unchanged (e.g., fields are delimited by a comma), or retains the
same structure, but the order and/or the number of fields changes. There might be new fields, or
some of the old fields could no longer be available. Because of enabled Dynamic structure, filter
automatically identifies structure of the received file. At the same time, filter reads field names and
values (nane: val ue pairs) from the data. This eliminates the need for manual mapping of fields to
variables.

Use Data Filter action does not offer any mapping possibilities, because it performs the mapping
dynamically. You don't even have to define label variables in the trigger configuration. The action
assigns field values to the label variables of the same name without requiring the variables to be
imported from the label. However, this rule applies to the Print Label action alone. If you want to use
the field values in any other action, you have to define variables in the trigger, while still keeping the
automatic variable-to-field mapping.

36

NOTE

There is no error if the field available in the input data doesn't have a matching label
variable. silently ignores the missing variables.

Configuration Items IA;;\gnmant areain TXT contents X

m - Field Properties
Settings Structure.

preview

fiew file name: data.tt 2

Defining position of variable names and variable
values within the assignment area
4 Rost

4 g Subares

£5 Open €3 Refresh
1

1 Field Start
4 [Ep Assignment area

nationi
Variable name Field start: | Position in data block - e

Variable value Position:
Line: 1

Character: 6

Field End

Field start: | Find string after field start v
String: - > [Y] Match case
Occurrence: 1

Offsetfrom string:

Lines: 0

Characters: 0

Data preview highlighting the

Definition of the rule to extractthe extracted names of variables.

variable names.

Configuring Assignment Area

The assignment area is configured using the same procedure as sub area. For more information, see
section Defining Sub Areas. The assignment area can be defined on the root data level, appearing just
once. Or it can be configured inside a sub area, so it executes for each data block in the sub area.

Configuring Fields in Assignment Area
When you create an assignment area, the filter automatically defines two placeholders. These two
placeholders define the nane: val ue pair.

* Variable name: Specifies the field whose content is taken as variable name (nanme componentin
a pair). Configure the field using the same procedure as for document fields. For more
information, see section Defining Fields.

* Variable value: Specifies the field whose contents is taken as variable value (val ue component
in a pair). Configure the field using the same procedure as for document fields. For more
information, see section Defining Fields.

Example

The area between AXA and AXZ is assignment area. Every line in assignment area provides a

nane: val ue pair. Name is defined as the value between 6th character in the line and equal character.
Value is defined as the value between "equals" character and end of the line with negative offset of
three characters.

XA
~FDO1Donat i onHR=G095605 3412625"FS
~FDO2Donat i onBC=D30956053412625"FS

37

~FDO3Hospi t al NoHR=HNO60241"FS
~FDO4Hospi t al NoBC=060241/"FS
AFDO5Sur name=Hawl ey”~FS
~FDO7For enane=Anni e~FS
~FDO9Pr oduct =Bl 00d”™FS
~FD1OPat i ent Bl G»=0O Rh +ve”FS
AFD11DoB=27 June 19477"FS
~FD12Dat eReqd=25 Dec 2012”"FS
~XZ

For more information, see section Examples.

3.3. Configuring XML filter

3.3.1. XML Filter

@ PRODUCT LEVEL INFO
This functionality is available in LMS Enterprise and LMS Pro.

To learn more about filters in general, see section Understanding Filters.

Use this filter whenever a trigger receives XML-encoded data. The filter allows you to extract
individual fields, fields in repeatable sub areas, and even nane- val ue pairs. XML structure defines
elements and sub elements, attributes and their values, and textual values (element values).

While you can define the structure of the XML file by yourself, NiceLabel recommends you to import
the structure from the existing sample XML file. Click Import Data Structure button on the ribbon.
After you import the XML structure, the Data Preview section displays the XML contents. It also
highlights the elements and attributes that you define as output fields.

For XML data examples, see section XML Data.

Defining Structure
To use the XML items, configure them as:

» Variable value: Specifies that you want to use the selected item as a field and that you will map
its value to respective variables in Use Data Filter action. For more information, see section
Defining XML Fields.

» Optional element: Specifies that the element is not mandatory. This corresponds with
XML schema (XSD file) attribute m nCccur s=0. The variable mapped to such field will have
an empty value if the element does not appear in the XML.

38

* Data block: Specifies that the selected element occurs multiple times and provides data for a
single label. Data block can be defined as repeatable area, assignment area, or both.

* Repeatable area: Specifies that you want to extract values from all repeatable data blocks,
not just from the first one. You can define fields within each data block. Map the defined
fields to respective variables in Use Data Filter action. For more information, see section
Defining Repeatable Elements.

* Assignment area: Specifies that the data block contains nane- val ue pairs. Field names
and their values are read simultaneously. Mapping to variables is done automatically. Use
this feature to accommodate the filter to changing input data, eliminating the maintenance
time. For more information, see section Defining XML Assignment Area.

The Data Preview section simplifies the configuration. The result of a defined filter rule is highlighted
in the preview area.

To change the previewed XML data, click Open and browse for a new sample XML file.

3.3.2. Defining XML Fields

@ PRODUCT LEVEL INFO
This functionality is available in LMS Enterprise and LMS Pro.

If you define XML fields, you make values of selected items automatically available. Filter definition
makes such fields available for mapping to variables in actions. This allows you to extract values of
elements or attributes.

To define an item value as field, do the following:

-_—

Select the element or attribute in the structure list.

2. ForUsage, select Variable value.

3. Theitemis displayed on the structure list with bold letters, indicating that it is in use.
4. The element or attribute name is used as output field name.

5. The Data Preview section highlights the value of the selected item.

39

Configuration Items IXML filter X
m E__. Element properties Data Preview

Settings Structure

44y abap
Path: | /abap/values/NICELABEL JOB/T_LABEL_DATA/item
o) aminsasx P £5 Open G Refresh

Usage: | Variable value - Preview file name: label_goods_receiptxmi

Name: | MATNR 1 <2xml version="1.0" encoding="ucf-&~
2 <askiabap xmlns:asi="NCUD: //ww.ap. con/abapsnl cu'r/aba[.:er version="
3 <asmivalues>

e} version
e [Show formatting options
4 4y NICELABEL JOB
{/y TvEsTAMP
(/) USER All highlighted XML elements have been|
4 4[5 17 LageL DATA defined as 'Variable value’
4y item
¢/> 1BLNAME
¢/5 LBLPRINTER
¢/> 1BL QuANTITY
¢y makTx
(/> mamnr
¢/ mans
¢/> woatu
<J'> QuANTITY Live preview of execution of filter rules. All

¢/ exov highlighted data will be usedin MATNR field, each
'item’ element providing data for a new label

<NICELABEL_JOB>
13:441 00527.788134</TIMESTAMP>

ANS

IT_LABEL | mﬂ'.o
<Ttem>
<LBL NAME>goods_receipt.1bl<¢/LSL NAMES
£ion01</LBL_PRINTER>

>1</LEL_QUANTITY>
5385</MATNRS
€.l
1< Lo}

L_QUANTIT
S5 THREES/MAKTY>
ATNROZTEA4</MATHR>
CME TS

Formatting Options

This section defines string manipulation functions that apply on the selected variables or fields. You
can select one or several functions. These functions are applied in the same order as selected in the
user interface — from top to bottom.

* Delete spaces at the beginning: Deletes all space characters (decimal ASCII code 32) from the
beginning of a string.
* Delete spaces at the end: Deletes all space characters (decimal ASCIl value 32) from the end of

a string.

* Delete opening and closing character: Deletes the first occurrence of the selected opening,
and closing characters that are found in a string.

Example

If you use "{" for the opening character and "}" for the closing character, the input string
{{sel ection}} convertsto{sel ection}.

* Search and replace: Executes standard search and replace function upon the provided values
for find what and replace with. You can also use regular expressions.

|§ NOTE

There are several implementations of the regular expressions in use. uses
the .NET Framework syntax for the regular expressions. For more information,
see Knowledge Base article KB250.

* Replace non printable characters with spaces: Replaces all control characters in the string
with space character (decimal ASCIl code 32). The non printable characters are characters with
decimal ASCII values between 0-31 and 127-159.

40

http://kb.nicelabel.com/index.php?t=faq&id=250

* Delete non printable characters: Deletes all control characters in the string. The non printable
characters are characters with decimal ASCII values between 0-31 and 127-159.

* Decode special characters: Special characters (or control codes) are characters that are not
available on the keyboard, such as Carriage Return or Line Feed. uses a notation to encode such
characters in human-readable form, such as <CR> for Carriage Return and <LF> for Line Feed.
For more information, see section Entering Special Characters (Control Codes).

This option converts special characters from syntax into actual binary characters.

Example

When you receive the data sequence "<CR><LF>", uses it as a as plain string of 8 characters.
Enable this option to interpret and use the received data as two binary characters CR (Carriage
Return - ASCII code 13) and LF (Line Feed - ASCIl code 10).

* Search and delete everything before: Finds the provided string and deletes all characters from
the beginning of the data until the string. The found string itself can also be deleted.

» Search and delete everything after: Finds the provided string and deletes all characters from
the string until the end of the data. The found string itself can also be deleted.

* Change case: Changes all characters in your strings to uppercase or lowercase.
Data Preview

This section provides preview of the field definition. If the defined item is selected, the preview
highlights its placement in the preview data.

* Preview file name: Specifies the file that contains sample data that is going to be parsed by the
filter. The preview file is copied from filter definition. If you change the preview file name, the new
file name is saved.

* Open: Selects another file upon which you want to execute the filter rules.

* Refresh: Re-runs the filter rules upon the contents of the preview file name. Automation updates
the Data Preview section with the result.

3.3.3. Defining Repeatable Elements in XML Filter

@ PRODUCT LEVEL INFO
This functionality is available in LMS Enterprise and LMS Pro.

If an XML element occurs in XML data for multiple times, it is a repeatable element. Usually, a
repeatable element contains data for a single label. To indicate that you want to use data from all
repeatable elements, and not just from the first one, define the element as a Data block and enable
the Repeatable element option. If the filter contains definition of elements defined as data block /

41

repeatable element, the Use Data Filter action displays repeatable elements with nested
placeholders. All actions nested below such a placeholder execute only for data blocks at this level.

Example

The <i t en> element is defined as Data block and Repeatable element. This instructs the filter to
extract all occurrences of the <i t en® element, not just the first one. In this case, the <item> should
be defined as the sub-level in Use Data Filter action. You must nest the actions Open Label and Print
Label under this sub-level placeholder, so they are going to be looped for as many times as there are
occurrences of the <i t ent element. As shown in the example below, for three times.

<?xml ver sion="1.0" encoding="utf-8"7?>
<asx: abap xmIns:asx="http://www.sap.com/abapxml’ ver sion="1.0"">
<asx: val ues>
<Nl CELABEL_JOB>
<T IMEST AMP>20130221100527.788134</T IMEST AMP>
<USER>PGRI</ USER>
<I T _LABEL_DAT A>
<itenp
<LBL_NANME>goods_r eceipt.nlbl</LBL_NAME>
<LBL_PRI NT ER>Pr oductionOl1</LBL_PRINT ER>
<LBL_QUANT IT Y>1</LBL_QUANT IT Y>
<MAKT X>MASS ONE</MAKT X>
<MAT NR>28345</MAT NR>
<MElI NS>KG</ MEI NS>
<WDAT U>19.01.2012</WDAT U>
<QUANT IT Y>1</QUANT IT Y>
<EXI DV>012345678901234560</ EXI DV>
</itenp

<itenp
<LBL_NANME>goods_r eceipt.nlbl</LBL_NAVME>
<LBL_PRI NT ER>Pr oductionOl1</LBL_PRINT ER>
<LBL_QUANT IT Y>1</LBL_QUANT IT Y>
<MAKT X>MASS T WO</MAKT X>
<MAT NR>28346</MAT NR>
<MEIl NS>KG</ MEl NS>
<WDAT U>11.01.2011</WDAT U>
<QUANT IT Y>1</QUANT IT Y>
<EXI Dv>012345678901234577</ EXI DV>
</itenw

<itene
<LBL_NANME>goods_r eceipt.nlbl</ LBL_NAVE>
<LBL_PRI NT ER>Pr oductionOl1</LBL_PRINT ER>
<LBL_QUANT IT Y>1</LBL_QUANT IT Y>
<MAKT X>MASS T HREE</MAKT X>
<MAT NR>27844</MAT NR>

42

<MEl NS>KG</ MEI NS>

<WDAT U>07.03.2009</WDAT U>

<QUANT IT Y>1</QUANT IT Y>

<EXI Dv>012345678901234584</ EXI DV>
</itenw

</IT _LABEL_DAT A>
</ NI CELABEL_JOB>
</ asx:val ues>

</ asx: abap>

3.3.4. Defining XML Assignment Area

@ PRODUCT LEVEL INFO
This functionality is available in LMS Enterprise and LMS Pro.

XML filter automatically identifies fields and their values in the received data. This eliminates the need
for manual variable-to-field mapping.

Dynamic structure functionality is helpful if the trigger receives data with changing structure. In such
cases, main data structure remains unchanged (e.g., fields are delimited by a comma), or retains the
same structure, but the order and/or the number of fields changes. There might be new fields, or
some of the old fields could no longer be available. Because of enabled Dynamic structure, filter
automatically identifies structure of the received file. At the same time, filter reads field names and
values (nane: val ue pairs) from the data. This eliminates the need for manual mapping of fields to
variables.

Use Data Filter action does not offer any mapping possibilities, because it performs the mapping
dynamically. You don't even have to define label variables in the trigger configuration. The action
assigns field values to the label variables of the same name without requiring the variables to be
imported from the label. However, this rule applies to the Print Label action alone. If you want to use
the field values in any other action, you have to define variables in the trigger, while still keeping the
automatic variable-to-field mapping.

@ NOTE

There is no error if the field available in the input data doesn't have a matching label
variable. silently ignores the missing variables.

43

Configuration Items | XML filter X

m & Element properties The element ‘item’ is defined as Data

- block.
Settings Structure l
Usage: | Deta block taml
4y sbsp
Path: | /abap/values/NICELABEL_IOB/IT_LABEL DATA
&) xminsasx £9 Open 5 Refresh
{4 version Name: | item 1 <?uml veraion="1.0" encoding="utf-&"
2 <asx:sbap xmlns: /7w . sap. cch/abaper version="
44 values 3 <asxivalues> —
| Repeatable element 4 <NI
5 BMP>2 2110052
44y item Vslue of the sttribute

| Assignment area

Variable name is defined by:

{fy user ® Element name 3 >gooda_receipt.1bl</LEL NAME>

ER>E r:udu~nun01</_EL PRINTER>
JUANT

4 {fy niceLaseL JoB 7.788134</TIMESTAMES
4 {fy Im_LagEL DATA Element value
<fy eunane Variable value is defined by:

{fy TmEsTAMP
4> eLprinTER ® Element value
4y eLquanTy Value of the attribute
{fy maxrx 1
< varn) Show formatting options 22
<y wens
<y woetu
<y Quanmy
{fy eaov

Yy et

Live preview of filter rules. Highlighted are
values of variables. Names of variables are
The element ‘item’ is also defined as Assignment area, defined by the XML element names.
where the positions of variable names and values are

defined.

L

Configuring XML Assignment Area

When you configure the Data Block as assignment area, two placeholders appear under this
element's definition. You have to define how the field name and value are defined, so the filter can
extract the nane- val ue pair.

» Variable name: Specifies the item that contains field name. The name can be defined by
element name, selected attribute value, or element value. To enable automatic mapping, label
variable must have the same name.

* Variable value: Specifies the item that contains field value. The name can be defined by the
element name, selected attribute value, or element value.

A WARNING

The XML element containing nane: val ue pairs cannot be set as a root element - this
element must be set as at least a second level element. As shown in the XML example
below, the element <| abel > is the second level element and can contain the

nane: val ue pairs.

Formatting Options

This section defines string manipulation functions that apply on the selected variables or fields. You
can select one or several functions. These functions are applied in the same order as selected in the
user interface — from top to bottom.

* Delete spaces at the beginning: Deletes all space characters (decimal ASCII code 32) from the
beginning of a string.

* Delete spaces at the end: Deletes all space characters (decimal ASCII value 32) from the end of
a string.

* Delete opening and closing character: Deletes the first occurrence of the selected opening,
and closing characters that are found in a string.

44

Example

If you use "{" for the opening character and "}" for the closing character, the input string
{{sel ection}} convertsto{sel ection}.

» Search and replace: Executes standard search and replace function upon the provided values
for find what and replace with. You can also use regular expressions.

S NOTE

There are several implementations of the regular expressions in use. uses
the .NET Framework syntax for the regular expressions. For more information,
see Knowledge Base article KB250.

* Replace non printable characters with spaces: Replaces all control characters in the string
with space character (decimal ASCIl code 32). The non printable characters are characters with
decimal ASCII values between 0-31 and 127-159.

* Delete non printable characters: Deletes all control characters in the string. The non printable
characters are characters with decimal ASCII values between 0-31 and 127-159.

* Decode special characters: Special characters (or control codes) are characters that are not
available on the keyboard, such as Carriage Return or Line Feed. uses a notation to encode such
characters in human-readable form, such as <CR> for Carriage Return and <LF> for Line Feed.
For more information, see section Entering Special Characters (Control Codes).

This option converts special characters from syntax into actual binary characters.

Example

When you receive the data sequence "<CR><LF>", uses it as a as plain string of 8 characters.
Enable this option to interpret and use the received data as two binary characters CR (Carriage
Return - ASCII code 13) and LF (Line Feed - ASCII code 10).

» Search and delete everything before: Finds the provided string and deletes all characters from
the beginning of the data until the string. The found string itself can also be deleted.

» Search and delete everything after: Finds the provided string and deletes all characters from
the string until the end of the data. The found string itself can also be deleted.

* Change case: Changes all characters in your strings to uppercase or lowercase.
Example

The <I abel > element is defined as data block and assignment area. The variable name is defined by
value of the attribute name, the variable value is defined by element text.

<?xml version="1.0" standalone="'no"'?>
<| abel s FORMAT="case.nlbl'™ PRINTERNAME="ProductionOl1™ QUANTITY=""1">
<| abel >

45

http://kb.nicelabel.com/index.php?t=faq&id=250

<vari abl e name=""CASEl D'>0000000123</ vari abl e>
<vari abl e name="CARTONTYPE"/>
<vari abl e name=""ORDERKEY" >0000000534</ vari abl e>
<vari abl e name="BUYERPO"/>
<vari abl e name=""ROUTE"> </vari abl e>
<vari abl e name=""CONTAI NERDETAI LI D'">0000004212</ vari abl e>
<vari abl e name=""SERI ALREFERENCE''>0</ vari abl e>
<vari abl e name="FI LTERVALUE>0</ vari abl e>
<vari abl e name=""1 NDI CATORDI G T"'>0</ vari abl e>
<vari abl e name="DATE">11/19/2012 10: 59: 03</vari abl e>
</1 abel >
</l abel s>

For more information, see section Examples.

3.4. Configuring JSON filter

3.4.1. JSON Filter

@ PRODUCT LEVEL INFO
This functionality is available in LMS Enterprise and LMS Pro.

To learn more about filters in general, see section Understanding Filters.

Use the JSON filter if your trigger receives JSON-encoded data. JSON filter allows you to use
variables and values from your JSON file. The filter supports data extraction from JSON arrays.

S NOTE

Automation allows you to use all JSON data types. Read more about the available
JSON data types here.

While you can define the JSON file structure manually, NiceLabel recommends you to import the
structure from the received JSON files.

To import the JSON file structure:

1. Go to Data Filters and Edit your JSON filter.

2. Click Structure > Import Data Structure. Navigate to your JSON file and click Open.
After you import JSON files, the Data Preview section displays the JSON contents. The Data
Preview also highlights the elements that you define as output fields.

46

https://www.w3schools.com/js/js_json_datatypes.asp

For JSON data examples, see section JSON Data.

Defining Structure
To use the JSON items, configure them as:

» Variable value: Specifies that you want to use the selected item as a field. When building the
configuration, you manually map values with respective variables in the Use Data Filter action.
For more information, see section Defining JSON Fields.

* Optional element: Specifies that the element is not mandatory. The variable mapped to
such field will have an empty value if the element does not appear in the JSON file.

» Data block: Specifies that the included sub-items occur multiple times and provide data for
your labels. Data block can be defined as repeatable area, assignment area, or both. In terms of
JSON, the Data block works as an array.

* Repeatable area: Specifies that you want to extract values from all repeatable data blocks,
not just from the first one. You can define fields within each data block. Manually map the
defined fields to the respective variables in the Use Data Filter action. For more
information, see section Defining Repeatable Elements in JSON Filter.

* Assignment area: Automatically creates the variables and assigns them relevant values.
Field names and their values are read simultaneously. Mapping to variables is done
automatically. Use this feature to accommodate the filter to changing input data,
eliminating the maintenance time. For more information, see section Defining JSON
Assignment Area.

The Data Preview section simplifies the configuration. The result of a defined filter rule is highlighted
in the preview area.

To change the previewed JSON data, click Open and browse for a new sample JSON file.

3.4.2. Defining JSON Fields

@ PRODUCT LEVEL INFO
This functionality is available in LMS Enterprise and LMS Pro.

If you define JSON fields, you make values of the selected items automatically available. Your filter
definition makes such fields available for mapping to variables in actions. This allows you to extract
the element values.

To define JSON fields:

1. Select your element and set its Usage to Variable value.

2. The elementis displayed on the structure list with bold letters, indicating that it is in use.

47

3. The elementis used as output field name.

4. The Data Preview section highlights the values of the selected element.

Element properties

viage
“4h o
4y niceuszsos
4[> TmesTAMP
4/ user
44y e DaTa
“¢Jy iem Allhiglighted JSON elements are defined|
<fy o name - as 'Variable value',
¢y LBLPRINTER
¢y aL.uaniTy
<[y marx

Paths | NICELABEL JOB.I_LABEL DATAterm

Nome: | LEL NAME

dement

4[> marnr
4[> mems
4fy wortu
4/ auanmry
4fy exov

Live preview of filter rules execution. All highlighted *
data is used in the LBL_NAME field. Each 'item"
element provides data fora new label.

Formatting Options

This section defines string manipulation functions that apply on the selected variables or fields. You

single elementin your JSON

can select one or several functions. These functions are applied in the same order as selected in the

user interface — from top to bottom.

* Delete spaces at the beginning: Deletes all space characters (decimal ASCII code 32) from the

beginning of a string.

* Delete spaces at the end: Deletes all space characters (decimal ASCII value 32) from the end of

a string.

* Delete opening and closing character: Deletes the first occurrence of the selected opening,
and closing characters that are found in a string.

Example

If you use "{" for the opening character and "}" for the closing character, the input string

{{sel ection}} convertsto{sel ection}.

» Search and replace: Executes standard search and replace function upon the provided values

for find what and replace with. You can also use regular expressions.

@ NOTE

There are several implementations of the regular expressions in use. uses
the .NET Framework syntax for the regular expressions. For more information,

see Knowledge Base article KB250.

* Replace non printable characters with spaces: Replaces all control characters in the string

with space character (decimal ASCIl code 32). The non printable characters are characters with

decimal ASCII values between 0-31 and 127-159.

* Delete non printable characters: Deletes all control characters in the string. The non printable

characters are characters with decimal ASCII values between 0-31 and 127-159.

48

http://kb.nicelabel.com/index.php?t=faq&id=250

* Decode special characters: Special characters (or control codes) are characters that are not
available on the keyboard, such as Carriage Return or Line Feed. uses a notation to encode such
characters in human-readable form, such as <CR> for Carriage Return and <LF> for Line Feed.
For more information, see section Entering Special Characters (Control Codes).

This option converts special characters from syntax into actual binary characters.

Example

When you receive the data sequence "<CR><LF>", uses it as a as plain string of 8 characters.
Enable this option to interpret and use the received data as two binary characters CR (Carriage
Return - ASCII code 13) and LF (Line Feed - ASCII code 10).

» Search and delete everything before: Finds the provided string and deletes all characters from
the beginning of the data until the string. The found string itself can also be deleted.

» Search and delete everything after: Finds the provided string and deletes all characters from
the string until the end of the data. The found string itself can also be deleted.

* Change case: Changes all characters in your strings to uppercase or lowercase.
Data Preview

This section provides preview of the field definition. If the defined item is selected, the preview
highlights its placement in the preview data.

* Preview file name: Specifies the file that contains sample data that is going to be parsed by the
filter. The preview file is copied from filter definition. If you change the preview file name, the new
file name is saved.

* Open: Selects another file upon which you want to execute the filter rules.

* Refresh: Re-runs the filter rules upon the contents of the preview file name. Automation updates
the Data Preview section with the result.

3.4.3. Defining Repeatable Elements in JSON Filter

@ PRODUCT LEVEL INFO
This functionality is available in LMS Enterprise and LMS Pro.

If a JSON element occurs in your JSON data multiple times, it is a repeatable element. Usually, a
repeatable element contains data for a single label template. Repeatable items produce multiple
labels populated with relevant data.

To indicate that you want to use data from all repeatable elements, and not just from the first one:

1. Select the element and define it as a Data block.

49

2. Enable the Repeatable element option.

o
o

“<h
4 ¢y niceLageL_ios
</ TiMESTAMP

The ‘item’ elementis also defined as
Assignmentarea.

ot

230534

The'item' elementis defined as Data block

517,

Live preview of filter rules. Highlighted are
values of variables. Names of variables are
defined by the JSON elementnames.

If the filter contains definition of elements defined as data block / repeatable element, the Use Data

Filter action displays repeatable elements with nested placeholders. All actions nested below such a

placeholder execute only for data blocks at this level.

Example

The"itent elementis defined as both — Data block and Repeatable element. This instructs the
filter to extract all occurrences of the array, not just the first one. In this case, the "item" should be
defined as the sub-level in Use Data Filter action. You must nest the actions Open Label and Print
Label under this sub-level placeholder, so they are going to be looped for as many times as there are

occurrences of the "i t enf' element. As shown in the example below, for three times.

{
“"NICELABEL_JOB™: {

“"TIMESTAMP'" : ''20130221100527.788134",
"USER": "PGRI",
"IT_LABEL DATA"™: {

“item: [

{

-

"LBL_NAME™": 'goods_receipt.nlbl",
"LBL_PRINTER": "Production01",
"LBL_QUANTITY™: "1",

"MAKTX": "MASS ONE",

"MATNR": ''28345",

"MEINS™: "KG",

"WDATU"™: "19.01.2012",
"QUANTITY™: "1",

"EXIDV": '"012345678901234560"

"LBL_NAME": "goods_receipt.nlbl",
"LBL_PRINTER": "ProductionOl1",
“LBL_QUANTITY™: "1",

"MAKTX": ""MASS TwWO™",

50

"MATNR™: "'28346",

"MEINS™: "KG",

"WDATU™: "11.01.2011",
"QUANTITY™: 1",

"EXIDV'™: "012345678901234577"

.
{
"LBL_NAME™": 'goods_receipt.nlbl",
"LBL_PRINTER": "Production01",
"LBL_QUANTITY": ™1™,
"MAKTX": "MASS THREE",
"MATNR™: "27844",
"MEINS": "KG",
"WDATU™: "07.03.2009",
"QUANTITY™: "1",
"EXIDV": "012345678901234584"
}

3.4.4. Defining JSON Assignment Area

@ PRODUCT LEVEL INFO
This functionality is available in LMS Enterprise and LMS Pro.

JSON filter automatically identifies fields and their values in the received data. This eliminates the
need for manual variable-to-field mapping.

Dynamic structure functionality is helpful if the trigger receives data with changing structure. In such
cases, main data structure remains unchanged (e.g., fields are delimited by a comma), or retains the
same structure, but the order and/or the number of fields changes. There might be new fields, or
some of the old fields could no longer be available. Because of enabled Dynamic structure, filter
automatically identifies structure of the received file. At the same time, filter reads field names and
values (hane: val ue pairs) from the data. This eliminates the need for manual mapping of fields to
variables.

Use Data Filter action does not offer any mapping possibilities, because it performs the mapping
dynamically. You don't even have to define label variables in the trigger configuration. The action
assigns field values to the label variables of the same name without requiring the variables to be
imported from the label. However, this rule applies to the Print Label action alone. If you want to use
the field values in any other action, you have to define variables in the trigger, while still keeping the
automatic variable-to-field mapping.

51

NOTE

There is no error if the field available in the input data doesn't have a matching label
variable. silently ignores the missing variables.

Configuration ftems | JSON filter X

m Element properties Data Preview
Settings Structure

Usage: | Data block —— — Do filn nameCisnl

“<b = - The'item’ elementis defined as Data block
b Path: | NICELABEL JOB.IT_LABEL DATA & open
4 ¢[y wiceLageL_Jos

<[y TimesTAMP Name: | item

4[y user

4 ¢[y m_LaBEL DATA

44y item
e
X
&
&
<y warn
¢y ves
<y wor
<y s
«fy exo

Options! clement

124 Live preview of filter rules. Highlighted are
values of variables. Names of variables are

The'item’ elementis also defined as defined by the JSON elementnames.

Assignmentarea.

Line: 20 Column: 41

NOTE

Because there are no optional attributes in JSON, Automation defines Variable
names and Variable values automatically.

Formatting Options

This section defines string manipulation functions that apply on the selected variables or fields. You
can select one or several functions. These functions are applied in the same order as selected in the
user interface — from top to bottom.

* Delete spaces at the beginning: Deletes all space characters (decimal ASCII code 32) from the
beginning of a string.

* Delete spaces at the end: Deletes all space characters (decimal ASCII value 32) from the end of
a string.

* Delete opening and closing character: Deletes the first occurrence of the selected opening,
and closing characters that are found in a string.

Example

If you use "{" for the opening character and "}" for the closing character, the input string
{{sel ection}} convertsto{sel ection}.

» Search and replace: Executes standard search and replace function upon the provided values
for find what and replace with. You can also use regular expressions.

52

S NOTE

There are several implementations of the regular expressions in use. uses
the .NET Framework syntax for the regular expressions. For more information,
see Knowledge Base article KB250.

* Replace non printable characters with spaces: Replaces all control characters in the string
with space character (decimal ASCIl code 32). The non printable characters are characters with
decimal ASCII values between 0-31 and 127-159.

* Delete non printable characters: Deletes all control characters in the string. The non printable
characters are characters with decimal ASCII values between 0-31 and 127-159.

* Decode special characters: Special characters (or control codes) are characters that are not
available on the keyboard, such as Carriage Return or Line Feed. uses a notation to encode such
characters in human-readable form, such as <CR> for Carriage Return and <LF> for Line Feed.
For more information, see section Entering Special Characters (Control Codes).

This option converts special characters from syntax into actual binary characters.

Example

When you receive the data sequence "<CR><LF>", uses it as a as plain string of 8 characters.
Enable this option to interpret and use the received data as two binary characters CR (Carriage
Return - ASCII code 13) and LF (Line Feed - ASCII code 10).

» Search and delete everything before: Finds the provided string and deletes all characters from
the beginning of the data until the string. The found string itself can also be deleted.

» Search and delete everything after: Finds the provided string and deletes all characters from
the string until the end of the data. The found string itself can also be deleted.

* Change case: Changes all characters in your strings to uppercase or lowercase.

Example
The" LI ST_I TEM' element is defined as data block and assignment area.

{
"DELIVERYNOTE": {

"LIST_CUSTOMER_INFO": {
""CUSTOMER_INFO": {

"CUSTOMER_NAME": "Customer A",
""CUSTOMER_STREET_ ADDRESS'": "Test St",
""CUSTOMER_POST_ADDRESS™: "1234, Test City",
""CUSTOMER_NUMBER": "1234",
"CURRENCY": "EUR",
"DELIVERY_METHOD": "Express delivery",
"EDI_INFORMATION": "EDI",
"ORDER_TYPE': "CSO",

53

http://kb.nicelabel.com/index.php?t=faq&id=250

"ORDER_NUMBER": "123",
3
3
3
3

For more information, see section Examples.

3.5. Setting Label and Printer Names from
Input Data

Typically, filters extract values from the received data and send them to label variables for printing. In
such cases, label or printer names are hard-coded into the actions. For example, Open Label action
hard-codes the label name, and Set Printer action hard-codes the printer name. However, the input
data can also provide meta-data. These are the values used inside the NiceLabel Automation
processing, but not printed on the label, such as label name, printer name, label quantity, etc.

To use the values of meta-data fields in the print process, do the following.

1. Filter reconfiguration: Define new fields for the input data to extract the meta-data fields as
well.

2. Variable definition: Manually define the variables to store the meta-data since they don't
exist on the label and cannot be imported. Use intuitive names, such as Label Nane,
Pri nt er Nanme, and Quant i t y. You are free to use any variable name.

3. Mapping reconfiguration: Manually configure the Use Data Filter action to map meta-fields to
new variables.

4. Action reconfiguration: Reconfigure Open Label action to open the label specified by
variable Label Nare, and Set Printer action to use the printer as specified by the
Pr i nt er Nane variable.

Example

The CSV file contains label data, but also provides meta-data, such as label name, printer name and
quantity of labels. The Structured Text filter extracts all fields, sends label-related values to the label
variables and uses meta-data to configure actions Open Label, Set Printer and Print Label.

| abel name;l abel count ;printer_nane;art _code;art name;eanl3;weight
| abel 1. nl bl ;1;CAB A3 203DPI ;00265012;SAC.PESTO 250G;383860026501;1,1 kg
| abel 2. nl bl ;1;Zebra R-402;00126502;TAGLIOLINI 250G;383860026002;3,0 kg

For more information, see section Examples.

54

4. Configuring Triggers

4.1. Understanding Triggers

@ PRODUCT LEVEL INFO

This functionality is not entirely available with every NiceLabel Automation product
level.

NiceLabel Automation is an event-based application that triggers the execution of actions upon
changes in monitored events. You can use any of the available triggers to monitor changes in events,
such as file drop into a certain folder, acquired data on a specific TCP/IP socket, HTTP message, and
others. Main purpose of a trigger is to detect changes in events, retrieve the data provided by the
event, and to execute actions.

The majority of triggers passively listens for the monitored event to occur. There are two exceptions.
Database trigger is an active trigger that periodically checks for changes in the monitored database.
Serial port trigger can wait for incoming connection, or can actively poll for data in specified time
intervals.

Processing Triggers

In most cases, the trigger receives data that must be printed on labels. Once the trigger receives the
data, the actions are executed in the defined order from top to bottom. The received data can contain
values for label objects. However, before you can use these values, you must extract them from the
received data and save them in variables. The filters define extraction rules. When executed, filters
save the extracted data to the mapped variables. Once you have the data stored in variables, you can
run actions that use the variables, such as Print Label.

After an event occurs, the provided input data is saved in a temporary file located in the service user's
% enmp%folder. The internal variable Dat aFi | eNane refers to the temporary file location. The file is
deleted when the trigger completes its execution.

Trigger Properties
To configure a trigger, define how to accept the data and the actions that you want to run. Optionally,
you can also use variables. There are three sections that form the trigger configuration.

* Settings: Defines main parameters of the selected trigger. Select the event that the trigger will
monitor for changes, or define the inbound communication channel. Settings tab allows you to
select the script programming engine and security options. The available options depend on the
trigger type. For more information, see section Trigger Types below.

* Variables: This tab defines the variables you need inside the trigger. Usually, you import
variables from the label templates, so you can map them with the fields extracted from the

55

inbound data. You can also define variables to be used internally in various actions and won't be
sent to the label. For more information, see section Variables.

Actions: This tab defines the actions to be executed whenever the trigger detects a change in
the monitored event. Actions execute in order from top to bottom. For more information, see
section Actions.

Trigger Types

File Trigger: Monitors the change in the file or in a set of files in the folder. Contents of the file
can be parsed in filters and used in actions.

Serial Port Trigger: Monitors inbound communication on the serial RS232 port. Contents of the
input stream are parsed by filters and used in actions. The data can be also polled from the
external device in defined time intervals.

Database Trigger: Monitors record changes in SQL database tables. Contents of the returned
data set can be parsed and used in actions. The database is monitored in defined time intervals.
The trigger can also update the database after the actions execute using | NSERT, UPDATE and

I NSERT SQL statements.

Scheduler Trigger: Executes your trigger in scheduled time intervals.

TCP/IP Server Trigger: Monitors the inbound raw data stream arriving on the defined socket.
Contents of the input stream is parsed by filters and used in actions. TCP/IP server trigger can
be bidirectional and used to provide feedback.

TCP/IP Client Trigger: Turns your Automation into a listening client that connects to TCP/IP
servers.

HTTP Server Trigger: Monitors the inbound HTTP-formatted data stream arriving on the
defined socket. Contents of the input stream is parsed by filters and used in actions. User
authentication can be enabled. Is bidirectional, providing feedback.

Web Service Trigger: Monitors the inbound data stream arriving on the defined Web Service
method. Contents of the input stream are parsed by filters and used in actions. Is bidirectional,
providing feedback.

Cloud Trigger: Captures data from Label Cloud.

Error Handling in Triggers

Configuration errors: The trigger is in error state if it is configured improperly or incompletely.
For example, you have configured the file trigger, but failed to specify the file name to check for
changes. Or, you defined the action to print labels, but you haven't specified the label name. You
can save triggers that contain configuration errors, but you cannot run them in Automation
Manager until you resolve the issue. The error reported in the lower level of the configuration
propagates itself all the way to the higher level, so it is easy to find the error location.

56

Example

If you have one action in error state, all upper-level actions indicate the error state. The error
icon is displayed in Actions tab and in trigger name.

* Overlapping configurations: While it is perfectly acceptable for the configuration to include
triggers monitoring the same event, such as the same file name, or listening on the same TCF/IP
port, such triggers cannot run simultaneously. When you start the trigger in Automation
Manager, it starts only if no other trigger from the same or other configuration monitors the
same event.

Print Job Status Feedback
See section Print Job Status Feedback.

4.2. Defining Triggers

4.2.1. File Trigger

To learn more about triggers in general, see section Understanding Triggers.
File trigger event occurs if:

* monitored file changes
» set of files in the monitored folder changes

* anew file appears in the monitored folder

Depending on the trigger configuration, Windows operating system alerts the trigger about the
changed files, or the trigger itself keeps a list of the file's last-write time stamp and fires after the file
receives a newer time-stamp.

@ NOTE

Typical usage: business system executes a transaction, which in effect generates
trigger file in a shared folder. Data content might be structured in CSV, XML and other
formats, or it can be structured in a legacy format. In either way, NiceLabel Automation
reads the data, parses values using filters and prints them on labels. For more
information on how to parse and extract data, see section Understanding Filters.

57

@ TIP
To help you build configurations with file trigger see Automation sample files:
Compound CSV, CSV Medium, CSV Simple, etc. Find sample files under Help >
Sample Files.

General
This section allows you to configure the most important file trigger settings.

* Name: Specifies the unique name of the trigger. The names helps you distinguish between
different triggers when you configure them in Automation Builder, and later when you run them
in Automation Manager.

* Description: Allows you to describe the role of this trigger. Help the users with a short
explanation about what the trigger does.

» Detect the specified file: Specifies path and name of the file that you monitor for changes.

* Detect a set of files in the specified folder: Specifies path to the folder, which you monitor for
file changes, and the file names. You can use standard Windows wild cards "*" and "?". Some file
types are predefined in the drop-down box, but you can also enter your own types.

S NOTE

When monitoring a network folder, make sure you use the UNC notation of \ \ ser ver
\'share\fil e. For more information, see section Access to Network Shared
Resources.

* Automatically detect changes:NicelLabel Automation responds to file changes as soon as the
file is created or changed. In this case, Windows operating system informs NicelLabel
Automation Service about the change. You can use it when the monitored folder is located on
the local drive and also in some network environments.

* Check for changes in folder in intervals:NiceLabel Automation scans the folder for file
changes in the defined time intervals. In this case, NiceLabel Automation monitors folder for file
changes by itself. This polling method tends to be slower than automatic detection. Use it as a
fallback, when automatic detection cannot be used in your environment.

Execution
Options in the File Access section specify how the application accesses the trigger file.

* Open file exclusively: Opens the trigger file in exclusive mode. No other application can access
the file at the same time. This is the default selection option.

* Open file with read only permissions: Opens the trigger file in read-only mode.

* Open file with read and write permissions: Opens the trigger file in read-write mode.

58

* File open retry period: Specifies the time period after which NiceLabel Automation tries to
open the trigger file. If the file access is still not possible after this time period, NiceLabel
Automation reports an error.

Options in the Monitoring Options section specify the file detection possibilities.

* Check file size: Enables detection of changes not only for file time-stamp, but also for file
length. The changes in file time-stamp might not be detected in some cases. Therefore,
Automation also checks for changed file size and triggers the actions.

* Ignore empty trigger files: If the trigger file has no contents, it is ignored. The actions do not
execute.

* Delete the trigger file: After the change in the trigger file has been detected, and the trigger
fires, Automation deletes the file. Enabling this option keeps the folder clean of processed files.

@ NOTE

NiceLabel Automation always creates a backup of the received trigger data. The
contents of trigger file is saved using a unique file name. This is important, if you need
the contents of the trigger file in some of the actions, such as Run Command File. The
location of the backup trigger data is referred to by the internal variable DataFileName.

* Empty file contents: After the actions execute, the trigger file is emptied. This is useful if the
third party applications append data to the trigger file. You want to keep the file, so appending
can be done, but you don't want to print the old data.

* Track changes while trigger is inactive: Fires trigger upon files that change while the trigger is
inactive. If your NiceLabel Automation is not deployed in a high-availability environment with
backup servers, the incoming trigger files might become lost if the server is down. After the
NiceLabel Automation is back online, the existent trigger files are processed.

* Number of concurrent action executions: Specify the number of your concurrent action
executions. You don't have to wait for the execution to finish in order for the next one to start.
Your processing action order stays the same while simultaneously the same action from another
thread can start executing.

The maximum number of your concurrent action executions also depends on your hardware
performance. Learn more about Section 6.1, "Parallel Processing”.

Other

Options in the Feedback from the Print Engine section specify communication parameters that
allow you to receive print engine feedback.

@ PRODUCT LEVEL INFO
This functionality is available in LMS Enterprise and LMS Pro.

59

* Supervised printing: Activates synchronous printing mode. Use it whenever you want to send
the print job status back to the third party application. For more information, see section
Synchronous Print Mode.

Options in the Data Processing section specify if you want to trim the data so that it fits into a
variable, or ignore the missing label variables. By default, reports errors and breaks the printing
process if you try to save values that are too long in label variables, or try to set values for non-
existing label variables.

* Ignore excessive variable contents: truncates data values that exceed the length of the
variable as defined in the label designer to make them fit. This option is in effect if you are
setting variable values in filters, from command files, and when you are setting values of trigger
variables to label variables of the same name.

Example

Label variable accepts 5 characters at maximum. With this option enabled, any value longer than
5 characters is truncated to the first 5 characters. If the value is 1234567 ignores digits 6 and 7.

* Ignore missing label variables: When printing with command files (such as JOB file), the
printing process ignores all variables that are:

* specified in the command file (using the SET command)
* not defined on the label

Similar happens if you define assignment area in a filter to extract all name-value pairs, but your
label contains fewer variables.

When setting values of non-existing label variables, reports an error. If this option is enabled, the
printing continues.

Options in Scripting section specify scripting possibilities.
» Scripting language: Selects scripting language for the trigger. All Execute script actions that

you use within a single trigger use the selected scripting language.

Options in the Save Received Data section specify the available commands for data that the trigger
receives.

» Save data received by the trigger to file: Enable this option to save the data received by the
trigger. The option Variable enables variable file name. Select a variable that contains path and
file name.

* On error save data received by the trigger to file: Enable this option to save the data into the
trigger only if an error occurs during the action execution. You might want to enable this option
to keep the data that caused the issue ready for troubleshooting.

60

S NOTE

Make sure you enable the Supervised printing support. If not, cannot detect
errors during the execution. For more information, see section Synchronous
Print Mode.

@ NOTE

saves the received data into a temporary file. This temporary file is deleted right
after the trigger execution completes. The internal variable Dat aFi | eNane
points to that file name. For more information, see Internal Variables.

Security

* Lock and encrypt trigger: Enables trigger protection. If you enable it, the trigger becomes
locked and you cannot edit it any longer. This encrypts the actions. Only users with password
can unlock the trigger and modify it.

4.2.2. Serial Port Trigger

To learn more about triggers in general, see section Understanding Triggers.
Serial port trigger event occurs when data is received on the monitored RS232 serial port.

Typical usage: (1) Printer replacement. You are retiring the existing serial port-connected label
printer. In its place NiceLabel Automation will accept the data, extract the values for label objects from
the received print stream, and create a print job for the new printer model. (2) Weight scales. Weight
scales provides data about the weighted object. NiceLabel Automation extracts the required data
from the received data stream, and prints a label. For more information on how to parse and extract
data, see section Understanding Filters.

TIP

To help you build configurations with serial port trigger see Automation sample file
Scan & Print from Excel. Find sample files under Help > Sample Files.

General
This section allows you to configure the most important file trigger settings.

* Name: Specifies the unique name of the trigger. The names helps you distinguish between
different triggers when you configure them in Automation Builder, and later when you run them
in Automation Manager.

» Description: Allows you to describe the role of this trigger. Help the users with a short
explanation about what the trigger does.

61

* Port: Specifies the serial port (COM) number on which the incoming data is received. Use a port
thatis not in use by any other application or device, such as printer driver. If the selected portis
in use, you won't be able to start the trigger in Automation Manager.

The options in the Port Settings section specify communication parameters that must match the
serial port device parameters.

» Disable port initialization: Port initialization is not executed after you start the trigger in
Automation Manager. This option is sometimes required for virtual COM ports.

Execution

» Use initialization data: Specifies that you want to send the initialization string to the serial
device each time the trigger is started. Some serial devices require to be awaken or put into
standby mode before they can provide the data. For more information about the initialization
string and if you need it at all, see your device's user guide. You can include binary characters.
For more information, see section Entering Special Characters.

» Use data polling: Specifies that the trigger actively asks the device for data. Within the
specified time intervals, the trigger sends the commands provided in the Contents field. This
field can include binary characters. For more information, see section Entering Special
Characters.

Other
Options in the Feedback from the Print Engine section specify communication parameters that
allow you to receive print engine feedback.

@ PRODUCT LEVEL INFO
This functionality is available in LMS Enterprise and LMS Pro.

» Supervised printing: Activates synchronous printing mode. Use it whenever you want to send
the print job status back to the third party application. For more information, see section
Synchronous Print Mode.

Options in the Data Processing section specify if you want to trim the data so that it fits into a
variable, or ignore the missing label variables. By default, reports errors and breaks the printing
process if you try to save values that are too long in label variables, or try to set values for non-
existing label variables.

* Ignore excessive variable contents: truncates data values that exceed the length of the
variable as defined in the label designer to make them fit. This option is in effect if you are
setting variable values in filters, from command files, and when you are setting values of trigger
variables to label variables of the same name.

62

Example

Label variable accepts 5 characters at maximum. With this option enabled, any value longer than
5 characters is truncated to the first 5 characters. If the value is 1234567 ignores digits 6 and 7.

* Ignore missing label variables: When printing with command files (such as JOB file), the
printing process ignores all variables that are:

* specified in the command file (using the SET command)

¢ not defined on the label

Similar happens if you define assignment area in a filter to extract all name-value pairs, but your
label contains fewer variables.
When setting values of non-existing label variables, reports an error. If this option is enabled, the
printing continues.

Options in Scripting section specify scripting possibilities.

» Scripting language: Selects scripting language for the trigger. All Execute script actions that

you use within a single trigger use the selected scripting language.

Options in the Save Received Data section specify the available commands for data that the trigger

receives.

* Save data received by the trigger to file: Enable this option to save the data received by the

trigger. The option Variable enables variable file name. Select a variable that contains path and

file name.

* On error save data received by the trigger to file: Enable this option to save the data into the
trigger only if an error occurs during the action execution. You might want to enable this option
to keep the data that caused the issue ready for troubleshooting.

K

K

NOTE

Make sure you enable the Supervised printing support. If not, cannot detect
errors during the execution. For more information, see section Synchronous
Print Mode.

NOTE

saves the received data into a temporary file. This temporary file is deleted right
after the trigger execution completes. The internal variable Dat aFi | eNane
points to that file name. For more information, see Internal Variables.

63

Security

* Lock and encrypt trigger: Enables trigger protection. If you enable it, the trigger becomes
locked and you cannot edit it any longer. This encrypts the actions. Only users with password
can unlock the trigger and modify it.

4.2.3. Database Trigger

To learn more about triggers in general, see section Understanding Triggers.

Database trigger event occurs when a change in the monitored database table is detected. There
might be new records, or existing records that have been updated. Database trigger doesn't wait for
any event change, such as data delivery. Instead, it pulls data from the database in defined time
intervals.

Typical usage: An existing business system executes a transaction, which in effect updates dataina
database table. NiceLabel Automation detects the updated and new records, and prints their
contents on labels.

General
This section allows you to configure the most important file trigger settings.

* Name: Specifies the unique name of the trigger. The names helps you distinguish between
different triggers when you configure them in Automation Builder, and later when you run them
in Automation Manager.

* Description: Allows you to describe the role of this trigger. Help the users with a short
explanation about what the trigger does.

» Database connection: Specifies connection string to the database. Click Define to open the
Database dialog box. Use it to configure the database connection, including database type,
table name, and user credentials. You have to connect to a database that supports access with
SQL commands. For this reason, you cannot use the database trigger to automatically detect
data changes in CSV text files or Microsoft Excel spreadsheets.

S NOTE

Configuration details depend on the type of selected database. The options in
the dialog box depend on the database driver that you use. For configuration
details, see user guide for your database driver. For more information about
database connectivity, see section Accessing Databases.

* Check database in the time intervals: Specifies the time interval in which the database is
polled for changes in records.

* Detection Options and Advanced: These options allow you to fine-tune the record detection
mechanism. After the records are acquired from the database, Actions tab automatically
displays the For Each Record action, using which you map table fields to label variables.

64

Get records based on unique incremental field value

With this option enabled, the trigger monitors the specified auto-incremental numeric field in

the table. NiceLabel Automation remembers the field's value for the last processed record. At

the next polling interval, only records with values greater than the remembered value are

acquired.

To configure this option, select the table name in which the records reside (t abl e nane), the

auto-incremental field (key fi el d) and the starting value for the field (key fi el d defaul t

val ue) . Internally, the variable KeyFi el d is used to refer to the last remembered value of key

field.

K

NOTE

The last value of the key field is remembered internally, but is not updated back
into configuration, so the value for key fi el d default val ue doesnot
change in this dialog box. You can safely reload configuration and/or stop/start
this trigger in the Automation Manager and still keep the last remembered value.
However, if you remove the configuration from Automation Manager and add it
back, the value of last remembered key field is reset to what you have defined in
key field default val ue.

Get records and delete them

With this option selected, all records are acquired from the table and deleted. To configure this

option, select the table name in which the records reside (t abl e nane) and specify the primary

key in the table (key fi el ds). While Automation allows you to have a table without a primary
key, it is strongly recommended that you define the primary key. If the primary key exists, the
records are deleted one by one if a particular record is processed in the actions.

A

WARNING

If the primary key does not exist, all records obtained by the current trigger are
deleted at once. That's fine if no error occurs during record processing. However,
if there is a processing error with some record, Automation stops processing
further records. Because all records captured in this polling interval have already
been deleted without being processed, you can lose data. Therefore, having a
primary key in a table is advisable.

SQL Code Examples

K

NOTE

These SQL statements are read-only and provided for reference only. To provide
custom SQL statements, select the Get and manage records with custom SQL
detection method.

Example table:

65

ID ProductID CodeEAN ProductDesc AlreadyPrinted

1 CAS0006 8021228110014 CASONCELLI ALLA CARNE Y
250G
2 PAS501 8021228310001 BIGOLI 250G

3 PAS502GI 8021228310018 TAGLIATELLE 250G

Example of Update SQL statement in case the table contains primary index:

DELETE FROM [Table]
WHERE [ID] = :ID

| Dfield in the table is defined as primary index. The : | Dconstruct in WHERE clause contains
value of field ID in each iteration. For the first record, the value of | Dis 1, for the second record
2, etc. Specifying the colon in front of the field name in SQL statement specifies how the
variable is used.

Example of Update SQL statement in case the table does has no primary index defined:

DELETE FROM [Table]

If no primary index is defined in the table, all records are deleted from the table after the first
record gets processed.

Get records and update them

In this case, all records are acquired from the table and updated. You can write a custom value
into field in the table as indication 'this records has already been printed'. To configure this
option, you have to select the table name, in which the records reside (t abl e nane), select
the field that you want to update (updat e fi el d), and enter the value that will be stored in the
field (updat e val ue).Internally, the variable Updat eVal ue is used in the SQL statement to
refer to the current value of field (updat e val ue).

While Automation allows you to have a table without a primary key, it is strongly recommended
that you define a primary key. If the primary key exists, the records will be updated one by one,
when the particular record is processed in the actions.

A WARNING

If the primary key does not exists, all records obtained in the trigger are updated
at once. That's fine if there is no error processing the records. But if there is an
error processing some record, the Automation stops processing further records.
Because all records captured in this polling interval have already been updated
without being processed in actions, you can lose data. Therefore, having a
primary key in a table is a good idea.

66

SQL Code Examples

S NOTE

These SQL statements are read-only and provided as a reference only. To
provide custom SQL statements, select the Get and manage records with
custom SQL detection method.

Example table:

ID ProductID CodeEAN ProductDesc AlreadyPrinted
1 CAS0006 8021228110014 CASONCELLI ALLA CARNE Y
250G
2 PAS501 8021228310001 BIGOLI 250G
3 PAS502GlI 8021228310018 TAGLIATELLE 250G

Example of Update SQL statement, if table contains primary index:

UPDATE [Table]
SET [AlreadyPrinted] = :UpdateValue
WHERE [ID] = :ID

| Dfield in the table is defined as primary index. The construct : | Din the WHERE clause
contains the value of field ID in each iteration. For first record, the value of | Dis 1, for second
record 2, etc. Adding a colon in front of the field name in SQL statement specifies usage of a
variable. The field Updat eVal ue is defined in the trigger configuration using the Update value
edit field.

Example of Update SQL statement, when table does not have primary index defined:

UPDATE [Table]
SET [AlreadyPrinted] = :UpdateValue

If no primary index is defined in the table, all records from the table are updated, after the first
record gets processed.

Get and manage records with custom SQL

In this case, the creation of SQL statements for record extraction and field updates is entirely up
to you. To configure this option, you have to provide a custom SQL statement to acquire records
(search SQL st atenent) and acustom SQL statement to update the records after
processing (updat e SQ. st at enment) . Click the Test button to test-execute your SQL
statements and see the result on-screen.

You can use table field values or values of trigger variables as parameters in the WHERE clause
in the SQL statement. You would precede the field or variable name using the colon character ().
This instructs NiceLabel Automation to use the current value of that field or variable.

SQL Code Examples
Example table:

67

ID ProductID CodeEAN ProductDesc AlreadyPrinted

1 CAS0006 8021228110014 CASONCELLI ALLA CARNE Y
250G
2 PAS501 8021228310001 BIGOLI 250G

3 PAS502GI 8021228310018 TAGLIATELLE 250G

Example of Search SQL statement:

To get the records that haven't already been printed, do the following. The field
Al r eadyPr i nt ed neither must contain value Y, nor have blank or NULL value.

SELECT * FROM Table
WHERE AlreadyPrinted <> "Y" or AlreadyPrinted is NULL

From the sample table above, two records with ID values 2 and 3 will be extracted. The first
record has already been printed and will be ignored.

Example of Update SQL statement:
To mark the already printed records with value Y in the Al r eadyPr i nt ed field, do the following:

UPDATE [Table]
SET [AlreadyPrinted] = "Y"
WHERE [ID] = :ID

Put colon (:) in front of the variable name in your SQL statement to identify it as a variable. You
can use any field from the table for parameters in the WHERE clause. In the example, we are
updating the Al r eadyPr i nt ed field only for the currently processed record (value of field | D
must be the same as the value from the current record). In the similar way, you would refer to
other fields in the record as : Pr oduct | Dor : CodeEAN, or even refer to variables defined inside
this database trigger.

To delete the current record from the table, do the following:

DELETE FROM [Table]
WHERE [ID] = :1ID

Show SQL statement: Expand this section to see the generated SQL statement and to write
your own statement if you have selected the option Get and manage records with custom
SQAL.

Previewing SQL Execution

To test the execution of SQL sentences and to see what their effect is, click Test in the toolbar of the
SQL edit area. The Data Preview section opens in the right-hand pane. Click the Execute button to
start the SQL code. If you use values of table field in the SQL statement (with colon () in front of the
field name), you have to provide test values for them.

68

@ NOTE
If you have Data Preview open and you have just added some variables to the script,
click Test button twice. This closes and opens Data Preview section and updates the
list of variables in the preview.

» Simulate execution: Specifies that all changes made to the database are ignored. The database
transaction is reverted so no updates are written to the database.

Execution
The options in Execution specify when does the database updating take place. The update type
depends on the Detection Options for the trigger.

» Before processing actions: Specifies that records are updated before the actions defined for
this trigger have started to execute.

» After processing actions: Specifies that records are updated after the actions defined for this
trigger have been executed. Usually you want to update the records after they have been
successfully processed.

@ NOTE
If necessary, you can update the records while the actions are still executing. For more
information, see section Execute SQL Statement.

Other
Options in the Feedback from the Print Engine section specify communication parameters that

allow you to receive print engine feedback.

@ PRODUCT LEVEL INFO
This functionality is available in LMS Enterprise and LMS Pro.

* Supervised printing: Activates synchronous printing mode. Use it whenever you want to send
the print job status back to the third party application. For more information, see section
Synchronous Print Mode.

Options in the Data Processing section specify if you want to trim the data so that it fits into a
variable, or ignore the missing label variables. By default, reports errors and breaks the printing
process if you try to save values that are too long in label variables, or try to set values for non-
existing label variables.

» Ignore excessive variable contents: truncates data values that exceed the length of the
variable as defined in the label designer to make them fit. This option is in effect if you are
setting variable values in filters, from command files, and when you are setting values of trigger
variables to label variables of the same name.

69

Example

Label variable accepts 5 characters at maximum. With this option enabled, any value longer than
5 characters is truncated to the first 5 characters. If the value is 1234567 ignores digits 6 and 7.

* Ignore missing label variables: When printing with command files (such as JOB file), the
printing process ignores all variables that are:

* specified in the command file (using the SET command)

¢ not defined on the label

Similar happens if you define assignment area in a filter to extract all name-value pairs, but your
label contains fewer variables.
When setting values of non-existing label variables, reports an error. If this option is enabled, the
printing continues.

Options in Scripting section specify scripting possibilities.

» Scripting language: Selects scripting language for the trigger. All Execute script actions that

you use within a single trigger use the selected scripting language.

Options in the Save Received Data section specify the available commands for data that the trigger

receives.

* Save data received by the trigger to file: Enable this option to save the data received by the

trigger. The option Variable enables variable file name. Select a variable that contains path and

file name.

* On error save data received by the trigger to file: Enable this option to save the data into the
trigger only if an error occurs during the action execution. You might want to enable this option
to keep the data that caused the issue ready for troubleshooting.

K

K

NOTE

Make sure you enable the Supervised printing support. If not, cannot detect
errors during the execution. For more information, see section Synchronous
Print Mode.

NOTE

saves the received data into a temporary file. This temporary file is deleted right
after the trigger execution completes. The internal variable Dat aFi | eNane
points to that file name. For more information, see Internal Variables.

70

Security

* Lock and encrypt trigger: Enables trigger protection. If you enable it, the trigger becomes
locked and you cannot edit it any longer. This encrypts the actions. Only users with password
can unlock the trigger and modify it.

4.2.4. TCP/IP Server Trigger

To learn more about triggers in general, see section Understanding Triggers.

TCP/IP server trigger event occurs after the monitored socket (IP address and port number) receives
data.

Typical usage: An existing business system executes a transaction, which in effect sends the data to
NiceLabel Automation server on a specific socket. Data content might be structured using CSV, XML
and other formats, or it might use a legacy format. In either way, NiceLabel Automation reads the data,
parses values using filters and prints them on labels. For more information on how to parse and
extract the data, see section Understanding Filters.

General

@ NOTE

This trigger supports Internet Protocol version 6 (IPv6).

This section allows you to configure the most important file trigger settings.

* Name: Specifies the unique name of the trigger. The names helps you distinguish between
different triggers when you configure them in Automation Builder, and later when you run them
in Automation Manager.

* Description: Allows you to describe the role of this trigger. Help the users with a short
explanation about what the trigger does.

* Port: Specifies the port number where incoming data will be accepted on. Use the port number
that is not in use by any other application. If the selected port is in use, you won't be able to start
the trigger in Automation Manager. For more information about security concerns, see section
Securing Access to your Triggers.

@ NOTE

If your server has multi-homing enabled (more IP addresses on one or more network
cards), NiceLabel Automation responds on the defined port on all IP addresses.

* Maximum number of concurrent connections: Specifies the maximum number of accepted
connections. That many concurrent clients can send data to the trigger simultaneously.

71

The options in the Execution Event section specify when the trigger should fire and start executing
actions.

* On client disconnect: Specifies that the trigger fires after the client sends data and closes the
connection. This is a default setting.

@ NOTE

If you want to send the print job status back to the third party application as a
feedback, don't use this option. If the connection is left open, you can send feedback
using the action Send data to TCP/IP port with the parameter Reply to sender.

* On number of characters received: Specifies that trigger fires when the required number of
characters is received. In this case, the third party application can keep a connection open and
continuously sends data. Each chunk of data must be of the same size.

* On sequence of characters received: Specifies that the trigger fires each time the required
sequence of characters is received. You would use this option if you know that the ‘end of data'
is always identified by a unique set of characters. You can insert special (binary) characters
using the button next to the edit field.

* Include in trigger data: The sequence of characters that determines the trigger event is
not stripped of the data, but is included along with the data. The trigger receives the
complete received data stream.

* When nothing is received after the specified time interval: Specifies that the trigger fires
after a required time interval passes since the last character is received.

Execution

» Allow connections from the following hosts: Specifies the list of IP addresses or host names
of the computers that are allowed to connect to the trigger. Place each entry in a new line.

* Deny connections from the following hosts: Specifies the list of IP addresses or host names
of the computers that are not allowed to connect to the trigger. Place each entry in a new line.

* Welcome message: Specifies a text message that returns to the client each time it connects to
the TCP/IP trigger.

* Answer message: Specifies the text message that returns to the client each time the actions
execute. Use this option when the client doesn't disconnect upon data send and expects the
answer about when the action execution ends. The answer message is hard-coded and thus
always the same.

* Message encoding: Specifies the data encoding scheme, so the special characters can be
correctly processed. NiceLabel Automation can automatically detect the data encoding, based
on BOM header (text files), or encoding attribute (XML files).

72

Other
Options in the Feedback from the Print Engine section specify communication parameters that
allow you to receive print engine feedback.

@ PRODUCT LEVEL INFO
This functionality is available in LMS Enterprise and LMS Pro.

* Supervised printing: Activates synchronous printing mode. Use it whenever you want to send
the print job status back to the third party application. For more information, see section
Synchronous Print Mode.

Options in the Data Processing section specify if you want to trim the data so that it fits into a
variable, or ignore the missing label variables. By default, reports errors and breaks the printing
process if you try to save values that are too long in label variables, or try to set values for non-
existing label variables.

* Ignore excessive variable contents: truncates data values that exceed the length of the
variable as defined in the label designer to make them fit. This option is in effect if you are
setting variable values in filters, from command files, and when you are setting values of trigger
variables to label variables of the same name.

Example

Label variable accepts 5 characters at maximum. With this option enabled, any value longer than
5 characters is truncated to the first 5 characters. If the value is 1234567 ignores digits 6 and 7.

* Ignore missing label variables: When printing with command files (such as JOB file), the
printing process ignores all variables that are:

* specified in the command file (using the SET command)
* not defined on the label

Similar happens if you define assignment area in a filter to extract all name-value pairs, but your
label contains fewer variables.

When setting values of non-existing label variables, reports an error. If this option is enabled, the
printing continues.

Options in Scripting section specify scripting possibilities.

» Scripting language: Selects scripting language for the trigger. All Execute script actions that
you use within a single trigger use the selected scripting language.

Options in the Save Received Data section specify the available commands for data that the trigger
receives.

73

» Save data received by the trigger to file: Enable this option to save the data received by the
trigger. The option Variable enables variable file name. Select a variable that contains path and
file name.

* On error save data received by the trigger to file: Enable this option to save the data into the
trigger only if an error occurs during the action execution. You might want to enable this option
to keep the data that caused the issue ready for troubleshooting.

g NOTE

Make sure you enable the Supervised printing support. If not, cannot detect
errors during the execution. For more information, see section Synchronous
Print Mode.

|§ NOTE

saves the received data into a temporary file. This temporary file is deleted right

after the trigger execution completes. The internal variable Dat aFi | eNane
points to that file name. For more information, see Internal Variables.

Security

* Lock and encrypt trigger: Enables trigger protection. If you enable it, the trigger becomes
locked and you cannot edit it any longer. This encrypts the actions. Only users with password
can unlock the trigger and modify it.

4.2.5. TCP/IP Client Trigger

@ PRODUCT LEVEL INFO
This functionality is available in LMS Enterprise and LMS Pro.

To learn more about triggers in general, see section Understanding Triggers.

The TCP/IP client trigger turns your Automation into a listening client that connects to TCP/IP servers.
There are multiple devices and systems that take the role of a TCP/IP server: vision inspection
systems, printers, PLCs, scanners, weighing scales, etc. Automation can connect to them and wait for
the incoming data. After receiving a certain number of characters, a character sequence, or a timeout,
the TCP/IP client trigger fires, and starts executing your actions. If the connection fails, the trigger
allows you to automatically reconnect.

Typical use: You are automatically printing multiple types of packaging labels using a network printer.
Itis crucial for you to know when your printer is done printing one label type before you start printing
the second label type. The TCP/IP client trigger allows you to set permanent automated checking of
printer availability. While printing the first label type, the TCP/IP client trigger checks for the printing

74

status, and when the printer is done, it sends a message to Automation to send the second label type
for printing.

General

* Name: Specifies the unique name of the trigger. The names helps you distinguish between
different triggers when you configure them in Automation Builder, and later when you run them
in Automation Manager.

* Description: Allows you to describe the role of this trigger. Help the users with a short
explanation about what the trigger does.

» Destination server: Type the location (IP address or hostname) of the TCP/IP server you wish to
connect to.

» Port: Specifies the host port number from which you are going to receive the incoming data.
Make sure firewall ports are open on the server side.

¢ Reconnect to server interval: Define the time in milliseconds after which Automation tries to
reconnect to your TCP/IP server.

* On number of characters received: Specifies that the trigger fires when the required number
of characters is received. In this case, server can keep a connection open and continuously
sends data. Each chunk of data must be of the same size.

* On sequence of characters received: Specifies that the trigger fires each time the required
sequence of characters is received. You would use this option if you know that the 'end of data
is always identified by a unique set of characters. You can insert special (binary) characters
using the button next to the edit field.

* Include in trigger data: The sequence of characters that determines the trigger event is
not stripped of the data, but is included along with the data. The trigger receives the
complete received data stream.

* If nothing is received after the specified time interval: Specifies that the trigger fires after a
required time interval passes since the last character is received.
Execution

* Initialization message: Text message that goes to the server each time Automation establishes
connection.

* Answer message: Specifies the text message that returns to the server upon firing the trigger
(before the actions start to execute).

* Message encoding: Specifies the data encoding scheme, so the special characters can be
correctly processed. NiceLabel Automation can automatically detect the data encoding, based
on BOM header (text files), or encoding attribute (XML files).

Other

Options in the Feedback from the Print Engine section specify communication parameters that
allow you to receive print engine feedback.

75

@ PRODUCT LEVEL INFO
This functionality is available in LMS Enterprise and LMS Pro.

* Supervised printing: Activates synchronous printing mode. Use it whenever you want to send
the print job status back to the third party application. For more information, see section
Synchronous Print Mode.

Options in the Data Processing section specify if you want to trim the data so that it fits into a
variable, or ignore the missing label variables. By default, reports errors and breaks the printing
process if you try to save values that are too long in label variables, or try to set values for non-

existing label variables.

* Ignore excessive variable contents: truncates data values that exceed the length of the
variable as defined in the label designer to make them fit. This option is in effect if you are
setting variable values in filters, from command files, and when you are setting values of trigger
variables to label variables of the same name.

Example

Label variable accepts 5 characters at maximum. With this option enabled, any value longer than
5 characters is truncated to the first 5 characters. If the value is 1234567 ignores digits 6 and 7.

* Ignore missing label variables: When printing with command files (such as JOB file), the
printing process ignores all variables that are:

* specified in the command file (using the SET command)
* not defined on the label

Similar happens if you define assignment area in a filter to extract all name-value pairs, but your
label contains fewer variables.

When setting values of non-existing label variables, reports an error. If this option is enabled, the
printing continues.

Options in Scripting section specify scripting possibilities.

» Scripting language: Selects scripting language for the trigger. All Execute script actions that
you use within a single trigger use the selected scripting language.

Options in the Save Received Data section specify the available commands for data that the trigger

receives.

* Save data received by the trigger to file: Enable this option to save the data received by the
trigger. The option Variable enables variable file name. Select a variable that contains path and
file name.

76

* On error save data received by the trigger to file: Enable this option to save the data into the
trigger only if an error occurs during the action execution. You might want to enable this option
to keep the data that caused the issue ready for troubleshooting.

@ NOTE

Make sure you enable the Supervised printing support. If not, cannot detect
errors during the execution. For more information, see section Synchronous
Print Mode.

S NOTE

saves the received data into a temporary file. This temporary file is deleted right
after the trigger execution completes. The internal variable Dat aFi | eNane
points to that file name. For more information, see Internal Variables.

Security

* Lock and encrypt trigger: Enables trigger protection. If you enable it, the trigger becomes
locked and you cannot edit it any longer. This encrypts the actions. Only users with password
can unlock the trigger and modify it.

4.2.6. HTTP Server Trigger

@ PRODUCT LEVEL INFO
This functionality is available in LMS Enterprise and LMS Pro.

To learn more about triggers in general, see section Understanding Triggers.
HTTP server trigger fires if data is received on the monitored socket (IP address and port number).

Contrary to TCP/IP trigger, the received data is not a raw data stream, but includes standard HTTP
header. Third party applications must use POST or GET request methods. They must provide data in
message body or in query string. You can use both Internet media types in the message body - MIME
Type, or Content-Type. NiceLabel Automation receives the message and extracts relevant data from
the message content using a filter.

Typical use: Existing business system executes a transaction which sends data to NicelLabel
Automation server formatted as HTTP POST message to a specific socket. The sent data might be
structured in CSV, XML and other formats, or it can be structured using a proprietary legacy format.
Either way, NiceLabel Automation reads the data, parses values using filters and prints the extracted
data on labels. For more information on how to parse and extract data, see section Understanding
Filters.

77

TIP

To help you build configurations with HT TP server trigger see Automation sample file
Label Preview as HTTP Response. Find sample files under Help > Sample Files.

Providing data
Provide the HTTP trigger data using any of the following methods. You can also combine the methods
if needed, and use both in the same HTTP request.

Data in the query string
Query string is a part of the uniform resource locator (URL) that contains data to be passed to the
HTTP trigger.

Example of a typical URL that contains query string:
http://server/path/?query_string
Question mark is used as a separator and is not part of the query string.

Query string is usually composed of a series of name: val ue pairs. Within each pair, field name and
value are separated by equals sign (=). Series of pairs are separated by ampersand (&). A typical query
string provide values for fields (variables) in the following format:

fieldl=valuel&field2=value2&field3=value3

HTTP trigger offers built-in support for extracting values from all fields, and for storing them in
variables that carry the same name. As a result, you don't have to define any filters to extract values
from the query string.

* You don't have to define variables inside a trigger to populate them with values from the query
string. NiceLabel Automation extracts all variables in the query string and sends their values to
the currently active label. If variables of the same name exist in the label, Automation populates
them with values. If the variables do not exist in the label, Automation ignores their values
without reporting any errors.

* If an action requires variable values, define matching variables in the trigger. To get and store all
values from the query string, create matching variables using the same names as fields in the
query string. For the example above, define trigger variables withnames fi el d1,fi el d2 and
field3.

You would usually use GET HTTP request method to provide the query string.

Data in body of HTTP request
Use POST request method to provide message in the body of an HTTP request.

You are free to send any type of data or use any data structure that you want in the body. You only
need to ensure that you can handle the data using NicelLabel Automation filters. The content can be
formatted as XML, CSV, or plain text. Sent content can even be binary data (Base64-encoded). Bare in
mind that you have to parse the data with filters.

78

If you can affect the structure of the incoming message, use standardized structures, such as XML or
CSV to simplify the filter configuration.

Use POST HTTP request method to provide the data in message body.

General
This section allows you to configure the most important file trigger settings.

* Name: Specifies the unique name of the trigger. The names helps you distinguish between
different triggers when you configure them in Automation Builder, and later when you run them
in Automation Manager.

* Description: Allows you to describe the role of this trigger. Help the users with a short
explanation about what the trigger does.

Communication

|§ NOTE

This trigger supports Internet Protocol version 6 (IPv6).

This section allows you to configure the mandatory port number and optional feedback options. You
can use standard HTTP Response Codes to indicate a successfully executed action. For more
advanced purposes, you can also send the custom content back to the data-providing application.
Such content may be a simple feedback string, or binary data, such as label preview or print stream.

Typical URL to connect to an HTTP trigger is as follows:

http://server:port/path/?query_string
« Server: This is the FQDN or IP address of the machine where NicelLabel Automation is installed.

* Port: Number of the port on which incoming data is received. Use a port number that is notin
use by any other application. If the selected port is in use, you won't be able to start the trigger in
Automation Manager. For more information about security concerns, see section Securing
Access to your Triggers.

S NOTE

If multi-homing is enabled on your server (multiple IP addresses on one or more
network cards), NiceLabel Automation responds on the defined port on all IP
addresses.

» Path: Specifies optional path in the URL. This functionality enables NiceLabel Automation to
expose multiple HTTP triggers on the same port. The client uses the triggers through a single
portin a REST like syntax causing different triggers to be fired by different URLs. If you are not
sure what to use, leave the default path (\).

79

@ PRODUCT LEVEL INFO

The functionality from this section is available in LMS Enterprise.

» Secure connection (HTTPS): Enables secure transport layer for your HTTP messages and
prevents eavesdropping. For more information on how to set it up, see section Using Secure
Transport Layer (HTTPS).

* Query string: Specifies name-value pairs in the URL. This an optional parameter. The data is
usually provided in the body of the HTTP request.

* Wait for trigger execution to finish: HTTP protocol requires a receiver (in this case NiceLabel
Automation) to send a numeric response back to the sender indicating the status of the
received message. By default, NiceLabel Automation responds with code 200. This indicates
that Automation successfully received the data, but gives no information about the success of
trigger actions.

This option specifies that a trigger doesn't send a response immediately after receiving the
data, but waits until all actions are executed. After that, it sends the response code indicating a
successful action execution. With this option enabled, you can send back a custom response
type and data (e.g. the response to a HTTP request is label preview in PDF format).

The available built-in HTTP response codes are:

HTTP Response Code Description

200 All actions executed successfully.

401 Unauthorized, wrong user name and password were specified.
500 There were errors during action execution.

g NOTE

To send feedback about the print process, enable the synchronous print mode.
For more information, see Synchronous Print Mode.

* Maximum number of concurrent requests: Specifies the maximum number of concurrent
inbound connections. That many concurrent clients can send data to the trigger simultaneously.
This number also depends on the hardware performance of your server.

Learn more about Section 6.1, "Parallel Processing".

* Response type: Specifies the type of your response message. Frequently used Internet media
types (also known as MIME types, or Content-types) are predefined in the drop down box. If your
media type is not available in the list, enter it by yourself. Automation sends the response data
outbound as feedback, formatted in the defined media type. Variable enables variable media
type. If enabled, select or create a variable that contains media type.

80

S NOTE

If you don't specify the Content-Type, NiceLabel Automation uses
appl i cati on/ oct et - st r eamas the default one.

* Response data: Defines content of the response message. Examples of what you can send
back as an HTTP response are custom error messages, label preview, generated PDF files, print
stream (spool) file, XML file with details from the print engine plus the label preview (encoded as
Base64 string). The possibilities are countless.

If your output will consist of binary-only content (such as label preview or print stream), make
sure you select a proper media type, e.g.i mage/ j peg or appl i cati on/ octet-stream

» Additional headers: Allow you to define custom MIME headers for the HTTP response
message.
Response header syntax and example are available in the HTTP Request action section.

@ TIP
With Response data and Additional headers, you can use fixed content, mix of
fixed and variable content, or variable content alone. To insert variable content,
click the button with arrow to the right of data area and insert variable from the
list (or create a new one) that contains the data you want to use. For more
information, see section Using Compound Values.

Authentication
* None: No authentication method is in use.

* User: Specifies that incoming messages include user name and password. When in use, the
trigger only accepts HTTP messages with matching credentials. For more information about
security concerns, see section Securing Access to your Triggers.

* Application Group (defined in NiceLabel Control Center): As in case with User authentication
type, this option also specifies that the incoming messages include user name and password.
When in use, the trigger only accepts HTTP messages with adequate credentials for NicelLabel
Control Center users who belong to a specific application group.

* Group: Multiple application groups can be defined on the NiceLabel Control Center. To
select which group should be allowed to access the HTTP Server Trigger, use the Group
drop-down list. The selected group and its users must be set as active when the trigger is
running.

81

S NOTE

Group with a specified name must exist on NiceLabel Control Center when
the trigger is running. While working on the configuration in Automation
Builder, you can use any group name. Make sure you eventually define a
final name on NiceLabel Control Center and match it in the configuration
before deploying it.

@ TIP
The users authenticate themselves using their credentials as defined
inNiceLabel Control Center> Administration > Users and Groups. Refer
to NiceLabel Control Center User Guide for details on user management
(section Users and Groups).

Other
Options in the Feedback from the Print Engine section specify communication parameters that
allow you to receive print engine feedback.

@ PRODUCT LEVEL INFO
This functionality is available in LMS Enterprise and LMS Pro.

* Supervised printing: Activates synchronous printing mode. Use it whenever you want to send
the print job status back to the third party application. For more information, see section
Synchronous Print Mode.

Options in the Data Processing section specify if you want to trim the data so that it fits into a
variable, or ignore the missing label variables. By default, reports errors and breaks the printing
process if you try to save values that are too long in label variables, or try to set values for non-
existing label variables.

» Ignore excessive variable contents: truncates data values that exceed the length of the
variable as defined in the label designer to make them fit. This option is in effect if you are
setting variable values in filters, from command files, and when you are setting values of trigger
variables to label variables of the same name.

Example

Label variable accepts 5 characters at maximum. With this option enabled, any value longer than
5 characters is truncated to the first 5 characters. If the value is 1234567 ignores digits 6 and 7.

* Ignore missing label variables: When printing with command files (such as JOB file), the
printing process ignores all variables that are:

82

* specified in the command file (using the SET command)
* not defined on the label

Similar happens if you define assignment area in a filter to extract all name-value pairs, but your
label contains fewer variables.

When setting values of non-existing label variables, reports an error. If this option is enabled, the
printing continues.

Options in Scripting section specify scripting possibilities.

» Scripting language: Selects scripting language for the trigger. All Execute script actions that
you use within a single trigger use the selected scripting language.

Options in the Save Received Data section specify the available commands for data that the trigger
receives.

» Save data received by the trigger to file: Enable this option to save the data received by the
trigger. The option Variable enables variable file name. Select a variable that contains path and
file name.

* On error save data received by the trigger to file: Enable this option to save the data into the
trigger only if an error occurs during the action execution. You might want to enable this option
to keep the data that caused the issue ready for troubleshooting.

@ NOTE

Make sure you enable the Supervised printing support. If not, cannot detect
errors during the execution. For more information, see section Synchronous
Print Mode.

@ NOTE

saves the received data into a temporary file. This temporary file is deleted right
after the trigger execution completes. The internal variable Dat aFi | eNane
points to that file name. For more information, see Internal Variables.

Security

* Lock and encrypt trigger: Enables trigger protection. If you enable it, the trigger becomes
locked and you cannot edit it any longer. This encrypts the actions. Only users with password
can unlock the trigger and modify it.

83

4.2.7. Web Service Trigger

@ PRODUCT LEVEL INFO

The functionality from this section is available in LMS Enterprise.

To learn more about triggers in general, see section Understanding Triggers.

Web Service trigger event occurs if a monitored socket (IP address and port number) receives data.
The data must follow SOAP notation — it encodes XML data into an HTTP message. The Web Service
interface is described with WSDL document. Such document is available with each defined Web
Service trigger.

Web Service trigger provides feedback about print job status, but you have to enable the
synchronous processing mode. For more information, see section Print Job Status Feedback.

Typically, programmers use Web Service to integrate label printing into their own applications. An
existing business system executes a transaction, which sends the data to NiceLabel Automation
server using a specific socket. The sent data is formatted as a SOAP message. The data can be
provided in CSV, XML and other structured formats, or it can be provided using one of the legacy
formats. In both cases, NiceLabel Automation reads the data, parses values using filters and prints
them on labels. For more information on how to parse and extract data, see section Understanding

Filters.
TIP
To help you build configurations with Web server trigger see Automation sample file
Web Service. Find sample files under Help > Sample Files.

General

This section allows you to configure general file trigger settings.

* Name: Specifies the unique name of the trigger. The names helps you distinguish between
different triggers when you configure them in Automation Builder, and later when you run them
in Automation Manager.

» Description: Allows you to describe the role of this trigger. Help the users with a short
explanation about what the trigger does.

Communication

@ NOTE

This trigger supports Internet Protocol version 6 (IPv6).

This section allows you to configure mandatory port number and optional feedback settings.

84

* Port: Specifies number of the port that accepts incoming data. Use a port number that is not in
use by any other application. If the selected port is in use, you won't be able to start the triggerin
Automation Manager. For more information about security concerns, see section Securing
Access to your Triggers.

S NOTE

If your server has multi-homing enabled (multiple IP addresses on one or more
network cards), NiceLabel Automation responds on the defined port on all IP
addresses.

» Secure connection (HTTPS): Enables secure transport layer for your HTTP message and
prevents eavesdropping. For more information on how to set up a secure conection, see section
Using Secure Transport Layer (HTTPS).

* Maximum number of concurrent calls: Specifies the maximum number of accepted
connections. That many concurrent clients can send data to the trigger simultaneously.

* Response data: Defines the custom response that can be used with
Execut eTri gger Wt hResponse and Execut eTri gger AndSet Var i abl esW t hResponse
methods. The response data contains the content as provided in the text area. You can combine
fixed values, variable values and special characters. To insert (or create) variables and special
characters, click the arrow button to the right of the text area. The response can contain binary
data, such as image of label preview and print file (*.PRN).

Status Feedback

By design, Web Service trigger provides feedback about the status of the created print job. The
trigger accepts the provided data and uses it to execute the defined actions. You can supervise the
execution of actions — the trigger reports success status for every event that happens during
execution. To enable status reporting during the printing process, activate Synchronous Print Mode.

Web Service trigger exposes the following methods (functions):

* ExecuteTrigger: This method accepts data into processing and provides optional status
feedback. One of the input parameters enables or disables feedback. If you enable status
reporting, feedback contains error ID and detailed description of the error. If error ID equals 0,
this makes no issue while creating the print file. If error ID is greater than 0, some error occurred
during the print process. Web Service response in this method is not configurable - the
response always contains error ID and error description.

* ExecuteTriggerWithResponse: This method accepts data into processing and provides
custom status feedback. Web Service response is configurable. You can respond using any type
of data organized in any available structure. You can use binary data in the response.

* ExecuteTriggerAndSetVariables: Similar to the above described ExecuteTrigger, this web
service exposes an additional inbound parameter that accepts the formatted list of name-value
pairs. The trigger automatically parses the list, extracts values and stores values in variables of
the same name, so you don't have to create any data-extraction filter yourself.

85

* ExecuteTriggerAndSetVariablesWithResponse: Similar to the ExecuteTriggerWithResponse
above, this web service exposes an additional inbound parameter that accepts the formatted
list of name-value pairs. The trigger automatically parses the list, extracts values and stores the
values in variables of the same name, so you don't have to create any data-extraction filter by
yourself.

For more information about the structure of messages that you can send using one of the above
listed methods, see section WSDL below.

WSDL

Web Service Description Language (WSDL) specifies style of SOAP messages. It can either be
Remote Procedure Call (RPC) style or Document style. Choose the style that your data providing
application supports.

WSDL document defines input and output parameters of the Web Service.

After you define the Web Service trigger on port 12345, deploy it in Automation Manager and start it.
WSDL becomes available at:

http://localhost:12345

WSDL exposes several methods that all provide data into the trigger. Choose the most appropriate
method for what you are trying to achieve.

* Methods that have WithResponse in their names allow you to send customized responses, such
as custom error messages, label previews, PDF files, print files (*PRN), and similar. Methods
without WithResponse in their name also provide feedback, but you cannot customize the
response. The feedback contains default error messages.

* Methods that have SetVariables in their names allow you to provide a list of variables in two
predefined formats. Automation automatically extracts values and maps them to the
appropriate variables. This saves you time because you don't have to set up any filter to do the
extraction and mapping. For the methods without SetVariables in their names, you have to
define the filter by yourself.

Web Service interface defines the following methods:

Method ExecuteTrigger
Main part of the definition is:

<wsdl : nressage name="WebSrviTrg_ExecuteTrigger_InputMessage'>
<wsdl : part name="text" type="xsd:string"/ >
<wsdl : part name="wait" type="xsd:boolean"/>

</ wsdl : nessage>

<wsdl : nressage name="WebSrviTrg_ExecuteTrigger_ OutputMessage"
<wsdl :part name="ExecuteTriggerResult” type="xsd:int"/
<wsdl :part name="errorText" type=''xsd:string"/ >

</ wsdl : nessage>

The definition includes two input variables (you provide their values):

86

* text: Filter in configuration parses this input string. Usually, the input string is structured as CSV
or XML file which makes it easy to parse. You can also use any other textual file format.

* wait: This is a Boolean field that specifies two things:
* If you wish to wait for the print job status response or not.
* If the Web Service should provide feedback or not.

In case of True, use 1. In case of False, use 0. Depending on the selected method type, there is
either a predefined response, or you can send a customized response.

These are the optional output variables (you receive their values, if you request them by setting wait
to 1)

* ExecuteTriggerResult: The integer response contains value 0 in case of reported data
processing error(s). It contains an integer greater than O if there are errors. The application
executing the Web Service call to NiceLabel Automation can use the response as error indicator.

* errorText: This string value contains print job status response if an error occurs during trigger
processing.

|§ NOTE

If there is an error during trigger processing, this element is included in the XML
response message and its value contains the error description. However, if there
is no error, this element is not included in the XML response.

Method ExecuteTriggerWithResponse
You would use this method if a trigger send a custom response after it completes the execution.

Some examples of what you can send back as custom response: custom error messages, label
preview, generated PDF files, print stream file (spool file), XML file with details from the print engine
plus the label preview (encoded as Base64 string), the possibilities are endless.

Main part of the definition is:

<wsdl : ressage name="WebSrviTrg_ExecuteTriggerWithResponse_ InputMessage''>
<wsdl : part name="text" type="'xsd:string"/>
<wsdl : part name="wait" type="'xsd:boolean"/ >

</ wsdl : nessage>

<wsdl : mressage name=""WebSrviTrg_ExecuteTriggerWithResponse OutputMessage'>
<wsdl : part name="ExecuteTriggerWithResponseResult" type="xsd:int"/>
<wsdl : part name="responseData'" type=''xsd:base64Binary"/ >
<wsdl : part name="errorText" type=''xsd:string"/>

</ wsdl : nessage>

In the example above, there are two input variables (you provide their values):
* text: Filter in configuration parses this input string. Usually, the input string is structured as CSV

or XML file which makes it easy to parse. You can also use any other textual file format.

87

* wait: This is a Boolean field that specifies two things:
* If you wish to wait for the print job status response or not.
* If the Web Service should provide feedback or not.

In case of True, use 1. In case of False, use 0. Depending on the selected method type, there is
either a predefined response, or you can send a customized response.

Furthermore, the following optional output variables are included in the example above.

@ NOTE

You receive values of optional output variables if you request them by setting the wait
field value to 1.

* ExecuteTriggerWithResponseResult: Integer response contains value O if there are no issues
during data processing. The response contains an integer greater than O, if there are errors. The
application that executes the Web Service call to NiceLabel Automation can use this response
as error indicator.

» responseData: Custom response that you can define in the Web Service trigger configuration.
The response is base64-encoded data.

» errorText: If an error raises during trigger processing, this string contains the print job status
response value.

|§ NOTE

If there is an error reported during trigger processing, the XML response
message includes the errorText element. Value of this element contains error
description. However, if there is no error, this element is not included in the XML
response.

Method ExecuteTriggerAndSetVariables
Main part of the definition is:

<wsdl : mressage name="WebSrviTrg_ExecuteTriggerAndSetVariables_ InputMessage'>
<wsdl : part name="text" type="xsd:string"/ >
<wsdl : part name="variableData" type=''xsd:string"/>
<wsdl : part name="wait" type="'xsd:boolean"/>
</ wsdl : nessage>
<wsdl : nessage
name="WebSrviTrg_ExecuteTriggerAndSetVariables OutputMessage'>
<wsdl : part name="ExecuteTriggerAndSetVariablesResult” type="'xsd:int"/>
<wsdl : part name="errorText" type='xsd:string"/>
</ wsdl : nessage>

In the example above, there are three input variables (you provide their values):

88

* text: Filter in configuration parses this input string. Usually, the input string is structured as CSV
or XML file which makes it easy to parse. You can also use any other textual file format.

wait: This is a Boolean field that specifies two things:
* If you wish to wait for the print job status response or not.
* If the Web Service should provide feedback or not.

In case of True, use 1. In case of False, use 0. Depending on the selected method type, there is
either a predefined response, or you can send a customized response.

variableData: This is the string that contains name:value pairs. The trigger reads all pairs and
assigns provided values to the trigger variables of the same name. If the variable doesn't exist in
the trigger, the trigger discards that name:value pair. If you provide the list of variables and their
values using this method, you don't have to define any data extraction with filters. The trigger
does all the parsing for you.

There are two available structures for the variableData content.

XML structure

The trigger provides variables within the <Var i abl es / >root element of the XML file. Variable
name includes attribute name, while the variable value includes element value.

<?xml version="1.0" encoding=""utf-8"7>
<Vari abl es>
<vari abl e name="Variablel'>Value 1</vari abl e>
<vari abl e name="Variable2">Value 2</vari abl e>
<vari abl e name="Variable3">Value 3</vari abl e>
</ Vari abl es>

3 NOTE

Embed your XML data inside the CDATA section. CDATA, meaning character
data, is a section of element content that is marked for the parser to help it
interpret the XML data as character-only data, and not as markup. As a result,
the trigger handles the entire content as character data. For example,

<el ement >ABC</ el enent > getsinterpretedas & t ; el enent > ; ABC&l t ; /
el ement > ; . Each CDATA section starts with <! [CDATA] sequence and ends
with the]] > sequence. To sum up, simply insert your XML data inside these two
sequences.

Name-value pairs
Trigger provides variables using a text stream. Every name:value pair comes in its own line.
Variable name is to the left of the equals character (=), variable value is to the right.

Variablel="Value 1"
Variable2="Value 2"
Variable3="Value 3"

89

These are the optional output variables:

S NOTE

You receive values for optional variables if you request them by setting wait to 1:

* ExecuteTriggerAndSetVariablesResult: Integer response contains value O if there are no
issues during data processing. It contains an integer greater than 0, if data processing reports
error(s). The application that executes the Web Service call to NiceLabel Automation can use
the response as error indicator.

* errorText: This string value contains print job status response in case it reports a trigger
processing error.

3 NOTE

In case of trigger processing error, this element is included in the XML response
message. Its value contains error description. However, if there is no error, this
element is not included in the XML response.

Method ExecuteTriggerAndSetVariablesWithResponse
You would use this method if the trigger should send a custom response after it completes the
execution.

Some examples of what you can send back as custom response: custom error messages, label
preview, generated PDF files, print stream file (spool file), XML file with details from the print engine
plus the label preview (encoded as Base64 string), the possibilities are endless.

Main part of the definition is:

<wsdl : nessage name="WebSrviTrg_ExecuteTriggerAndSetVariablesWithResponse_
InputMessage''>

<wsdl : part name="text" type="xsd:string"/ >

<wsdl : part name="variableData" type="xsd:string"/ >

<wsdl : part name="wailt" type=""xsd:boolean'/>
</ wsdl : nessage>
<wsdl : mressage name="WebSrviTrg_ExecuteTriggerAndSetVariablesWithResponse
OutputMessage'>

<wsdl : part name="ExecuteTriggerAndSetVariablesWithResponseResult"
type=""xsd:int"/ >

<wsdl : part name="responseData" type="'xsd:base64Binary"/ >

<wsdl : part name="errorText" type="xsd:string"/ >
</ wsdl : nessage>

There are three input variables (you provide their values):
* text: Filter in configuration parses this input string. Usually, the input string is structured as CSV

or XML file which makes it easy to parse. You can also use any other textual file format.

90

* wait: This is a Boolean field that specifies two things:
* If you wish to wait for the print job status response or not.
* If the Web Service should provide feedback or not.

In case of True, use 1. In case of False, use 0. Depending on the selected method type, there is
either a predefined response, or you can send a customized response.

* variableData: This is the string that contains name:value pairs. The trigger reads all pairs and
assigns provided values to the trigger variables of the same name. If the variable doesn't exist in
the trigger, the trigger discards that name:value pair. If you provide the list of variables and their
values using this method, you don't have to define any data extraction with filters. The trigger
does all the parsing for you.

There are two available structures for the variableData content.

XML structure

The trigger provides variables within the <Var i abl es / >root element of the XML file. Variable
name includes attribute name, while the variable value includes element value.

<?xml version="1.0" encoding=""utf-8"7>
<Vari abl es>
<vari abl e name="Variablel'>Value 1</vari abl e>
<vari abl e name="Variable2">Value 2</vari abl e>
<vari abl e name="Variable3'">Value 3</vari abl e>
</ Vari abl es>

S NOTE

Embed your XML data inside the CDATA section. CDATA, meaning character
data, is a section of element content that is marked for the parser to help it
interpret the XML data as character-only data, and not as markup. As a result,
the trigger handles the entire content as character data. For example,

<el enent >ABC</ el enent > getsinterpretedas & t ; el ement > ; ABC&l t ; /
el ement > ; . Each CDATA section starts with <! [CDATA[sequence and ends
with the]] > sequence. To sum up, simply insert your XML data inside these two
sequences.

Name-value pairs
Trigger provides variables using a text stream. Every name:value pair comes in its own line.
Variable name is to the left of the equals character (=), variable value is to the right.

Variablel="Value 1"
Variable2="Value 2"
Variable3="Value 3"

These are the optional output variables:

91

@ NOTE

You receive their values, if you request them by setting wait to 1:

* ExecuteTriggerAndSetVariablesWithResponseResult: Integer response contains value O if
there are no problems during data processing. It contains an integer greater than 0 if the
response reports error(s). The application executing the Web Service call to NiceLabel
Automation can use the response as error indicator.

* responseData: Custom response that you can define in the Web Service trigger configuration.
The response is base64-encoded data.

» errorText: This string value contains print job status response in case it reports a trigger
processing error.

S NOTE

In case of trigger processing error, this element is included in the XML response
message. lts value contains error description. However, if there is no error, this
element is not included in the XML response.

Other
Options in the Feedback from the Print Engine section specify communication parameters that
allow you to receive print engine feedback.

@ PRODUCT LEVEL INFO
This functionality is available in LMS Enterprise and LMS Pro.

* Supervised printing: Activates synchronous printing mode. Use it whenever you want to send
the print job status back to the third party application. For more information, see section
Synchronous Print Mode.

Options in the Data Processing section specify if you want to trim the data so that it fits into a
variable, or ignore the missing label variables. By default, reports errors and breaks the printing
process if you try to save values that are too long in label variables, or try to set values for non-
existing label variables.

* Ignore excessive variable contents: truncates data values that exceed the length of the
variable as defined in the label designer to make them fit. This option is in effect if you are
setting variable values in filters, from command files, and when you are setting values of trigger
variables to label variables of the same name.

Example

Label variable accepts 5 characters at maximum. With this option enabled, any value longer than
5 characters is truncated to the first 5 characters. If the value is 1234567 ignores digits 6 and 7.

92

* Ignore missing label variables: When printing with command files (such as JOB file), the
printing process ignores all variables that are:

* specified in the command file (using the SET command)
* not defined on the label

Similar happens if you define assignment area in a filter to extract all name-value pairs, but your
label contains fewer variables.

When setting values of non-existing label variables, reports an error. If this option is enabled, the
printing continues.

Options in Scripting section specify scripting possibilities.

» Scripting language: Selects scripting language for the trigger. All Execute script actions that
you use within a single trigger use the selected scripting language.

Options in the Save Received Data section specify the available commands for data that the trigger
receives.

» Save data received by the trigger to file: Enable this option to save the data received by the
trigger. The option Variable enables variable file name. Select a variable that contains path and
file name.

* On error save data received by the trigger to file: Enable this option to save the data into the
trigger only if an error occurs during the action execution. You might want to enable this option
to keep the data that caused the issue ready for troubleshooting.

S NOTE

Make sure you enable the Supervised printing support. If not, cannot detect
errors during the execution. For more information, see section Synchronous
Print Mode.

|§ NOTE

saves the received data into a temporary file. This temporary file is deleted right
after the trigger execution completes. The internal variable Dat aFi | eName
points to that file name. For more information, see Internal Variables.

Security

* Lock and encrypt trigger: Enables trigger protection. If you enable it, the trigger becomes
locked and you cannot edit it any longer. This encrypts the actions. Only users with password
can unlock the trigger and modify it.

93

4.2.8. Cloud Trigger

@ PRODUCT LEVEL INFO:

Requires Label Cloud subscription.

To learn more about triggers in general, see section Understanding Triggers.
Read more about NiceLabel Label Cloud here.

Cloud trigger allows you to integrate your Label Cloud or on-premise Control Center with existing
business systems that run in private clouds or in dedicated data centers. If an existing business
system (e.g., SAP S/4HANA or Oracle NetSuite) produces an output, a cloud-hosted API enables you
to send HTTP requests to the cloud trigger.

The cloud trigger allows you to locally print labels whose content originates from the cloud
information systems. Because the cloud trigger that runs on the local Automation server uses
standard methods for accessing the cloud-based services, you can deploy local printing in a secure
and time efficient way.

The cloud trigger enables a secure and transparent way to integrate your local label printing using
applications that communicate over the open Internet.

Compared to the HTTP server trigger, the cloud trigger does not require you to open any inbound
ports on your firewall. The cloud trigger uses a dedicated NiceLabel API that runs in the cloud. This is
why the trigger only requires open outbound port 443, or ports 9350-9354. In most cases, these
ports are already open.

When deploying the cloud trigger, you have two options:

* You can deploy the trigger in your Label Cloud.

* You can deploy the trigger in your on-premise Control Center that either runs locally on your
servers on in private cloud infrastructure.

Both options are equal in terms of offered functionalities. Chose your preferred option based on your
available infrastructure.

4.2.8.1. Deploying Cloud Trigger with Label Cloud

Deployment Stages for Label Cloud

To enable local label printing using the cloud trigger deployed in Label Cloud, you must establish
cooperation between users with three roles: a user that configures the cloud trigger on the local
Automation server (developer), a user that sets up the cloud trigger in the NiceLabelLabel Cloud, and
a user that takes makes the subscription on the Developer Portal.

94

https://www.nicelabel.com/label-management-system/label-cloud

3.Externalintegrator
sets up the Label RS
Cloud API. Ny

Developer Portal Label Cloud

2. Administrator
~ grants the external

integrator access to
- cloud trigger.

Firewall

Business system

Control Center

[S N

1.Developercreates “—__ Q EE #Elq
the configuration. 00000

NicelLabel Automation

1. The developer configures and deploys the cloud trigger configuration on the local
Automation server using Automation Builder and Automation Manager.

S NOTE

NiceLabelAutomation must be signed in to the Label Cloud.

See section Configuring cloud trigger in Automation Builder for details.

2. TheLabel Cloud administrator gives the external integrator access to the cloud trigger in
Control Center. When done, the Label Cloud administrator sends the external integrator the
corresponding integrator key.

See section Setting up Cloud Trigger Access for the External integrator for details.

3. The external integrator joins the Developer Portal to bring the customer's business system
and the Label Cloud together.

@ NOTE

The Developer Portal hosts the dedicated API called Cloud Trigger. This API
serves as an interconnection point between the events that take place in the
customer's business system, and the Automation configuration that runs
locally.

95

@ NOTE

The word "external" means that this user's role is to make the subscription on
the Developer Portal. The created subscription authenticates the integrator.
External integrators are not necessarily outside collaborators. They can be in-
house integrators who belong to the company's own development team.

The external integrator performs the following actions on the Developer Portal:

a. Signingin to the Developer Portal. Before the first sign-in, the integrator must also finish
the sign up procedure.

b. Creating a subscription for the Cloud Trigger API.

c. Connecting the subscription with the integrator key. This is how the subscription gains
access to the customer's cloud triggers.
For details, see section Setting up the Label Cloud APl on the Developer Portal for details.

Configuring cloud trigger in Automation Builder

This section describes how to configure the cloud trigger in Automation that runs on your local
server.

1. Open your Automation Builder. Make sure the Automation Builder is signed in to Label Cloud.
Go to File > About >Label Cloudaccount to confirm that you are signed in.

2. The Configuration Items tab opens. Click Cloud Trigger to create a new configuration for the
cloud trigger.

3. Set Name and Description to make your cloud trigger easy to find among other triggers.
4. Setthe trigger Communication settings:

* Define the Unique identifier. After you deploy the trigger, this unique identifier is
necessary for calling the trigger.
If you are running the cloud trigger configuration on multiple computers, you must make
sure each computer automatically uses its own unique identifier. To prevent unwanted
duplications, insert internal variables as part of the Unique identifier. You can use two
internal variables for this purpose:

* ComputerName: The name of the computer on which the configuration is running.
» SystemUserName: The Windows user name of the currently logged-in user.

To insert internal variables to the Unique identifier, click Insert data source and select
your internal variables.

96

Communication

Unique identifier. | YourUniqelD > N
] Wait for trigger execution to finish
99 £ Internal Variables

Variable ® ComputerName

Select your internal variable to “
prevent duplicated unique
identifiers

Wait for trigger execution to finish: The HTTP protocol requires a receiver (in this case
NiceLabel Automation) to send a numeric response back to the sender indicating the
status of the received message. By default, NiceLabel Automation responds with code
200. This indicates Automation successfully received the data, but gives no information
about the success of trigger actions.

This option specifies that a trigger doesn't send a response immediately after receiving
the data, but waits until all actions execute. Then, it sends the response code indicating
a successful action execution. With this option enabled, you can send back a custom
response type and data (e.g., the response to a HTTP request is label preview in PDF
format).

With cloud trigger, the relevant built-in Automation standard HTTP response codes are:

HTTP Response Code Description
200 All actions executed successfully.

500 There were errors during action execution.

|§ NOTE

To send feedback to Automation about the print process, enable
synchronous print mode. For more information, see section

Synchronous Print Mode.

Response type: Specifies the type of your response message. Frequently used Internet
media types (also known as MIME types, or Content-types) are predefined in the drop
down box. If your media type is not available in the list, type it yourself. Automation
sends the response data outbound as feedback, formatted in the defined media type.
Variable enables variable media types. If enabled, select or create a variable that
contains media type.

@ NOTE

If you don't specify the Content-Type, NiceLabel Automation uses
appl i cati on/ oct et - st r eamas a default.

Response data: Defines the content of your response message. Examples of what you
can send back as an HTTP response are custom error messages, label previews,
generated PDF files, print stream (spool) files, XML files with details from the print engine
plus the label preview (encoded as a Base64 string).

97

If your output consists of binary-only content (such as label preview or print stream),
make sure you select a supported media type, e.g.i mage/ j peg orappl i cati on/
octet-stream

Additional headers: Allow you to define custom MIME headers for the HTTP response
message.

Response header syntax and examples are available in the HTTP Request action
section.

qp TIP
With Response data and Additional headers, you can use fixed content,
mix of fixed and variable content, or variable content alone. To insert
variable content, click the button with an arrow to the right of the data
area and insert your variable from the list. You can also create a new
variable that contains the data you want to use. For more information,
see section Using Compound Values.

5. Deploy and start the trigger in Automation Manager. The cloud trigger now monitors incoming
requests.

K

NOTE

If your configuration requires increased availability and scalability, you can deploy
multiple identical cloud triggers. To do this, install multiple instances of Automation,
and deploy the cloud triggers on them. If the deployed cloud triggers share the same
Unique identifier, the built-in load balancer in Label Cloud automatically distributes
the traffic load among them.

Setting up Cloud Trigger Access for the External integrator

K

NOTE

To set up the integrator's access to the cloud trigger, you must have the Manage
cloud integration privilege on the cloud Control Center. See the Control Center user
guide for details about managing the user privileges.

1. Go to your cloud Control Center. Open the web browser and type:

https://<your| abel cl oudnanme>.onnicelabel .com/dashboard.

2. Go to Applications > Cloud Integrations .

3. Click +Add. This opens the Trigger Integrators page.

4. Type the Name of the integrator you are currently adding.

98

5. Copy the Key.

Overview @ Documents RGNV = printers O History [Analytics 98 Administration
Integrators | Add new integrator access m Cancel

> Web Applications Settings
> Cloud Integrations Nam

& TestCloudTriggel] \
Key 308ectes [l

Applications

6. Click Save.

7. Direct the external integrator to the Developer Portal. Send the external integrator the
following information:

* Link to the Label Cloud API: https://developerportal.onnicelabel.com/

* Theintegrator key (see step 5).

* The trigger unique identifier. You can find this Unique identifier in the cloud trigger
Automation configuration settings (see step 4 in section Configuring cloud trigger in
[%=Variables.Module-Automation-Builder].

Ig NOTE

External integrator needs the key to authenticate themselves for calling the
customer's cloud trigger.

|§ NOTE

For more details, read the Cloud Triggers section of your Control Center user guide.

Creating subscription on the Developer Portal

After receiving the required information from the Label Cloud administrator, the external integrator
must first sign up to the Developer Portal, and create subscriptions (per each customer) for calling the
triggers. These trigger calls originate from the customers' cloud-based information systems.

S NOTE

If you do not see the Developer Portal email in your Inbox, check your junk folder.

E NOTE

Customers are companies that run cloud trigger configurations which receive the
data from external information systems.

99

https://developerportal.onnicelabel.com/

@ NOTE

Each integrator may call multiple cloud triggers using a single subscription.

1. Openyour browser and go to https://developerportal.onnicelabel.com/

2. To complete the sign up procedure, follow the on-screen instructions. After you click Sign up,
you receive a confirmation email. Click the confirmation link to activate your Developer Portal
account.

3. Open the Products tab and click Label Cloud. The page that you land on contains your APIs
and existing subscriptions.

4. Click Add subscription. The Subscribe to product page opens.

S NOTE

You can create multiple subscriptions. However, a single subscription can be
used for a single customer. This is why NiceLabel recommends you to include
the name of the customer to the Subscription name, such as Cloud
Trigger Example Customer.

5. Type the Subscription name.

6. Click Confirm. The newly created subscription becomes available on Products > Label
Cloud.

7. When again on the Label Cloud page, click the Developer Sign Up APl v1.

8. Click Try it. The API page opens.

100

https://developerportal.onnicelabel.com/

Label Cloud API

HOME APIS PRODUCTS APPLICATIONS ISSUES

Developer Sign Up API v1

DeveloperSignup

Query parameters

integratorKey 94d5701afch349

Add integratorKey parameter
Getvalue from Control Center
Authorization

Subscription key Primary-b23e %
Selectsubscription key

Reguest URL

https://labelcloudapidev.onnicelabel. con/SignUpApi/DeveloperSignup?integ

HTTP request
@

GET https://1a 1. con/signUpapi/Developersignup?integra 1afc HTTP/1.1
Host: labelcle
Api-version: v
Ocp-Apim-

9. Insert the Integrator Key from the customer's cloud Control Center.
10. Click Send.

* Theresponseis: Subscription <your subscription key> successfully
associated with integrator key <integrator key value>.

Ig NOTE

You received the integrator key from the Label Cloud administrator. The key
looks like this: 979d7be5df2b473193ac5519194cd901

Example

When passing the integration key as a query parameter, the URL looks like this: https://
labelcloudapi .onnicelabel .com/SignUpApi/DeveloperSignup?
integratorkKey=979d7be5df2b473193ac5519f94cd901.

Once you make this call using the URL as shown in the example, the DeveloperSignup
operation matches the subscription with the assigned customer. This is how the integrator
authenticates themselves when calling the cloud trigger that runs in the customer's
Automation.

The connected subscriptions are also visible in the cloud Control Center. Check if the external
integrator has connected their subscription under Applications > Cloud integrations. The
cloud integration should have the status Developer [name, email address] subscribed.

101

Control Center

Overview @ Documents [N=NSSTENEI = printers © History B Analytics 8 Administration

) Integrators
Applications

> Web Applications Cloud Integrations Learn more

> Cloud Integrations o Cloud triggers work using a Nicelabel API that runs on a dedicated API Developer Portal.
You can use Cloud triggers by yourself or share the key with 3rd party integrators. You or the integrator must activate the key on the API Developer

Subscription pending

= | Name Key

¥ Cloud trigger 979d7be5df2by

Developer s
“ 4de967a3ddAZMIE A Copy the key
ot o subscribet

Subscription completed

Calling your cloud trigger (Label Cloud deployment)

This step makes sure that the outputs of the external business systems successfully execute cloud
triggers that run locally. This is the purpose of the CloudTrigger operation. In the URL of the call,
specify the trigger name you are calling.

To call a trigger with the unique identifier MyCloudTrigger, use this URL:

https://1abelcloudapi.onnicelabel .com/TriggerApi/CloudTrigger/MyCloudTrigger

For each event (output) in the external business system, call the URL as shown in the example. Each
call executes the cloud trigger that runs on the local Automation server.

All API calls must include these two headers:

* Api-Version is the version of the API you are using. Currently, the only available API versionis v1.

* Ocp-Apim-Subscription-Key is the key that identifies your subscription.

Testing CloudTrigger calls

To become familiar with how the CloudTrigger calls work, the Developer Portal allows you to test
such calls.

Before you can test this call, you must set up a running Automation configuration.
1. Openthe Development Portal, open the Products tab, and click Label Cloud.
2. Select Cloud Trigger API v1.

3. Create asample for GET or POST methods. Click the appropriate link.

» After you make the method selection, click Try it. A new page opens. The triggerID is
already added under the Query parameters.

* Inthe Value field, copy and paste the triggerID that you receive from the developer of
the Automation configuration. This is the trigger's Unique identifier. The Unique
identifier is available inAutomation Builder> Trigger Settings > General.

102

Under Authorization, select the subscription key. Because you already have at least one
subscription defined, the drop-down list already contains the key for the defined subscription.
Select this key - either primary or secondary.

Click Send.

* Response status is 200 OK.

Quick Check if your Cloud trigger works

Once you have set up your your Label Cloud APl on the Developer Portal, you can make a simple
configuration in Automation Builder to check if the cloud trigger works. If the trigger works, you
receive the "Trigger works ok." message on the Cloud Trigger API page after you click Try it.

1.

Open Automation Builder and create a new configuration. Make sure your Automation
Manager is connected to the Label Cloud.

Add a new Cloud trigger.

Define Name and Description, and set the Unique identifier. Let's use the
TestCloudTrigger Unique identifier in this case.

Enable Wait for trigger execution to finish. This allows you to track trigger responses.
* Select text/plain as Response type.

* Define the Response data. This is what you receive if the trigger works. Let's use the
following string: "Trigger works ok."

* Define the Additional headers. Use the Heading:Value format.
Deploy the configuration.
Open your developer portal and go to your Cloud Trigger APl v1 page.
Click Try it.
Paste TestCloudTrigger to the triggerlD field. Click Send.

* Response content includes the confirmation: "Trigger works ok."

103

no-cache
Headingl: Valuel

trol: no-cache

Date: Thu, @3 Oct 2819 12:39:27 GMT
Content-Length: 17

Content-Type: text/plain
Expires: -1 1
Trigger works ok.

4.2.8.2. Deploying Cloud Trigger with your on-premise Control
Center

Configuring cloud trigger in Automation Builder

This section describes how to configure the cloud trigger in Automation that runs on your local
server.

1. Open your Automation Builder. Make sure the Automation Builder is paired with your Control
Center. To check, go to File > Options >Control Centerand see if the URL address of your
Control Center is there.

Ig NOTE

"Paired" Automation Builder and Control Center also means that both
applications use the same license key.

2. The Configuration Items tab opens. Click Cloud Trigger to create a new configuration for the
cloud trigger.

3. Set Name and Description to make your cloud trigger easy to find among other triggers.
4. Set the trigger Communication settings:

* Define the Unique identifier. After you deploy the trigger, this unique identifier registers
the trigger on your Control Center. Use only alphanumeric characters. Special
characters are not permitted.

If you are running the cloud trigger configuration on multiple computers, you must make
sure each computer automatically uses its own unique identifier. To prevent unwanted
duplications, insert internal variables as part of the Unique identifier. You can use two
internal variables for this purpose:

* ComputerName: The name of the computer on which the configuration is running.
» SystemUserName: The Windows user name of the currently logged-in user.

To insert internal variables to the Unique identifier, click Insert data source and select
your internal variables.

104

Communication

Unique identifier. | YourUniqelD > N
] Wait for trigger execution to finish
99 £ Internal Variables

Variable ® ComputerName

Select your internal variable to “
prevent duplicated unique
identifiers

* Wait for trigger execution to finish: The HTTP protocol requires a receiver (in this case
NicelLabel Automation) to send a numeric response back to the sender indicating the
status of the received message. By default, NiceLabel Automation responds with code
200. This indicates Automation successfully received the data, but gives no information
about the success of trigger actions.

This option specifies that a trigger doesn't send a response immediately after receiving
the data, but waits until all actions execute. Then, it sends the response code indicating
a successful action execution. With this option enabled, you can send back a custom
response type and data (e.g., the response to a HTTP request is label preview in PDF
format).

With cloud trigger, the relevant built-in Automation standard HTTP response codes are:

HTTP Response Code Description

200 All actions executed successfully.

400 No configuration available.

500 There were errors during action execution.

@ NOTE

To send feedback to Automation about the print process, enable
synchronous print mode. For more information, see section
Synchronous Print Mode.

* Response type: Specifies the type of your response message. Frequently used Internet
media types (also known as MIME types, or Content-types) are predefined in the drop
down box. If your media type is not available in the list, type it yourself. Automation
sends the response data outbound as feedback, formatted in the defined media type.
Variable enables variable media types. If enabled, select or create a variable that
contains media type.

|§ NOTE

If you don't specify the Content-Type, NiceLabel Automation uses
appl i cati on/ oct et - st r eamas a default.

* Response data: Defines the content of your response message. Examples of what you
can send back as an HTTP response are custom error messages, label previews,

105

generated PDF files, print stream (spool) files, XML files with details from the print engine
plus the label preview (encoded as a Base64 string).

If your output consists of binary-only content (such as label preview or print stream),
make sure you select a supported media type, e.g.i mage/ j peg orappl i cati on/
octet-stream

Additional headers: Allow you to define custom MIME headers for the HTTP response
message.

Response header syntax and examples are available in the HTTP Request action
section.

qp TIP
With Response data and Additional headers, you can use fixed content,
mix of fixed and variable content, or variable content alone. To insert
variable content, click the button with an arrow to the right of the data
area and insert your variable from the list. You can also create a new
variable that contains the data you want to use. For more information,
see section Using Compound Values.

5. Deploy and start the trigger in Automation Manager. The cloud trigger now monitors for the
incoming requests.

K

NOTE

If your configuration requires increased availability and scalability, you can deploy
multiple identical cloud triggers. To do this, install multiple instances of Automation,
and deploy the cloud triggers on them. If the deployed cloud triggers share the same
Unique identifier, the built-in load balancer in Label Cloud automatically distributes
the traffic load among them.

Calling the cloud trigger (On-premise deployment)

This step makes sure that the outputs of the external business systems successfully execute cloud
triggers that run locally. This is the purpose of the CloudTrigger operation. In the URL of the call,

specify the trigger name you are calling.

To call the trigger with your unique identifier MyCloudTrigger, call this URL:

https://<YourServerName>/epm/api/trigger/<MyCloudTriggeriD>

K

NOTE

The URL might start with "http" or "https" - depending on how you set up your
Control Center during the installation. See the Control Center installation guide,
sections Setting up website and storage for details.

106

For each event (output) in the external business system, call the URL as shown in the example. Each
call executes the cloud trigger that runs on the local Automation server.

All calls must include the header named Integrator-Key.

Example

Integrator-Key: 9d59d7d444da412b8actbh488a01bb632

4.2.9. Scheduler Trigger

To learn more about triggers in general, see section Understanding Triggers.

@ PRODUCT LEVEL INFO
This functionality is available in LMS Enterprise and LMS Pro.

Scheduler trigger works as a timer that starts the execution of actions in your configuration after a
time period. Use the scheduler trigger to set up repetitive automated execution of time-dependent
actions.

Scheduler trigger is an active trigger. This means that it does not wait for an event change, but starts
executing the assigned actions as soon as the defined time interval ends.

Example

Typical usage: An ERP system produces 6000 packaging label files daily. Automation prints the labels,
and stores the used label files in a dedicated directory. Due to a large number used label files, the
company needs to set up automated purging of files that are older than 48 hours. Automation uses
the scheduler trigger to delete the obsolete label files.

Scheduler trigger automatically takes daylight saving time (DST) clock changes into account. The
trigger always takes current system time as a reference:

* On the DST starting date (summer), the trigger executes at the first hour that is past the hour of

the missing defined time.

Example

Scheduler trigger time is set for 2.30 h. Clock jumps from 2.00 h to 3.00 h. The trigger executes
at 3.00 h summer time.

* Onthe DST ending date (winter), the trigger executes only at the first occurrence of the defined
time.

107

Example

Scheduler trigger time is set for 2.30 h. Clock jumps from 3.00 h to 2.00 h. The trigger has
already executed. It does not activate the actions again when the clock is 2.30 h winter time.

4.2.9.1. General

This section allows you to configure the most important trigger settings.

* Name: Specifies the unique name of the trigger. The names helps you distinguish between
different triggers when you configure them in Automation Builder, and later when you run them
in Automation Manager.

» Description: Allows you to describe the role of this trigger. Help the users with a short
explanation about what the trigger does.

4.2.9.2. Recurrences

Use recurrences to define how often should the scheduler trigger event repeat.

» Execute trigger: sets the trigger repetition time interval.

» Every (X) seconds/minutes/hours sets the trigger event repetition time in the available
time units. Define the interval length under Seconds/Minutes/Hours (X).

* Daily repeats the trigger event every day at the selected time. Define the time of daily
repetition under Time:.

* On specific days repeats the trigger at the defined time of the selected day(s). Set the
repetition using Time: and days.

@ NOTE

Define the time values in 24-hour format.

Other
Options in the Feedback from the Print Engine section specify communication parameters that
allow you to receive print engine feedback.

@ PRODUCT LEVEL INFO
This functionality is available in LMS Enterprise and LMS Pro.

* Supervised printing: Activates synchronous printing mode. Use it whenever you want to send
the print job status back to the third party application. For more information, see section
Synchronous Print Mode.

108

Options in the Data Processing section specify if you want to trim the data so that it fits into a
variable, or ignore the missing label variables. By default, reports errors and breaks the printing
process if you try to save values that are too long in label variables, or try to set values for non-
existing label variables.

» Ignore excessive variable contents: truncates data values that exceed the length of the
variable as defined in the label designer to make them fit. This option is in effect if you are
setting variable values in filters, from command files, and when you are setting values of trigger
variables to label variables of the same name.

Example

Label variable accepts 5 characters at maximum. With this option enabled, any value longer than
5 characters is truncated to the first 5 characters. If the value is 1234567 ignores digits 6 and 7.

* Ignore missing label variables: When printing with command files (such as JOB file), the
printing process ignores all variables that are:

* specified in the command file (using the SET command)
* not defined on the label

Similar happens if you define assignment area in a filter to extract all name-value pairs, but your
label contains fewer variables.

When setting values of non-existing label variables, reports an error. If this option is enabled, the
printing continues.

Options in Scripting section specify scripting possibilities.

» Scripting language: Selects scripting language for the trigger. All Execute script actions that
you use within a single trigger use the selected scripting language.

Options in the Save Received Data section specify the available commands for data that the trigger
receives.

» Save data received by the trigger to file: Enable this option to save the data received by the
trigger. The option Variable enables variable file name. Select a variable that contains path and
file name.

* On error save data received by the trigger to file: Enable this option to save the data into the
trigger only if an error occurs during the action execution. You might want to enable this option
to keep the data that caused the issue ready for troubleshooting.

@ NOTE

Make sure you enable the Supervised printing support. If not, cannot detect
errors during the execution. For more information, see section Synchronous
Print Mode.

109

S NOTE

saves the received data into a temporary file. This temporary file is deleted right
after the trigger execution completes. The internal variable Dat aFi | eName
points to that file name. For more information, see Internal Variables.

Security

* Lock and encrypt trigger: Enables trigger protection. If you enable it, the trigger becomes
locked and you cannot edit it any longer. This encrypts the actions. Only users with password
can unlock the trigger and modify it.

4.3. Using Variables

4.3.1. Variables

Variables are used as containers for data values. You need variables to transfer values to the label in
Print Label action, or to use values in other data-manipulation actions. Typically, a filter extracts
values from data streams received by trigger and sends values to variables. For more information, see
section Understanding Filters.

Usually, you send values of variables to the label template, and print the label. The mechanism that
sends values of variables to labels uses the automated name mapping. The value of the variable
defined in the trigger is sent to the variable defined in the label that carries the same name. You can
define variables using one of the three available methods:

* Import variables from label file: As for the above explained automatic mapping, it makes a
good practice to import your variables from the label every time. This action saves you time and
ensures that the variable names match. The imported variable doesn't inherit just the variable
name, but also supported variable properties, such as length and default value.

* Manually define variables: When manually defining variables, be extra careful to use the same
names as with variables on the label. Manually define the variables that don't exist in the label,
but you need them inside the trigger.

S NOTE

An example would be variables, such as Label Nang, Pri nt er Nane, Quantity
and similar variables that you need to remember the label name, printer name,
quantity or other meta-values assigned by the filter.

* Enabling internal variables: Values for internal variables are assigned by NiceLabel Automation
and are available as read-only values. For more information, see section Internal Variables.

110

@ TIP
If you enable the assignment area (in Unstructured Text and XML filters) and dynamic

structure (in Structured Text filter), NiceLabel Automation extracts name:value pairs
from the trigger data and automatically sends values to the variables of the same
name that are defined in the label. No manual variable mapping is necessary.

Properties

Name: Specifies the unique variable name. Names are not case sensitive. Although you can use
spaces in variable names, it's a better practice not to. Even more so if you use variables in
scripts or in conditions on actions, because you will have to enclose them in square brackets.

Allowed characters: Specifies the list of characters a value can occupy. You can select between
All (all characters are accepted), Numeric (only digits are accepted), and Binary (all characters
and control codes are accepted).

Limit variable length: Specifies the maximum number of characters a variable can occupy.

Fixed length: Specifies that a value must occupy exactly as many characters as defined by its
length.

@ NOTE

Itis necessary to limit variable length for certain label objects. An example is
EAN-13 barcode, which accepts 13 digits.

Value required: Specifies that the variable must contain a value.

Default value: Specifies a default value. If the variable does not have any value assigned to it,
the default value is always used.

4.3.2. Using Compound Values

Some objects in trigger configuration accept compound values. Such content can be a mixture of
fixed values, variables and special characters (control codes). The objects accepting compound
values are identified by a small arrow button to the right side of the object. Click the arrow button to
insert either a variable or a special character.

Using fixed values: Manually enter a fixed value for the variable.

This is fixed value.

Using fixed values and data from variables: You can define a compound value, combined of
variable and fixed values. The variable names must be enclosed in square brackets[] . You can
enter variables manually, or insert them by clicking the arrow button to the right. At processing
time, the values of variables are merged together with fixed data and used as the content. For
more information, see section Tips and Tricks for Using Variables in Actions.

111

In this case, the content merges three variables and manually entered fixed data.

[variablel] // This is fixed value [variable2][variable3]

» Using special characters: You can add special characters to the mix. Enter the special
characters manually or insert them. For more information, see section Entering Special
Characters.

In this case, the value of var i abl el is merged with fixed data and form-feed binary character.

[variablel] Form feed will follow this fixed text <FF>

4.3.3. Internal Variables

Internal variables are predefined by NicelLabel Automation. Their values are assigned automatically
and are available in read-only mode. The icon with lock symbol in front of the variable name
distinguishes internal variables from user-defined variables. You can use internal variables in your
actions in the same way as you would use the user-defined variables. The trigger related internal
variables work as internal variables for each trigger.

Internal variable Available Description
in trigger
ActionLastErrorDesc All Provides the description of the last occurred

error. Use this value as feedback to host system
to identify the fault cause.

ActionLastErrorID All Provides the last error ID. This is integer value.
When value is O, there was no error. You can use
this value in conditions, evaluating if there was
some error or not.

BytesOfReceivedData TCP/IP Provides the number of bytes received by the
trigger.
ComputerName All Provides the name of the computer where the

configuration runs.

ConfigurationFileName All Provides the path and file name of the current
configuration (.MISX file).

ConfigurationFilePath All Provides the path of the current configuration
file. Also see description for
ConfigurationFileName.

DataFileName All Provides the path and file name of the working
copy of received data. Each time the trigger
accepts the data, it makes a backup copy of it
to the unique file name identified by this
variable.

Database Database Provides the database type as configured in the
trigger.

112

Date

DateDay

DateMonth

DateYear

DefaultPrinterName

DriverType

Hostname

HttpMethodName

HttpPath

HttpQuery

NumberOfRowsReturned

LocallP

PathDataFileName

PathTriggerFileName

Port

RemoteHttplp

Remotelp

All

All

All

All

All

Database

TCP/IP

HTTP

HTTP

HTTP

Database

TCP/IP

All

File

TCP/IP,
HTTP, Web
Service

HTTP

Web
Service

Provides the current date in the format as
specified by system locale, such as 26.2.2018.

Provides the current number of the day ina
month, such as 26.

Provides the current number of the month in
the year, such as 2.

Provides the current number of the year, such
as 2018.

Provides the name of printer driver, which is
defined as default.

Provides the name of the driver used to
connect to the selected database.

Provides the host name of device/computer
connecting to the trigger.

Provides the method name the user has
provided in the HTTP request, such as GET or
POST.

Provides the path defined in the HTTP trigger.

Provides the contents of the query string as
received by the HTTP trigger.

Provides the number of rows that the trigger
gets from a database.

Provides the local IP address at which the
trigger responds to. This is useful if you have a
multi-homing machine with several network
interface cards (NIC), and want to determine to
which IP address the client connected to. This
is useful for printer replacement scenarios.

Provides the path in the DataFileName variable,
without the file name. Also see description for
DataFileName.

Provides the path in the TriggerFileName
variable, without the file name. Also see
description for TriggerFileName.

Provides the port number as defined in the
trigger.

Provides the host name of device/computer
connecting to the trigger.

Provides the host name of device/computer
connecting to the trigger.

113

ShortConfigurationFileName All Provides the file name of the configuration file,
without a path, Also see description for
ConfigurationFileName.

ShortDataFileName All Provides the file name to the DataFileName
variable, without the path. Also see description
for DataFileName.

ShortTriggerFileName File Provides the file name to the TriggerFileName
variable, without the path. Also see description
for TriggerFileName.

SystemUserName All Provides the Windows name of the logged-in
user.

TableName Database Provides the name of the table as used in the
trigger.

Time All Provides the current time in the format as

specified by system locale, such as 15:18.

TimeHour All Provides the current hour value, such as 15.
TimeMinute All Provides the current minute value, such as 18.
TimeSecond All Provides the current second value, such as 25.
TriggerFileName File Provides the file name that triggered actions.

This is useful when you monitor a set of files in
the folder, so you can identify which file exactly
triggered actions.

TriggerName All Provides the name of the trigger as defined by
the user.
Username All Provides the NiceLabel Automation user name

of the currently logged in user. The variable has
contents only if the user login is enabled.

4.3.4. Global Variables

Global variables are a type of variables that can be used on different labels. Global variables are
defined outside the label file and remember the last-used values.

Global variables are typically defined as global counters. Such global variables provide a unique value
for every label that requests a new value. File locking takes place ensuring uniqueness of each value.

Global variables are defined in label designer, the NiceLabel Automation only uses it. The source for
global variables is configurable in the Options dialog (File > Options > Global Variables).

By default, NiceLabel Automation is configured to use global variables from local computer. Their
default location is:

%PROGRAMDATA%\NiceLabel\Global Variables

114

Global variables are defined in files GLOBAL. TDB and GLOBALS. TDB. SCH.

In multi-user environments, make sure you configure all clients to use the same network-shared
source for global variables, or Control Center-based global variables.

@ NOTE

Definition and current value for global variables can be stored in a file or in Control
Center (for LMS Enterprise and LMS Pro products).

4.4. Using Actions

4.4.1. Actions

The Actions section specifies the list of actions that execute every time a trigger fires.

4.4.1.1. Defining actions

To define an action, click the action icon in the Insert Action ribbon group. The main ribbon contains
commonly used actions. To see all available actions, click All Actions button. To see available
commands over the selected action, right-click it and select command from the list.

¥ OimMTe T

All Open Print Set Set Use Data
Actions ¥ Label Label Printer Variable Filter

Search

General =

Eﬂﬂ' Open Label

&3 Print Label

Run Oracle XML Command File

[&) Run SAP All XML Command File {

Run Command File

ﬁ- Send Custom Commands
Printer

'E' Set Printer

'3' Set Print Job Name 1

'ﬁ' Redirect Printing to File

'?' Set Print Parameter

B Rediract Printing to PDF

S Printer Status

'%' Store Label to Printer
Variables

@' Set Variable

éﬂ Save Variable Data

-

P S

4.4.1.2. Nested actions

Some actions cannot be used on their own. Their specific functionality requires them to be nested
below some other action. Use buttons in Action Order ribbon group to change action placement.

115

Each action is identified with the ID number that shows its position in the list, including nesting. This
ID number will be displayed in the error message so you can find the problematic action easier.

Action L=
14 i Forloop L4
11 4 F Ty v
111 . F Do v
1.1.1.1 4 [Open Label ¥
11111 'E' Set Printer L
1.1.1.1.2 &9 Print Label v
1.1.2 4 -5 Cn Error o
1.1.2.1 i HTTP Request v

L

2 m Save Data to File

@ NOTE

The Print Label action is a good example of such action. You have to position it under
the Open Label action, so it references the exact label to print.

4.4.1.3. Action execution

The actions in the list execute once per trigger. Listed actions are executed from top to bottom, so
the listing order of actions is important.

There are two exceptions. The actions For Loop and Use Data Filter execute nested actions for
multiple times. For loop action executes for as many times as defined in its properties, and the Use
Data Filter for as many times as there are records in a data set returned from the associated filter.

NicelLabel 2019 runs as service under a specified Windows user account and inherits security
permissions from the account. For more details, see the section Running in Service Mode in
NiceLabel Automation User Guide.

4.4.1.4. Conditional actions

Each action can be set as a conditional action. Conditional action only runs if the provided condition
allows it to be run. Condition is a single line script (VBScript or Python). To define the condition, click
the Show execution and error handling options in action properties to expand the possibilities.

Action Execution and Error Handling
Execution options:

Enabled

Condition: ActionLastErrorlD = 0
& adk y v w— — b ek — Ao b r

In this case, the action executes only if the previous action has completed successfully, so the internal
variable Act i onLast Err or | Dhas value 0. To use such condition with internal variables, you must
first enable the internal variable.

116

4.4.1.5. Identifying actions in configuration error state

If an action is not completely configured, it is marked with a red exclamation icon. Such actions
cannot execute. You can include such action in the Action list, but you will have to complete the
configuration, before you can start the trigger. If one of the nested actions is in error state, all parent
expansion arrows (to the left of the action name) are also colored red as an indicator of sub-action
error.

Configuration ltems_ @ File @ X

1.4 [Open Labe 4

(R
8 Print Label L Actiontype: Open Label

In this case, the Open Label action reports configuration error. There is no parameter specified for
the label name. The red exclamation icon pops up next to the erroneous parameter in the action itself,
in the action list, in the Actions tab, in the trigger tab, and in the Configuration Items tab. This makes
the issue easy to identify.

4.4.1.6. Disabling actions

By default, every newly created action is enabled and executes if a trigger fires. You can disable the
actions that you don't need, but still want to keep the configuration. A shortcut to action enabling &
disabling is a check box on the right hand side of the action name in the list of defined actions.

Settings Variables Actions
Action LAL=0r 4
1.4 O Open Label v
11 B9 Print Label D
12 Cr Cpen Label v
P NN A SN Pt 2

In this case, the Print Label action is still defined in the actions list, but has been disabled. Currently, it
is not needed and will be ignored during the processing, but you can easily re-enable it at any time.

4.4.1.7. Copying actions

You can copy an action and paste it back into the same or any other trigger. You can use standard
Windows keyboard shortcuts, or right-click the action.

Right-clicking the action displays the available contextual commands available for the currently
selected object.

Automation Builder also enables you to make a selection of multiple actions, and to perform copy,
paste and delete operations with them. To make a selection, Use Ctrl/Shift + Click on the required
actions.

117

@ NOTE

Multiple actions can only be selected under the same parent action, i.e. all selected
actions must be on the same level.

4.4.1.8. Navigating the action list

Use your mouse to select the defined action and click the respective arrow button in Action Order
group in the ribbon. You can also use keyboard. Cursor keys move the selection in the action list, Ctrl
+ cursors keys move the action position up and down, and also left and right for nesting.

4.4.1.9. Describing the actions

About group allows you to describe all NiceLabel 2019 actions.

* Name: by default, action name is defined by its type and is therefore not unique. Define a
custom name to make it instantly recognizable among other actions, in logs and in potential
error messages.

* Description: user notes for the selected action. Description is displayed in actions explorer.

* Action Type: read-only field which displays the type of action.

4.4.2. General

4.4.2.1. Open Label

Open Label action specifies the label file that is going to be printed. When the action is executed, the
label template opens in memory cache. The label remains in the cache for as long as the triggers or
events use it.

There is no limit on the number of labels that can be opened concurrently. If the label is already
loaded and is requested again, NiceLabel Automation will first determine if a newer version is available
and approved for printing, then open it.

In this example, NiceLabel 2019 loads the label | abel . nl bl from folder C. \ Pr oj ect A\ Label s.

C:\ProjectA\Labels\label .nlbl

Configuration ltems | File X

o @ 3 About

Settings Variables Actions Name: Open Label

Action v e, Description:

1.4 [Open Label ¥ 4
8 Print Label V] Action type: Open Label

Settings
Label name: C\ProjectALabelsilabel.nibl 5[] Data source

118

If the specified label cannot be found, NiceLabel 2019 tries to find it in alternative locations. For more
information, see section Search Order for Requested Files in NiceLabelDesigner user guide.

About group identifies the selected action.

* Name: allows you to define a custom action name. This makes actions easily recognizable on
the solution's list of actions. By default, action name is taken from its type.

* Description: custom information about the action. Enter a description to explain purpose and
role of action in a solution.

* Action type: read-only information about the selected action type.

Using Relative Paths

NicelLabel 2019 supports the use of relative paths for referencing your label file. Root folder is always
the folder where the solution (or configuration in case the action is used in a NiceLabel Automation
configuration) is stored.

With the following syntax, the label loads relatively from the location of the configuration file.
Automation Builder searches for the label in folder Pr oj ect A which is two levels above the current
folder, and then in folder Label s.

--\..\ProjectA\Labels\label .nlbl
Settings group selects the label file.

* Label name: specifies the label name. It can be hard-coded, and the same label will print every
time. The option Data source enables the file name to be dynamically defined. Select or add a
variable that contains the path and/or file name if a trigger is executed or an event takes place.

TIP

Usually, the value to the variable is assigned by a filter.

@ NOTE

Use UNC syntax for network resources.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling
options.

Execution options are:

* Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

119

» Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionist r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

S NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

* Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Error | d and
Acti onLast Error Desc.

4.4.2.2. Print Label

This action executes label printing. It must always be nested within the Open Label action. Nesting
allows it to obtain the reference to the label that is going to be printed. This further allows you to keep
multiple labels open at the same time, and enables you to specify which label should be printed.

After issuing this action, the label gets printed using the printer driver that is defined in the label
template. If the defined printer driver is not found on the system, the label is printed using the system
default printer driver. You can override the printer driver selection via Set Printer action.

To achieve high performance label printing, NiceLabel 2019 activates two settings by default:

* Parallel processing. Multiple print processes are all carried out simultaneously. The number of
background printing threads depends on the hardware; specifically on the processor type. Each
processor core can accommodate a single printing thread. This default can be changed. For
more information, see section Parallel Processing in NiceLabel Automation user guide.

* Asynchronous mode. As soon as the trigger pre-processing completes and the instructions for
the print engine are available, the printing thread takes it over in the background. The control is
returned to the trigger so it can accept the next incoming data stream as soon as possible. If
synchronous mode is enabled, the control is not returned to the trigger until the print process is

120

finished. This can take a while, but the trigger benefits from providing feedback back to data-
providing application. For more information, see the section Synchronous Mode in NiceLabel
Automation user guide.

@ NOTE

Using Save error to variable option in Action Execution and Error Handling
does not yield any result in asynchronous mode, as the trigger does not receive
feedback from the print process. To capture the feedback from the print
process, enable synchronous mode first.

S NOTE

If the Print Label action is nested under a For Loop action, Automation executes it in
session printing mode. This mode acts as a printing optimization mode that prints all
labels in a loop using a single print job file. For details, see Session Printing section in
NicelLabel Automation user guide.

About group identifies the selected action.

* Name: allows you to define a custom action name. This makes actions easily recognizable on
the solution's list of actions. By default, action name is taken from its type.

* Description: custom information about the action. Enter a description to explain purpose and
role of action in a solution.

* Action type: read-only information about the selected action type.

Quantity group defines the number of labels to be printed using the active form.

* Labels: sets the number of printed labels. Data source specifies or adds a variable that defines
the label print quantity dynamically.

|§ NOTE

Variable value is usually assigned by the Use Data Filteraction and must be
integer.

All (unlimited quantity): depending on the label template design, the labels are printed in various
quantities.

Unlimited Quantity Printing Details
Typically, this option is used in two scenarios.

1. Command the printer to continuously print the same label until it is switched off, or after it
receives a command to clear its memory buffer.

121

A WARNING

This scenario requires NicelLabel printer driver to be installed and used for
label printing.

If printing a fixed label, just a single print job is sent to the printer, with the quantity set to
"unlimited". Label printers have a print command parameter which indicates "unlimited"
printing.

If the label is not fixed, but includes objects that change during the printing, such as counters,
the printed quantity is set to maximum quantity supported by the printer. NiceLabel printer
driver is aware of the printer quantity limit and print as many labels as possible.

Example

Maximum supported print quantity is 32,000. This is the amount of labels that are print after
selecting the All (unlimited quantity) option.

2. The trigger doesn't provide any data, but only acts as a signal for "event has happened". The
logic to acquire necessary data is included in the label. Usually, a connection to a database is
configured on the label, and at every trigger the label must connect to the database, and
acquire all records from the database. In this case, the All (unlimited quantity) option is
understood as "print all records from the database".

* Variable quantity (defined from label variable): specifies a label variable that defines the label
quantity to be printed.
The trigger doesn't receive the number of labels to be print, so it passes the decision to the
label template. The label might contain a connection to a database, which provide the label
quantity, or there is another source of quantity information. A single label variable must be
defined as "variable quantity".

Advanced group defines label printing details. Click Show advanced print options to define the
Advanced print options:

This section specifies non-frequently used label quantity related settings.

* Number of skipped labels: specifies the number of labels that are skipped on the first page of
labels. The sheet of labels might have been printed once already, but not entirely. You can re-use
the same sheet by offsetting the starting position. This option is applicable, if you print labels to
sheets of labels, not rolls of labels, so it's effective for office printers and not for label printers.

* ldentical label copies: specifies the number of label copies to be printed for each unique label.
For fixed labels, this option produces the same result as the main Number of Labels option. For
variable labels, such as labels using counters, you can get the real label copies.

* Label sets: specifies how many times the entire label printing process should repeat.

122

Example

Trigger or event receive content with 3 lines of CSV-formatted data, so 3 labels are expected to
be printed (1, 2, 3). If you set this option to 3, the printout is done in the following order: 1, 2, 3, 1,
2,3,1,23.

* Metadata: with each print job writes your printing comments to Control Center. You can see
your Metadata in History > Printing > Print Metadata column. You can use Metadata for sorting,
filtering, and other functions in Control Center. Metadata does not affect your printing or print
streams. You use Metadata for logging your additional information about your print jobs in
Control Center. Metadata can include LOT number or other label variables, printer names, and
user/system generated values.

@ PRODUCT LEVEL INFO
This functionality is available in LMS Enterprise and LMS Pro.

TIP

All Advanced group values can either be hard-coded, or dynamically provided by an
existing or a newly added variable.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling

options.
Execution options are:

* Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

» Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionis t r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

|§ NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

123

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

* Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Error | d and
Acti onLast Error Desc.

4.4.2.3. Run Oracle XML Command File

E PRODUCT LEVEL INFO:

Automation Builder features require LMS Enterprise.

This action executes printing with data obtained from an Oracle XML-formatted file.

NiceLabel Automation internally supports XML files with "Oracle XML" structure, which are defined by
Oracle Warehouse Management software.

Use this action as a shortcut. It helps you execute Oracle XML files directly and without the need to
parse them using XML filter and mapping the values to variables.

To be able to use this action, the XML file must conform to Oracle XML specifications. For more
information, see section Oracle XML Specifications in NiceLabel Automation user guide.

Use UNC syntax for network resources. For more information, see section Access to Network Shared
Resources in NiceLabel Automation user guide.

S PRODUCT LEVEL INFO:

Requires Automation Builder.

How to receive a command file in a trigger and execute it
After a trigger receives the command file and you wish to execute it, complete the following steps:

1. In Automation Builder module, on Variables tab, click the Internal Variable button in the
ribbon.

2. Inthe drop down list, enable the internal variable named Dat aFi | eNan®e. This internal variable
provides path and file name of the file that contains the data received by the trigger. In this
case, its contents is command file. For more information, see section Internal Variables in the
NiceLabel Automation user guide.

124

3. InActions tab, add the action to execute the command file, such as Run Command File, Run
Oracle XML Command File, or Run SAP All XML Command File.
For the action Run Command File, select the type of the command file in File type.

4. Enable the option Variable.

5. Select the variable named Dat aFi | eNane from the list of available variables.

About group identifies the selected action.

* Name: allows you to define a custom action name. This makes actions easily recognizable on
the solution's list of actions. By default, action name is taken from its type.

* Description: custom information about the action. Enter a description to explain purpose and
role of action in a solution.

* Action type: read-only information about the selected action type.

File group defines the Oracle XML command file to be used.

* File name: selected Oracle XML command file. It can either be hard-coded or dynamically
defined using an existing or a newly created variable.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling
options.

Execution options are:

» Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

* Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionis t r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

S NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

125

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

» Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Err or | d and
Acti onLast Error Desc.

4.4.2.4. Run SAP All XML Command File

@ PRODUCT LEVEL INFO:

Automation Builder features require NiceLabel LMS Enterprise or NiceLabel LMS
Pro.

This action executes printing with data from an SAP All XML-formatted file.

NiceLabel Automation internally supports XML files with the "SAP All XML" structure, which are
defined by SAP software.

Use this action as a shortcut. it helps you execute SAP All XML files directly without any need to parse
them using XML filter and map values to variables. To be able to use this action, the XML file must
conform to SAP All XML specifications. For more information, see section SAP All XML Specifications
in NiceLabel Automation user guide.

Use UNC syntax for network resources. For more information, see section Access to Network Shared
Resources in NiceLabel Automation user guide.

@ PRODUCT LEVEL INFO:

Requires Automation Builder.

How to receive a command file in a trigger and execute it
After a trigger receives the command file and you wish to execute it, complete the following steps:

1. In Automation Builder module, on Variables tab, click the Internal Variable button in the
ribbon.

2. Inthe drop down list, enable the internal variable named Dat aFi | eNan®e. This internal variable
provides path and file name of the file that contains the data received by the trigger. In this
case, its contents is command file. For more information, see section Internal Variables in the
NiceLabel Automation user guide.

126

3. InActions tab, add the action to execute the command file, such as Run Command File, Run
Oracle XML Command File, or Run SAP All XML Command File.
For the action Run Command File, select the type of the command file in File type.

4. Enable the option Variable.

5. Select the variable named Dat aFi | eNane from the list of available variables.

About group identifies the selected action.

* Name: allows you to define a custom action name. This makes actions easily recognizable on
the solution's list of actions. By default, action name is taken from its type.

* Description: custom information about the action. Enter a description to explain purpose and
role of action in a solution.

* Action type: read-only information about the selected action type.

File group defines the SAP All XML command file to be used.

* File name: selected SAP All XML command file. It can either be hard-coded or dynamically
defined using an existing or a newly created variable.

Optional Parameters group allows defining the label name in case it is not included in the XML file.

* Label name: the selected label file that should be used in the command file. It can either be
hard-coded or dynamically defined using an existing or a newly created variable.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling
options.

Execution options are:

» Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

» Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionist r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

127

S NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

» Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Err or | d and
Act i onLast Err or Desc.

4.4.2.5. Run Command File

This action executes commands that are included in a selected command file. All File type options
provide commands that NiceLabel 2019 executes in top-to-bottom order.

Command files usually provide data for a single label, but you can define files of any level of
complexity. For more information, see section Command File Types.

About group identifies the selected action.

* Name: allows you to define a custom action name. This makes actions easily recognizable on
the solution's list of actions. By default, action name is taken from its type.

* Description: custom information about the action. Enter a description to explain purpose and
role of action in a solution.

* Action type: read-only information about the selected action type.

File group defines the type and name of the command file that is going to be executed (JOB, XML or
CSV).

* File type. Specifies the type of the command file to be executed.

* File name. Specifies the command file name.
File name can be hard-coded, and the same command file will execute every time. The option
Variable enables a variable file name. Select or create a variable that contains the path and/or
file name if a trigger is executed or an event takes place. Usually, the value to the variable is
assigned by afilter.
Use UNC syntax for network resources. For more information, see section Access to Network
Shared Resources in NiceLabel Automation user guide.

128

@ PRODUCT LEVEL INFO:

Requires Automation Builder.

How to receive a command file in a trigger and execute it

After a trigger receives the command file and you wish to execute it, complete the following steps:

1.

In Automation Builder module, on Variables tab, click the Internal Variable button in the
ribbon.

In the drop down list, enable the internal variable named Dat aFi | eNane. This internal variable
provides path and file name of the file that contains the data received by the trigger. In this
case, its contents is command file. For more information, see section Internal Variables in the
NiceLabel Automation user guide.

In Actions tab, add the action to execute the command file, such as Run Command File, Run
Oracle XML Command File, or Run SAP All XML Command File.

For the action Run Command File, select the type of the command file in File type.
Enable the option Variable.

Select the variable named Dat aFi | eNane from the list of available variables.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling
options.

Execution options are:

» Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This

functionality may be used while testing a form.

» Condition: defines one-line programming expression that must provide a Boolean value (t r ue

or f al se). When the result of the expressionis t r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option

enabled, the execution of actions continues even if the current action fails.

S NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

129

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

* Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Error | d and
Acti onLast Error Desc.

4.4.2.6. Send Custom Commands

This action executes the entered custom NiceLabel commands.

Always nest this action under the Open Label action. This enables referencing the label to which the
commands apply. For more information, see section Using Custom Commands in NiceLabel
Automation user guide.

@ NOTE

Majority of custom commands is available with individual actions, so in most cases,
custom commands are not required.

@ NOTE

Send Custom Commands action can be used to end the Session printing mode. This
mode acts as a printing optimization mode that prints all labels in a loop using a single
print job file. To end session printing, nest the Send Custom Commands action under
the For Loop action and use the SESSIONEND command. For details, see sections
Session Printing and Using Custom Commands in NiceLabel Automation user guide.

About group identifies the selected action.

* Name: allows you to define a custom action name. This makes actions easily recognizable on
the solution's list of actions. By default, action name is taken from its type.

* Description: custom information about the action. Enter a description to explain purpose and
role of action in a solution.

* Action type: read-only information about the selected action type.

Script editor offers the following features:

* Insert data source: inserts an existing or newly created variable into the script.

* Script editor: opens the editor which makes scripting easier and more efficient.

130

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling
options.

Execution options are:

* Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

» Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionist r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

S NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

» Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Err or | d and
Acti onLast Error Desc.

4.4.3. Printer

4.4.3.1. Set Printer

This action specifies the name of the printer to be used for printing the active label.

131

@ NOTE

This action overrides the printer selected in the label properties.

This action is useful when printing an identical label on multiple printers. Always nest this action under
the Open Label action to provide the label with the reference for the preferred printer.

This action reads the default settings (such as speed and darkness) from the selected printer driver
and applies them to the label. If you don't use the Set Printer action, the label gets printed using the
printer defined in the label template.

A WARNING

Pay attention when switching the printers, e.g. from Zebra to SATO, or even from one
printer model to another model of the same brand. Printer settings might not be
compatible and the label printouts might not appear identical. Also, label design
optimizations for original printer, such as internal counters, and internal fonts, might
not be available on the newly selected printer.

About group identifies the selected action.

* Name: allows you to define a custom action name. This makes actions easily recognizable on
the solution's list of actions. By default, action name is taken from its type.

* Description: custom information about the action. Enter a description to explain purpose and
role of action in a solution.

* Action type: read-only information about the selected action type.

Printer group specifies the printer name to be used for the current print job.

* Printer name: select it from the list of locally installed printer drivers, or manually enter a printer
name. Select Data source to dynamically select the printer using a variable. If enabled, select or
create a variable that contains the printer name which is used if the action is run.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling
options.

Execution options are:

* Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

» Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionis t r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

132

Error handling options are:

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

S NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

» Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Err or | d and
Acti onLast Error Desc.

4.4.3.2. Set Print Job Name

This action specifies the name of the print job file as it appears in the Windows Spooler. A default
print job name is the name of the used label file. This action overrides it.

E NOTE

Always nest the action under the Open Label action, so it applies to the adequate
label file.

About group identifies the selected action.

* Name: allows you to define a custom action name. This makes actions easily recognizable on
the solution's list of actions. By default, action name is taken from its type.

* Description: custom information about the action. Enter a description to explain purpose and
role of action in a solution.

* Action type: read-only information about the selected action type.

Print Job group defines the print job name.

* Name: sets the print job name. It can be hard-coded, and the same name is used for each print
action. Variable enables a variable file name. Select or create a variable that contains the path
and/or file name if the event happens or a trigger fires.

133

S NOTE

In Automation Builder module, the variable value is usually assigned by a filter.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling
options.

Execution options are:

» Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

» Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionis t r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

|§ NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

« Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Err or | d and
Act i onLast Err or Desc.

4.4.3.3. Redirect Printing to File

This action diverts the print job to a file. Instead of sending the created print file to a printer port as
defined in the printer driver, the printout is redirected to a file. You can append data to an existing file,
or overwrite it.

134

This action enables you to capture printer commands in a separate file.

The action instructs Automation Builder module to redirect printing — as a result, the labels are not
going to be printed. Make sure the action is followed by the Print Label action.

|§ NOTE

NiceLabel Automation runs as service under defined Windows user account. Make
sure this user account has privileges accessing the specified folder with read/write
permissions. For more information, see section Access to Network Shared Resources
in the NiceLabel Automation user guide.

S NOTE

Redirect Printing to File action is useful for printing several different labels (NLBL files)
to a network printer while retaining the correct order of labels. If multiple .NLBL files
are printed from the same trigger, Automation Builder sends each label to the printer
in a separate print job, even if the target printer is the same for both labels. If a
network printer is used, job of another user can be inserted between two jobs the
trigger must send together. Using this action, you can append print data into the same
file and send its contents to the printer using the Send Data to Printer action.

About group identifies the selected action.

* Name: allows you to define a custom action name. This makes actions easily recognizable on
the solution's list of actions. By default, action name is taken from its type.

* Description: custom information about the action. Enter a description to explain purpose and
role of action in a solution.

* Action type: read-only information about the selected action type.

File group of settings defines how the file selection for redirecting is done.

* File name:specifies the file name. It can either be hard-coded or dynamically defined using an
existing or a newly created variable.
Use UNC syntax for network resources. For more information, see section Access to Network
Shared Resources in NiceLabel Automation user guide.

@ NOTE

When using this action, make sure your user account has sufficient privileges for
accessing the specified folder with read/write permissions.

File write mode group of settings selects how the file is treated in case of repeated redirects.

135

* Overwrite the file: if the specified file already exists on the disk, it is going to be overwritten.
* Append data to the file: the job file is added to the existing data in the provided file.

Persistence group controls the continuity of the redirect action. It defines the number of Print Label
actions that are affected by the Redirect Printing to File action.

* Apply to next print action: specifies for the print redirect to be applicable to the next Print
Label action only (single event).

* Apply to all subsequent print actions: specifies for the print redirect to be applicable to all
Print Label action defined after the current Redirect Printing to File action.

@ NOTE

The action only redirects printing. Make sure it is followed by the Print Label action.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling
options.

Execution options are:

* Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

» Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionis t r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

|§ NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

136

* Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Error | d and
Acti onLast Error Desc.

4.4.3.4. Set Print Parameter

S PRODUCT LEVEL INFO:

Automation Builder features require NiceLabel LMS Enterprise or NiceLabel LMS
Pro.

This action allows you to fine tune the parameters that relate to the printer driver. These include
parameters such as speed and darkness for label printers, or paper tray for laser printers.

Printer settings are applied to the current printout only and are not remembered during the upcoming
event.

E NOTE

If you use Set Printer Parameter action to change the printer name, make sure the Set
Print Parameter action is used right after. Before you can apply the DEVMODE
structure to the printer driver, first load the default driver settings. This is done by the
Set Printer action. The DEVMODE is only compatible with the DEVMODE of the same
printer driver.

About group identifies the selected action.

* Name: allows you to define a custom action name. This makes actions easily recognizable on
the solution's list of actions. By default, action name is taken from its type.

* Description: custom information about the action. Enter a description to explain purpose and
role of action in a solution.

* Action type: read-only information about the selected action type.

Print Parameters group allows action fine tuning before printing.

* Paper bin: name of the paper bin that contains the label media. This option is usually used with
laser and ink jet printers with multiple paper bins. The provided name of the paper bin must
match the name of the bin in the printer driver. Check the printer driver properties for more
details.

* Print speed: defines printing speed. This setting overrides the setting defined with label. The
provided value must be in the range of accepted values.

137

Example

The first printer model accepts a range of values from 0O to 30, while the second printer model
accepts values from -15 to 15. For more information, see printer driver properties

* Darkness: defines the darkness of the printed objects on the paper and overrides setting from
the label. The provided value must be in range of accepted values.

* Print offset X: applies horizontal offset. The label printout will be repositioned by the specified
number of dots in the horizontal direction. Negative offset can be defined.

* Print offset Y: applies vertical offset. The label printout will be repositioned by the specified
number of dots in the vertical direction. Negative offset can be defined.

TIP

All print parameters can either be hard-coded or dynamically defined using an existing
or a newly created variable.

Advanced group customizes the printer settings that are sent along with the print job.

@ PRINTER A
termpkaie
@ PRINTER B

Printer settings, such as printing speed, darkness, media type, offsets and similar, can be defined as
follows:

* Defined ina label
* Recalled from a printer driver
* Recalled from a printer at print time
The supported methods depend on the printer driver and its capabilities. Printing mode (recall

settings from label or driver or printer) is configurable in the label design. You might need to apply
these printer settings at print time — they can vary with each printout.

138

Example

A single label should be printed using a variety of printers, but each printer requires slightly different
parameters. The printers from various manufacturers don't use the same values to set the printing
speed or temperature. Additionally, some printers require vertical or horizontal offset to print the label
to the correct position. During the testing phase, you can determine the optimal settings for every
printer you intend to use and apply them to a single label template just before printing. This action will
apply the corresponding settings to each defined printer.

This action expects to receive the printer settings in a DEVMODE structure. This is a Windows
standard data structure with information about initialization and environment of a printer.

Printer settings option applies custom printer settings. The following inputs are available:

* Fixed-data Base64-encoded DEVMODE. In this case, provide the printer's DEVMODE encoded
in Base64-encoded string directly into the edit field. If executed, the action converts the
Base64-encoded data back into binary form.

* Variable-data Base64-encoded DEVMODE. In this case, the selected data source must contain
the Base64-encoded DEVMODE. Enable Data source and select the appropriate variable from
the list. If executed, the action converts the Base64-encoded data back into the binary form.

* Variable-data binary DEVMODE (available in Automation Builder). In this case, the selected
variable must contain the DEVMODE in its native binary form. Enable Data source and select the
appropriate variable from the list. If executed, the action uses the DEVMODE as-is, without any
conversion.

@ NOTE

If the variable does not provide a binary DEVMODE, make sure that the selected
variable is defined as a binary variable in the configuration.

S NOTE

Make sure the Set Printer action is defined in front of this action.

Label settings overrides label properties defined in Label Properties in Designer. Use this option
when you print your labels to a printer or media with different properties as defined in Label
Properties in Designer. With this option you can:

» Change your label dimensions (width and height).
* Add or change label margins.
* Disable cutter.

* Disable batch printing.

139

* Apply different stocks by changing Labels Across parameter (horizontal and vertical count,
gaps, processing order).

* Redefine Portrait or Landscape orientation.

* Rotate labels by 180° degrees.

Automation applies Label settings at print time. Label settings parameters are not saved in your label
templates. You can provide Label settings as an XML payload.

Sample Label settings XML

The sample below presents a structural view of the label settings and their attributes.

S NOTE

Dimension units in XML correspond to your label design units (cm, in, mm, dot). You
can change units in Designer if you go to Label Properties > Label Dimensions >
Unit of measure.

<Label Setti ngs>
<W dt h>100</ W dt h>
<Hei ght >30</ Hei ght >
<Mar gi n>
<Left>2</Left>
<Ri ght >3</ Ri ght >
<Top>4</ Top>
<Bot t on»5</ Bot t on®
</ Mar gi n>
<Label sAcr oss>
<Hori zont al >
<Count >2</ Count >
<Gp>4</ Gap>
</ Hori zont al >
<Vertical >
<Count >3</ Count >
<Gap>5</ Gap>
</Vertical >
<Pr ocessi ngOr der >Horizontal TopRight</ Processi ngOr der >
</ Label sAcr oss>
<Ori entati on>Landscape</ Ori ent ati on>
<Rot at ed>true</ Rot at ed>
<Di sabl eCutter/>
<Di sabl eBat chPri nti ng/ >
</ Label Settings>

Label settings XML specification

140

This section contains a description of the XML file structure to define Label settings parameters and
values.

<?xml version="1.0" encoding=""utf-8"?>
<xs: schema attributeFormDefault=""unqualified"
elementFormDefault=""qualified" xmlns:xs="http://www.w3.0rg/2001/XMLSchema"">
<xs: si npl eType name="nonNegativeFloat'>
<xs:restriction base="xs:float">
<xs: m nlncl usive value="0"/>
</xs:restriction>
</ xs: si npl eType>
<xs: el ement name="LabelSettings'>
<xs: conpl exType>
<xs:all>
<xs: el ement name="DisableCutter™ minOccurs="0" maxOccurs="1">
<xs: conpl exType>
<xs:sequence/ >
</ xs: conpl exType>
</ xs: el enent >
<xs: el ement name="DisableBatchPrinting" minOccurs="0" maxOccurs="1">
<xs: conpl exType>
<xs:sequence/ >
</ xs: conpl exType>
</ xs: el enent >
<xs: el ement name="Width" type="nonNegativeFloat"™ minOccurs="0"
maxOccurs=""1"/ >
<xs: el ement name=""Height"™ type="nonNegativeFloat™ minOccurs="0"
maxOccurs=""1"/ >
<xs: el ement name="Margin’™ minOccurs="0" maxOccurs="1">
<xs: conpl exType>
<xs:all>
<xs: el ement name="Left" type="nonNegativeFloat" minOccurs="0"
maxOccurs=""1"/ >
<xs: el ement name="Right" type="nonNegativeFloat"
minOccurs="0" maxOccurs="1"/>
<xs: el ement name="Top" type="nonNegativeFloat™ minOccurs="0"
maxOccurs="1"/ >
<xs: el ement name=""Bottom" type="nonNegativeFloat"
minOccurs=""0" maxOccurs="1"/>
</xs:all>
</ xs: conpl exType>
</ xs: el emrent >
<xs: el ement name="LabelsAcross" minOccurs="0" maxOccurs="1">
<xs: conpl exType>
<xs:all>
<xs: el ement name=""Horizontal™ minOccurs="0" maxOccurs="1">

141

<xs: conpl exType>
<xs:all>
<xs: el ement name="Count" type=""xs:nonNegativelnteger"
minOccurs="0" maxOccurs="1" />
<xs: el ement name="Gap'" type=""nonNegativeFloat"
minOccurs="0" maxOccurs="1"/>
</xs:all>
</ xs: conpl exType>
</ xs: el emrent >
<xs: el ement name="Vertical"™ minOccurs="0" maxOccurs="1">
<xs: conpl exType>
<xs:all>
<xs: el ement name=""Count™ type=""xs:nonNegativelnteger
minOccurs=""0" maxOccurs="1" />

<xs: el ement name="Gap'" type="nonNegativeFloat"
minOccurs="0" maxOccurs="1"/>
</xs:all>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement name="ProcessingOrder’™ minOccurs="0"
maxOccurs="1">
<xs: si npl eType>
<xs:restriction base="xs:string">
<xs:enuneration value="HorizontalTopLeft"/ >
<xs:enuneration value="HorizontalTopRight"/>
<xs: enuneration value="HorizontalBottomLeft"/ >
<xs:enuneration value="HorizontalBottomRight"/>
<xs: enuneration value="VerticalTopLeft"/>
<xs:enuneration value="VerticalTopRight"/>
<xs:enuneration value="VerticalBottomLeft"/ >
<xs:enuneration value="VerticalBottomRight"/ >
</xs:restriction>
</ xs: si npl eType>
</ xs: el enent >
</xs:all>
</ xs: conpl exType>
</ xs: el emrent >
<xs: el ement name="Orientation’ minOccurs="0" maxOccurs="1">
<xs:sinpl eType>
<xs:restriction base="xs:string">
<xs:enuneration value="Portrait"/>
<xs: enuneration value="Landscape'/ >
</xs:restriction>
</ xs:si npl eType>
</ xs: el ement >
<xs: el ement name="Rotated” type="xs:boolean'™ minOccurs="0"

142

maxOccurs="1"/ >
</xs:all>
</ xs: conpl exType>
</ xs: el enent >
</ xs: schena>

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling
options.

Execution options are:

* Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

* Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionist r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

E NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

« Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Error | d and
Acti onLast Error Desc.

143

4.4.3.5. Redirect Printing to PDF

3 PRODUCT LEVEL INFO

This action is available in NiceLabelLMS Enterprise.

This action diverts the print job to a PDF document. The created PDF document retains the exact
label dimensions as defined during label design process. The rendering quality of graphics in the PDF
matches the resolution of the target printer and desired printout size.

Print stream data can be appended to an existing file, or it may overwrite it.

The action instructs NiceLabel 2019 to redirect printing — as a result, the labels are not printed. Make
sure the action is followed by the Print Label action.

@ NOTE

NicelLabel Automation module runs as service under defined Windows user account.
Make sure this user account has privileges accessing the specified folder with read/
write permissions. For more information, see section Access to Network Shared
Resources in NiceLabel Automation user guide.

About group identifies the selected action.

* Name: allows you to define a custom action name. This makes actions easily recognizable on
the solution's list of actions. By default, action name is taken from its type.

* Description: custom information about the action. Enter a description to explain purpose and
role of action in a solution.

* Action type: read-only information about the selected action type.

File group defines the redirect file.

* File name: specifies the file name for diverting the print job to. If hard-coded, the printing is
redirected to the specified file every time. To define it dynamically, use an existing or create a
new variable.

* Overwrite the file: if the specified file already exists on the disk, it is going to be overwritten
(selected by default).

* Append data to the file: the job file is appended to the existing data in the provided file
(deselected by default).

Persistence group allows controlling the persistence of the redirect action. Define the number of
Print Label actions that are affected by the Redirect Printing to File action.

* Apply to next print action: specifies for the print redirect to be applicable to the next Print
Label action only (single event).

144

* Apply to all subsequent print actions: specifies for the print redirect to be applicable to all Print
Label action defined after the current Redirect Printing to File action.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling
options.

Execution options are:

* Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

» Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionis t r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

S NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

* Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Error | d and
Acti onLast Error Desc.

4.4.3.6. Printer Status

@ PRODUCT LEVEL INFO:

Automation Builder features require NiceLabel LMS Enterprise or NiceLabel LMS
Pro.

145

This action communicates with the printer to acquire its real-time state, and contacts the Windows
Spooler for additional information about the printer and its jobs.

As a result, the information about errors, spooler status, number of jobs in the spooler is collected.
This uncovers potential errors and makes them easy to identify.

@ NOTE

Possible use case scenarios. (1) Verifying the printer status before printing. If the
printer is in error state, you print the label to a backup printer. (2) Counting the number
of jobs waiting in a spooler of main printer. If there are too many, you will print label to
alternative printer. (3) You will verify the printer status before printing. If the printer is in
error state, you will not print labels, but report the error back to the main system using
any of the outbound actions, such as Send Data to TCP/IP Port, Send Data to HTTP,
Execute SQL Statement, Web Service, or as the trigger response.

Live Printer Status Prerequisites
To make live printer status monitoring possible, follow these instructions:

* Use the NiceLabel Printer Driver to receive detailed status information. If using any other printer
driver, you can only monitor the parameters retrieved from the Windows Spooler.

* The printer must be capable of reporting its live status. For the printer models supporting
bidirectional communication see NicelLabel Download web page.

* Printer must be connected to an interface with support for bidirectional communication.

* Bidirectional support must be enabled in Control Panel > Hardware and Sound > Devices and
Printers > driver > Printer Properties > Ports tab > Enable bidirectional support.

* |If using a network-connected label printer, make sure you are using Advanced TCP/IP Port, not

Standard TCP/IP Port. For more information, see Knowledge Base article KB189.

About group identifies the selected action.

* Name: allows you to define a custom action name. This makes actions easily recognizable on
the solution's list of actions. By default, action name is taken from its type.

* Description: custom information about the action. Enter a description to explain purpose and
role of action in a solution.

* Action type: read-only information about the selected action type.

Printer group selects the printer.

* Printer name: specifies the printer name to be used for the current print job.
You can select a printer from the list of locally installed printer drivers, or you can enter any
printer name. Data source enables variable printer name. When enabled, select or create a
variable that contains the printer name when a trigger is executed or an event takes place.
Usually, the variable value is assigned by a filter.

146

http://www.nicelabel.com/downloads/printer-drivers
http://kb.nicelabel.com/index.php?t=faq&id=189

Data Mapping group sets the parameters that are returned as a result of the Printer Status action.

A WARNING
Most of the following parameters are only supported with NiceLabelprinter driver. If
you are using any other printer driver, you can use only the spooler-related
parameters.

* Printer status: specifies the printer live status formatted as a string.
If the printer reports multiple states, all states are merged into a single string, delimited by
comma"". If there are no reported printer issues, this field is empty. Printer status might be set
to Offline, Out of labels or Ribbon near end. Since there is no standardized reporting protocol,
each printer vendor uses proprietary status messages.

* Printer error: boolean (true/false) value of the printer error status.
* Printer offline: boolean (true/false) value of the printer offline status.
* Driver paused: boolean (true/false) value of the driver pause status.

* NiceLabel driver: specifies boolean (true/false) value of the printer driver status. Provides
information if the selected driver is a NiceLabel driver.

* Spooler status: specifies the spooler status in a string form — as reported by the Windows
system. The spooler can simultaneously report several statuses. In this case, the statuses are
merged using comma",".

* Spooler status ID: specifies spooler status formatted as a number — as reported by the
Windows system. The spooler can simultaneously report several statuses. In this case, the
returned status IDs contains all IDs as flags. For example, value 5 represents status IDs 4 and 1,
which translates to "Printer is in error, Printer is paused". Refer to the table below.

TIP

The action returns a decimal valuge, the values in the table below are in hex
format, so you will have to do the conversion before parsing the response.

* Table of spooler status IDs and matching descriptions

Spooler status ID (in hex) Spooler status description
0 No status.

1 Printer is paused.

2 Printer is printing.

4 Printer is in error.

8 Printer is not available.

10 Printer is out of paper.

20 Manual feed required.

147

40
80

100

200

400

800
2000
4000
10000
20000
40000
80000
100000
200000
400000
800000
1000000

Printer has a problem with paper.
Printer is offline.

Active Input/Output state.
Printer is busy.

Paper jam.

Output bin is full.

Printer is waiting.

Printer is processing.

Printer is warming up.

Toner/Ink level is low.

No toner left in the printer.
Current page can not be printed.
User intervention is required.
Printer is out of memory.

Door is open.

Unknown error.

Printer is in power save mode.

* Number of jobs in the spooler: specifies the number of jobs that are in the spooler for the

selected printer.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined

conditions allow them to be run. To define these conditions, click Show execution and error handling

options.

Execution options are:

* Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

» Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionis t r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option

enabled, the execution of actions continues even if the current action fails.

148

S NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

» Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Err or | d and
Act i onLast Err or Desc.

4.4.3.7. Store Label to Printer

@ PRODUCT LEVEL INFO:

Automation Builder features require NiceLabel LMS Enterprise or NiceLabel LMS
Pro.

This action saves label template in the printer memory. The action is a vital part of Store/Recall
printing mode, using which you first store a label template into the printer's memory and later recall it.
The non-changeable parts of label design are already stored in the printer, so you only have to
provide the data for variable label objects at print time. For more information, see section Using Store/
Recall Printing Mode in NiceLabel Automation user guide.

@ NOTE

The required label data transfer time is greatly minimized as there is less information
to be sent. This action is commonly used for stand-alone printing scenarios, where
the label is stored to the printer or applicator in the production line and later recalled
by some software or hardware trigger, such as barcode scanner or photocell.

About group identifies the selected action.

* Name: allows you to define a custom action name. This makes actions easily recognizable on
the solution's list of actions. By default, action name is taken from its type.

* Description: custom information about the action. Enter a description to explain purpose and
role of action in a solution.

149

* Action type: read-only information about the selected action type.

Advanced options for storing label to printer group allows you select a label and the preferred
storing variant.

* Label name to be used on the printer: specifies the name to be used for storing the label
template in printer memory. Enter the name manually or enable Data source to define the name
dynamically using an existing or newly created variable.

A WARNING
When storing the label to a printer, it is recommended to leave the label name
under the advanced options empty. This prevents label name conflicts during
the recall label process.

» Store variant: defines printer memory location for stored label templates. Enter the location
manually or enable Data source to define the name dynamically using an existing or newly
created variable.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling
options.

Execution options are:

* Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

» Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionis t r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

@ NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

150

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

* Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Error | d and
Acti onLast Error Desc.

4.4.3.8. Print PDF Document

S PRODUCT LEVEL INFO:

Automation Builder features require LMS Enterprise.

The Print PDF Document action prints static PDF documents that are not linked to the labels in your
PowerForms solutions or NiceLabel Automation configurations. Use this action to print any PDF
document directly from your solutions or configurations. The PDF documents can be stored on:

* Your computer
¢ NicelLabel Control Center
* Web server

¢ Shared network drives

@ TIP
The action is useful if you plan to equip your packages with printed PDF reports on
included items, or if you want to print the packaging documentation without opening
the file browser.

@ NOTE

When in use, the Print PDF Document action takes one printer seat from your license
quota. Read the Nicelabel labeling document for more information on licensing.

About group identifies the selected action.

* Name: allows you to define a custom action name. This makes actions easily recognizable on
the solution's list of actions. By default, action name is taken from its type.

* Description: custom information about the action. Enter a description to explain purpose and
role of action in a solution.

151

http://www.nicelabel.com/Redirect?Id=48&Link=www.nicelabel.com

* Action type: read-only information about the selected action type.

Printer group specifies the printer name to be used for the current print job.

* Printer name: select it from the list of locally installed printer drivers, or manually enter a printer
name. Select Data source to dynamically select the printer using a variable. If enabled, select or
create a variable that contains the printer name which is used if the action is run.

File group defines the redirect file.

* File name: specifies which PDF to print.

S NOTE

Use the UNC syntax for network resources. For more information, see section Access
to Network Shared Resources in NicelLabel Automation User Guide.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling
options.

Execution options are:

* Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

» Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionis t r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

@ NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

152

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

» Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Error | d and
Acti onLast Err or Desc.

4.4.4. Variables

4.4.4.1. Set Variable

This action assigns a new value to the selected variable.

Variables usually obtain their values using Use Data Filter action (available in Automation Builder)
which extracts fields from the received data and maps them to variables. You might also need to set
the variable values by yourself, usually for troubleshooting purposes. In Automation Builder, the
variable values are not remembered between multiple triggers, but are kept while the same trigger is
being processed.

About group identifies the selected action.

* Name: allows you to define a custom action name. This makes actions easily recognizable on
the solution's list of actions. By default, action name is taken from its type.

* Description: custom information about the action. Enter a description to explain purpose and
role of action in a solution.

* Action type: read-only information about the selected action type.

Variable group defines the variable name and its value.

* Name: name of variable that should store the value changed.

* Value: value to be set to a variable. It can either be manually or dynamically defined using an
existing or a newly created variable.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling
options.

Execution options are:

153

* Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

» Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionist r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

E NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

* Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Err or | d and
Act i onLast Err or Desc.

4.4.4.2. Save Variable Data

@ PRODUCT LEVEL INFO:

Automation Builder features require NiceLabel LMS Enterprise or NiceLabel LMS
Pro.

This action saves values of a single or multiple variables in an associated data file.

In NiceLabel Automation module, this action allows data exchange between triggers. To read the data
back into the trigger, use action Load Variable Data.

@ TIP
The values are saved in a CSV file with the first line containing variable names. If the
variables contain multi-line values, the newline characters (CR/LF) are encoded as\ n
\r.

154

About group identifies the selected action.

* Name: allows you to define a custom action name. This makes actions easily recognizable on
the solution's list of actions. By default, action name is taken from its type.

* Description: custom information about the action. Enter a description to explain purpose and
role of action in a solution.

* Action type: read-only information about the selected action type.

Settings group defines the file name.

* File name: data file to save the variable data to. If the name is hard-coded, values are saved into
the same data file each time.
Use UNC syntax for network resources. For more information, see section Access to Network
Shared Resources in NiceLabel Automation user guide.

If file exists group offers additional options to save the values.

* Overwrite the file: overwrites the existing data with new variable data. The old content is lost.

* Append data to the file: appends the variable values to the existing data files.

File Structure group defines the CSV variable data file parameters:

* Delimiter: specifies the delimiter type (tab, semicolon, comma or custom character). Delimiter is
a character that separates the stored variable values.

» Text qualifier: specifies the character that qualifies the stored content as text.

* File encoding: specifies character encoding type to be used in the data file. Auto defines the
encoding automatically. If required, the preferred encoding type can be selected from the drop-
down list.

TIP

UTF-8 makes a good default selection.

* Add names of variable in the first row: places the variable name in the first row of the file.

Variables group defines the variables whose value should be read from the data file. Values of the
existing variables are overwritten with values from the file.

« All variables: variable data of all variables from the data file is read.

« Selected variables: variable data of listed variables is red from the data file.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling
options.

155

Execution options are:

» Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

* Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionis t r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

@ NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

* Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Err or | d and
Act i onLast Err or Desc.

4.4.4.3. Load Variable Data

|§ PRODUCT LEVEL INFO:

Automation Builder features require NiceLabel LMS Enterprise or NiceLabel LMS
Pro.

This action loads values of a single or multiple variables from the associated data file as saved by the
action Save Variable Data. Use this action to exchange the data between triggers. You can load a
particular variable or all variables that are stored in the data file.

About group identifies the selected action.
* Name: allows you to define a custom action name. This makes actions easily recognizable on

the solution's list of actions. By default, action name is taken from its type.

156

* Description: custom information about the action. Enter a description to explain purpose and
role of action in a solution.

* Action type: read-only information about the selected action type.

Settings group defines the file name.

* File name: specifies the file for the variable data to be loaded from. If the name is hard-coded,
the values are loaded from the same file each time.
Use UNC syntax for network resources. For more information, see section Access to Network
Shared Resources in NiceLabel Automation user guide.

File Structure group settings must reflect the structure of the saved file from the Save Variable Data
action.

* Delimiter: specifies delimiter type (tab, semicolon, comma or custom character). Delimiter is a
character that separates the values.

» Text qualifier: specifies the character that qualifies content as text.

* File encoding: specifies the character encoding type used in the data file. Auto defines the
encoding automatically. If needed, select the preferred encoding type from the drop-down list.

TIP

UTF-8 makes a good default selection.

Variables group defines the variables whose values should be loaded from the data file.

» All variables: specifies all defined variables in the data file to be read.

» Selected variables: specifies selection of individual variables to be read from the data file.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling
options.

Execution options are:

* Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

» Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionis t r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

157

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option

enabled, the execution of actions continues even if the current action fails.

@ NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting

even after the failed print action, the Print Label action must have the option Ignore failure enable

d.

* Save error to variable: allows you to select or create a variable to save the error to. The same

cause of error is also saved to internal variables Act i onLast Err or | d and
Act i onLast Err or Desc.

4.4.4.4, String Manipulation

This action defines how the values of selected variables should be formatted.

The most popular string manipulation actions are: delete leading and trailing spaces, search and
replace characters, and delete opening and closing quotes.

This feature is often required is a trigger receives an unstructured data file or legacy data. in such
cases, the data needs to be parsed using the Unstructured Data filter. String Manipulation action
allows you to fine-tune the data value.

@ NOTE

If this action doesn't provide enough string manipulation power for a particular case,
use Execute Script action instead to manipulate your data using Visual Basic Script or
Python scripts.

158

-

E (o) ,*_ About 4
L
Settings Variables Actions Name: String Manipulation
Action Vg Description:
1.4 [0 Open Label v

11 57 Printer Status 7]
12 @' String Manipulation 2
13 &9 Print Label =

Action type: String Manipulation

PSPV

Variables
® All variables

Selected variables
Format Text

Ao dd o

Delete spaces at the beginning
Delete spaces at the end

A

[[] Delete opening closing character

[7] Search and replace 4

Replace non printable characters with spaces
Delete non printable characters

[] Decode special characters

["] Search and delete everything before

[] Search and delete everything after

Ab

Sa Sbhosh shasd. AAA 44 o8 it i adid o A Adsd

About group identifies the selected action.

* Name: allows you to define a custom action name. This makes actions easily recognizable on
the solution's list of actions. By default, action name is taken from its type.

* Description: custom information about the action. Enter a description to explain purpose and
role of action in a solution.

* Action type: read-only information about the selected action type.

Variables group defines the variables whose values need to be formatted.

» All variables: specifies all the defined variables in a data file to be formatted.
* Selected variables: specifies a selection of variables to be formatted from the data file.
Format Text group defines string manipulation functions that apply to the selected variables or fields.

Multiple functions can be used. The functions apply in the same order as seen in the editor — from top
to bottom.

* Delete spaces at the beginning: deletes all space characters (decimal ASCIl code 32) from the
beginning of the string.

* Delete spaces at the end: deletes all space characters (decimal ASCII value 32) from the end of
a string.

* Delete opening closing characters: deletes the first occurrence of the selected opening and
closing characters that is found in the string.

Example

If using "{" as opening character and "}" as closing character, the input string {{selection}}is
converted to {selection}.

» Search and replace: executes standard search and replace function upon the provided values
for find what and replace with. Regular expressions are supported.

159

@ NOTE

Several implementations of regular expressions are present. NiceLabel 2019
uses .NET Framework syntax for the regular expressions. For more information, see
Knowledge Base article KB250.

* Replace non printable characters with space: replaces all control characters in the string with
"space" character (decimal ASCIl code 32). Non printable characters are characters with decimal
ASCIl values between 0-31 and 127-159.

* Delete non printable characters: deletes all control characters in the string. Non printable
characters are characters with decimal ASCII values between 0-31 and 127-159.

* Decode special characters: decodes the characters (or control codes) that are not available on
the keyboard, such as Carriage Return or Line Feed. NiceLabel 2019 uses a notation to encode
such characters in human-readable form, such as <CR> for Carriage Return and <LF> for Line
Feed. This option converts special characters from NiceLabel syntax into actual binary
characters.

Example

When you receive the data "<CR><LF>", Designer uses it as plain string of 8 characters. You will
have to enable this option to interpret and use the received data as two binary characters CR
(Carriage Return — ASCIl code 13) and LF (Line Feed — ASCII code 10).

» Search and delete everything before: finds the provided string and deletes all characters in
front of the defined string. The string can also be deleted.

» Search and delete everything after: finds the provided string and deletes all characters behind
the defined string. The string can also be deleted.

* Change case: Changes all characters in your strings to uppercase or lowercase.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling
options.

Execution options are:

» Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

» Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionis t r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

160

http://kb.nicelabel.com/index.php?t=faq&id=250

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

S NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

* Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Err or | d and
Acti onLast Error Desc.

4.4.5. Batch Printing

4.4.5.1. For Loop

@ PRODUCT LEVEL INFO

Here described product feature is available in NiceLabel LMS Enterprise.

This action executes all of the subordinate (nested) actions multiple times. All nested actions are
executed in a loop for as many times as defined by the difference between start value and end value.

Action L=
14 1 Forloop L4
11 45 Ty v
111 43 De v
1.1.1. 4 [Open Label v
11111 'E' Set Printer W
1.1.1.1.2 & Print Label v
112 4 "B OnError v
1.1.2.1 S HTTP Request v

L

2 m Save Data to File

161

@ NOTE

For Loop action starts session printing mode — a printing optimization mode that
prints all labels in a loop using a single print job file. For details, see Session Printing
section in NiceLabel Automation user guide.

About group identifies the selected action.

* Name: allows you to define a custom action name. This makes actions easily recognizable on
the solution's list of actions. By default, action name is taken from its type.

* Description: custom information about the action. Enter a description to explain purpose and
role of action in a solution.

* Action type: read-only information about the selected action type.

Loop Settings group includes the following options:

» Start value: loop starting point reference. Select Data source to define the start value
dynamically using a variable value. Select or create a variable containing a numeric value for
start.

* End value: ending point reference. Select Data source to define the start value dynamically
using a variable value. Select or create a variable containing a numeric value for start.

TIP

Negative values are permitted for Start value and End value.

» Save loop value to a variable: saves the current loop step value in an existing or a newly
created variable. The loop step value is allowed to contain any value between start and end
value. Save the value in order to reuse it in another action to identify the current iteration.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling
options.

Execution options are:

* Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

» Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionist r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

162

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

|§ NOTE
Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

* Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Error | d and
Acti onLast Error Desc.

4.4.5.2. Use Data Filter

This action executes filter rules on the input data source. As a result, the action extracts fields from
input data and maps their values to the linked variables.

Use data filter action executes the selected filter and assigns the variables with respective values.

* Elements on lower level: The action can create sub-level elements, identified with "for each
line" or "for each data block in ...". When you see those, the filter will extract the data not on the
document level (with hard-coded field placement), but relatively from the sub areas that contain
repeatable sections. In this case make sure that you position your actions below such elements.
You have to nest the action under such elements.

* Mapping variables to fields: The mapping between trigger variables and filter fields is defined
either manually, or is automated, dependent on how the filter is configured. If you have manually
defined fields in the filter, you also have to manually map fields to the corresponding variable.

E NOTE
It's a good practice to define fields using the same names as are names of the
label variables. In this case the button Auto map maps matching names
automatically.

» Testing the execution of filter: When the mapping of variables to fields is done, you can test
the execution of the filter. The result will be shown on-screen in table. Number of lines in the
table represent the number times actions will execute in the selected level. The column names

163

represent the variable names. The cells contain values as assigned to the respective variable by
the filter. The default preview file name is inherited from the filter definition, you can execute
filter on any other file.

* Collect records for reports collects your data so you use data filters to create reports. For
more information Section 8.7, “Automating Reports”.

@ PRODUCT LEVEL INFO
This functionality is available in LMS Enterprise and LMS Pro.

Configuration Items | XML Transform 1 X

About Data Preview
Actions Name: Use Data Fitter

Previewfilename: CAUsers\Public\Documents\N
&2 escription:
Descripti E90pen G Refresh

B Product 1DCode_EAN ¥
Action typs Use Data Filter 1 CASO06 8021228110014 CASONCELLI ALLA

Filter

Name: | Sample 1 g - Y add || T Edit g

Warning: Changing fitter will remove all existing nested actions,
Data Source

31 L[} Open Label
31 B Preview Label

v
7
2 e 7]
3 VP Use DataFilter o
v
v
312 & Print Label r

Use data received by the tiigger

File name:
® Custom: [payload]

Report Style Printing
[ERO— e
Data Mapping

Variables will be automatically populated with values. Mapping is defined by the structure and contents of the data

Field name Variable name

FORMAT © FoRMAT >

PRINTERNAME @ PRINTERNAME ~

Auto map

Navigating your data filter interface.
1. Filter selection.
2. Data your filter uses to execute rules.
3. Reportrecords collection.
4. Mapping your fields (from filter) to variables (from label/trigger).

5. Filter execution preview.

For more information, see sections Understanding Filters and section Examples in NicelLabel
Automation user guide.

Filter group allows you to select which filter should be used.

* Name: specifies the name of the filter you want to apply. It can either be hard-coded or
dynamically defined using an existing or a newly created variable. The list contains all filters
defined in the current configuration. You can use the bottom three items in the list to create a
new filter.

164

@ NOTE

Selecting another filter removes all actions which are nested under this action. If you
want to keep the currently defined actions, move them outside of the Use Data Filter
action. If actions are accidentally lost, Undo your action and revert to the previous
configuration.

Data Source group allows you to define the contents you want to send to the printer.

* Use data received by the trigger: selects the trigger-received data to be used in a filter. In this
case, the action uses the original data received by the trigger and execute the filter rules uponit.

Example

If you use a file trigger, the data represents content of the monitored file. If you use a database
trigger, the data is a data set returned from the database. If you use a TCP/IP trigger, the data is
raw content received via socket.

* File name: defines path and file name of the file which contains the data upon which the filter
rules will be executed. The content of the specified file is used in a filter. The option Data source
enables the variable file name. You must select or create a variable that contains the path and/or
file name.

* Custom: defines custom content to be parsed by the filter. You may use fixed content, mix of
fixed and variable content, or variable content alone. To insert variable content, click the button
with arrow to the right of data area and insert a variable from the list. For more information, see
section Using Compound Values in NiceLabel Automation User Guide.

Data Preview field provides an overview of the filter execution process after the content of the
previewed file name is read and the selected filter is applied to it.

The rules in the filter extract fields. The table displays the result of the extraction. Each line in the table
represents data for a single label. Each column represents a variable.

To be able to observe result, configure the mapping of fields with matching variables. Depending on
the filter definition, you could map the variables to fields manually, or have it done automatically.

* Preview file name: specifies the file that contains the data that is going to be parsed through
the filter. The preview file is copied from the filter definition. If you change the preview file name,
the new file name is saved.

* Open: selects another file upon which you want to execute filter rules.

* Refresh: re-runs filter rules upon the contents of the preview file name. The Data Preview field
gets updated with the result.

Action Execution and Error Handling

165

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling

options.
Execution options are:

* Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

» Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionist r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

S NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

* Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Err or | d and
Act i onLast Err or Desc.

4.4.5.3. For Every Record

This action executes subordinate nested actions for multiple times. All of the nested actions are
executed in a loop for as many times as there are records in the form table with a connected
database.

About group identifies the selected action.

* Name: allows you to define a custom action name. This makes actions easily recognizable on
the solution's list of actions. By default, action name is taken from its type.

* Description: custom information about the action. Enter a description to explain purpose and
role of action in a solution.

166

* Action type: read-only information about the selected action type.

Settings group selects the records.

* Form table: form table that contains records for which an action should repeat.
* Use all records: repeats an action for all records in a defined table.

* Use selected record: repeats an action for the selected records only.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling
options.

Execution options are:

* Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

» Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionist r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

@ NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

» Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Err or | d and
Acti onLast Error Desc.

167

4.4.6. Data & connectivity

4.4.6.1. Open Document/Program

This action provides an interface with an external application and opens it using a command-line.

External applications can execute additional processing and provide result back to the NicelLabel

2019. This action allows it to bind with any 3rd party software that can execute some additional data

processing, or acquire data. External software can provide data response by saving it to file, from
where you can read it into variables.

You can feed the value of variable(s) to the program by listing them in the command-line in square
brackets.

C:\Applications\Processing.exe [variablel] [variable2]

m ® # About
Settings Variables Actions MName: Open Document/Program
Action v oS Description:
1 [Z Open Document/Program v
b Or Open Label v Action type: Open Document/Program
21 PP Redirect Printing to PDF v

File

File name: C\Applications\Processing.exe [variable1] [variable2]

@ NOTE

If you use this action in NiceLabel 2019 solutions, it allows you to open web pages or
create email messages directly from your forms. See section Creating hyperlinks and
sending emails on form in NiceLabel 2019 user guide.

About group identifies the selected action.

* Name: allows you to define a custom action name. This makes actions easily recognizable on
the solution's list of actions. By default, action name is taken from its type.

* Description: custom information about the action. Enter a description to explain purpose and
role of action in a solution.

* Action type: read-only information about the selected action type.

File group defines the file to be opened.

* File name: location and file name of the file or application to be opened.
The selected file name can be hard-coded, and the same file is going to be used every time. If

only a file name without path is defined, the folder with NiceLabel Automation configuration file

(.MISX) is used. You can use a relative reference to the file name, in which the folder with .MISX
file is used as the root folder.

Data source: enables variable file name. Select a variable that contains the path and/or file name
or combine several variables that create the file name. For more information see section Using
Compound Values in NiceLabel Automation User Guide.

NOTE

Use UNC syntax for network resources. For more information, see section
Access to Network Shared Resources in NiceLabel Automation User Guide.

Execution Options group sets program opening details.

* Hide window: renders the window of the opened program invisible. Because NicelLabel 2019 is
run as a service application within its own session, it cannot interact with desktop, even if it runs
with the privileges of the currently logged user. Microsoft has prevented this interaction in
Windows Vista and newer operating systems for security reasons.

* Wait for completion: specifies for action execution to wait for this action to be completed
before continuing with the next scheduled action.

TIP
Enable this option if the action that follows depends on the result of the external
application.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling
options.

Execution options are:

* Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

» Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionist r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

E NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

169

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

» Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Err or | d and
Act i onLast Err or Desc.

4.4.6.2. Save Data to File

|§ PRODUCT LEVEL INFO:

Automation Builder features require NiceLabel LMS Enterprise or NiceLabel LMS
Pro.

This action saves variable value or other data streams (such as binary data) in a selected file. The
NiceLabel Automation service must have write access to the defined folder.

File group defines the file to be opened.

* File name: location of the file to be opened within this action.
Path and file name can be hard-coded, and the same file is going to be used every time. If only a
file name without path is defined, the folder with NiceLabel Automation configuration file (MISX)
is used. You can use a relative reference to the file name, in which the folder with .MISX file is
used as the root folder.
Data source: enables variable file name. Select a variable that contains the path and/or file name
or combine several variables that create the file name. For more information, see section Using
Compound Values in NiceLabel Automation User Guide.

If file exists group handles options in case of an already existing file.

* Overwrite the file: overwrites existing data with new data. The old content is lost.

* Append data to the file: appends variable values to the existing data files.

Content group defines which data is going to be written in the specified file.

* Use data received by the trigger: original data as received by the trigger is going to be saved in
the file. Effectively, this option makes a copy of the incoming data.

» Custom: saves content as provided in the text area. Fixed values, variable values and special
characters are permitted. To enter variables and special characters, click the arrow button to the
right of the text area. For more information, see section Combining Values in an Objectin
NiceLabel Automation User Guide.

170

* Encoding: encoding type for the sent data. Auto defines the encoding automatically. If needed,
select the preferred encoding type from the drop-down list.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling
options.

Execution options are:

* Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

» Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionis t r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

S NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

* Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Error | d and
Acti onLast Error Desc.

4.4.6.3. Read Data from File

@ PRODUCT LEVEL INFO

The described feature is available in NiceLabel LMS Enterprise and NiceLabel LMS
Pro.

171

This action reads content of the provided file name and saves it in a variable. Content of any file type,
including binary data can be read.

Usually, Automation Builder module receives data for label printing using a trigger. E.g. if a file trigger
is used, the content of trigger file is automatically read and can be parsed by filters. However, you
might want to bypass filters to obtain some external data. Once you execute this action and have the
data stored in a variable, you can use any of the available actions to use the data.

This action is useful:

* If you must combine data received by the trigger with data stored in a file.

A WARNING

If you load data from binary files (such as bitmap image or print file), make sure the
variable to store the read content is defined as a binary variable.

* When you want to exchange data between triggers. One triggers prepares data and saves it to
file (using the Save Data to File action), the other trigger reads the data.

File group defines the file to read the content from.

* File name: location of the file to be read within this action.
Path and file name can be hard-coded, and the same file is going to be used every time. If only a
file name without path is defined, the folder with NiceLabel Automation configuration file (MISX)
is used. You can use a relative reference to the file name, in which the folder with .MISX file is
used as the root folder.
Data source: enables variable file name. Select a variable that contains the path and/or file name
or combine several variables that create the file name. For more information see section Using
Compound Values in NiceLabel Automation User Guide.

S NOTE

Use UNC syntax for network resources. For more information, see section
Access to Network Shared Resources in NiceLabel Automation User Guide.

Content group sets file content related details.

* Variable: variable that stores the file content. At least one variable (existing or newly created)
should be defined.

* Encoding: encoding type for the sent data. Auto defines the encoding automatically. If needed,
select the preferred encoding type from the drop-down list.

S NOTE

Encoding cannot be selected if the data is read from a binary variable. In this
case, the variable contains the data as-is.

172

Retry on Failure group defines how the action execution should continue if the specified file
becomes inaccessible.

@ TIP
Automation Builder module might become unable to access the file, because it is
locked by another application. If an application still writes data to the selected file and
keeps it locked in exclusive mode, no other application can open it at the same time,
not even for reading. Other possible causes for action retries are: file doesn't exist
(yet), folder does not exist (yet), or the service user doesn't have the privileges to
access the file.

* Retry attempts: defines the number of retry attempts for accessing the file. If the value is set to
0, no retries are made.

* Retry interval: time interval between individual retries in milliseconds.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling
options.

Execution options are:

* Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

» Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionis t r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

|§ NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

173

* Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Error | d and
Acti onLast Error Desc.

4.4.6.4. Delete File

S PRODUCT LEVEL INFO

The described feature is available in NiceLabel LMS Enterprise and NiceLabel LMS
Pro.

This action deletes a selected file from a drive.

NicelLabel Automation module runs as service under a defined Windows user account. Make sure that
account has the permissions to delete the file in a specified folder.

About group identifies the selected action.

* Name: allows you to define a custom action name. This makes actions easily recognizable on
the solution's list of actions. By default, action name is taken from its type.

* Description: custom information about the action. Enter a description to explain purpose and
role of action in a solution.

* Action type: read-only information about the selected action type.

File group sets the file related details.

* File name: the name of the file to be deleted. File name can be hard-coded. Data source
dynamically defines the File name using an existing or newly created variable.
Path and file name can be hard-coded, and the same file is going to be used every time. If only a
file name without path is defined, the folder with NiceLabel Automation configuration file (MISX)
is used. You can use a relative reference to the file name, in which the folder with .MISX file is
used as the root folder.
Data source option enables variable file name. Select or create a variable that contains the path
and/or file name or combine several variables that create the file name. For more information
see section Using Compound Values in NiceLabel Automation User Guide.

S NOTE

Use UNC syntax for network resources. For more information, see section
Access to Network Shared Resources in NiceLabel Automation User Guide.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling
options.

174

Execution options are:

» Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

» Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionis t r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

E NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

* Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Err or | d and
Act i onLast Err or Desc.

4.4.6.5. Execute SQL Statement

E PRODUCT LEVEL INFO:

Automation Builder features require NiceLabel LMS Enterprise or NiceLabel LMS
Pro.

This action sends SQL commands a connected SQL server and collects results. Use commands
SELECT, INSERT, UPDATE, and DELETE.

Use Execute SQL Statement action to achieve these two goals:

* Obtain additional data from a database: In Automation Builder module, a trigger receives data
for label printing, but not all of the required values. For example, a trigger receives values for

175

Product | DandDescri pti on, butnotforPri ce. We have to look up the value for Pri ce in
the SQL database.
SQL code example:

SELECT Price FROM Products
WHERE 1D = :[Product ID]

The | Dis field in the database, Pr oduct | Dis a variable defined in the trigger.

* Update or delete records in a database: After a label is printed, update the database record
and send a signal to the system that the particular record has already been processed.

SQL code example:
Set the table field Al r eadyPr i nt ed value to Tr ue for the currently processed record.

UPDATE Products
SET AlreadyPrinted = True
WHERE 1D = :[Product ID]

Or delete the current record from a database, because it's not needed anymore.

DELETE FROM Products
WHERE 1D = :[Product ID]

The | Dis field in the database, Pr oduct | Dis a variable defined in the trigger.

S NOTE

To use value of a variable inside an SQL statement, you have to insert colon () in front
of its name. This signals that a variable names follow.

About group identifies the selected action.

* Name: allows you to define a custom action name. This makes actions easily recognizable on
the solution's list of actions. By default, action name is taken from its type.

* Description: custom information about the action. Enter a description to explain purpose and
role of action in a solution.

* Action type: read-only information about the selected action type.

Database Connection group defines the database connection that is used for the statement.

@ TIP
Before you can send an SQL sentence to a database, set up the database connection.
Click Define button and follow the on-screen instructions. You can connect to a data
source that can be controlled using SQL commands, so you cannot use text (CSV) or
Excel files.

176

SQL Statement group defines an SQL statement or query to be executed.

TIP

Statements from Data Manipulation Language (DML) are allowed to execute queries
upon existing database tables.

Use standard SQL statements, such as SELECT, INSERT, DELETE and UPDATE, including joins,
function and keywords. The statements in DDL language that are used to create databases and tables
(CREATE DATABASE, CREATE TABLE), or to delete them (DROP TABLE) are not permitted.

» Test: opens Data Preview section. Simulate execution (selected by default) tests the execution
of SQL statements. Click Execute to run the simulation.

@ TIP
Data Preview section allows you to test the execution of your SQL statement
upon a live set of data. To protect the data from accidental updates, make sure
the option Simulate execution is enabled. The statements INSERT, DELETE and
UPDATE will execute. This enables you to gain feedback on how many records
will be affected, then all of the transactions will be reversed.

If you use trigger variables in the SQL statement, you will be able to enter their values for the
test execution.

* Insert data source: inserts predefined or newly created variables into an SQL statement.
* Export/Import: enables exporting and importing SQL statements to/from an external file.

» Execution mode: specifies the explicit mode of SQL statement execution.

@ TIP
In cases of complex SQL queries, it becomes increasingly difficult to
automatically determine what is the supposed action. If the built-in logic has
troubles identifying your intent, manually select the main action.

* Automatic: determines the action automatically.
¢ Returns set of records (SELECT): receives the data set with records.

* Does not return set of records (INSERT, DELETE, UPDATE): use this option if executing a
query that does not return the records. Either insert new records, delete or update the
existing records. The result is a status response reporting the number of rows that were
affected by your query.

» Execution timeout: allows you to define the time delay for sending your commands to the SQL
server. Use the execution timeout if you are sending multiple consecutive SQL commands that
require longer processing time.

Type the requested timeout duration in seconds. By default, the execution timeout duration is 60
s. If you want your database provider to define the timeout, type in 0 s.

177

Result group allows you to set how the SQL statement result should be stored, and to define action
iteration.

¢ Save Data to Variable: selects or creates a variable to store the SQL statement result. This
option depends on the selected Execution mode.

* Result of SELECT statement. After you execute a SELECT statement, it results in a data
set of records. You receive a CSV-formatted text content. The first line contains field
names returned in a result. The next lines contain records.

@ NOTE

To extract the values from the returned data set and to use them in other
actions, define and execute the action Use Data Filter upon the contents of
this variable (this action is available in Automation Builder).

* Result of INSERT, DELETE and UPDATE statements. If you use INSERT, DELETE and
UPDATE statements, the result is a number indicating the number of records affected in
the table.

* lterate for Every Record. If enabled, a new action For Every Record is automatically added. All
nested actions are repeated for each record that has been returned using the SQL statement.

@ NOTE

Automatic mapping is enabled. For Every Record action cannot be deleted.

Retry on failure group allows you to configure the action to continually retry establishing the
connection to a database server in case the first attempt is unsuccessful. If the action fails to connect
within the defined number of attempts, en error is raised.

* Retry attempts: specifies the number of tries to connect to the database server.

* Retry interval: specifies the duration of time between individual retry attempts.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling
options.

Execution options are:

» Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

» Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionis t r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

178

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

S NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

» Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Err or | d and
Acti onLast Error Desc.

4.4.6.6. Send Data to TCP/IP Port

This action sends data to any external device which accepts TCP/IP connection on a predefined port
number.

Send Data to TCP/IP Port establishes connection with a device, sends the data and terminates the
connection. The connection and communication is governed by the client — server handshake that
occurs when initiating or terminating the TCP connection.

About group identifies the selected action.

* Name: allows you to define a custom action name. This makes actions easily recognizable on
the solution's list of actions. By default, action name is taken from its type.

* Description: custom information about the action. Enter a description to explain purpose and
role of action in a solution.

* Action type: read-only information about the selected action type.

Connection Settings group sets connection details.

* Reply to sender: Enables direct reply to the socket from which the trigger data originates. Use
this option to provide feedback about the printing process.

S NOTE

This option is available in NiceLabel Automation.

179

Prerequisites for Reply to sender setting are:

* Remote party does not close the communication channel, once the message gets
delivered.

* Send Data to TCP/IP Port action is used within the TCP/IP Server trigger.

* Do not configure the Execution Event in the TCP/IP Server trigger as On client
disconnect.

» Destination (IP address:port): destination address and port of the TCP/IP server. Hard-code
the connection parameters and use fixed host name or IP address or use variable connection
parameters by clicking the right arrow and selecting a predefined variable. For more information,
see section Combining Values in an Object in NiceLabel Automation user guide.

Example

If the variable host nane provides the TCP/IP server name and the variable por t provides the
port number, enter the following parameter for the destination:

[host nane] : [port]

* Disconnect delay: prolongs the connection with the target socket for the defined time intervals
after the data has been delivered. Certain devices require more time to process the data. Insert
the delay value manually or click the arrows to increase or decrease it.

» Save data reply in a variable: selects or creates a variable that stores the server reply. Any data
received from the TCP/IP server after passing the "disconnect delay" is stored in this variable.

Content group defines the content to be sent to a TCP/IP server.

@ TIP
Use fixed content, mix of fixed and variable content, or variable content alone. To enter
variable content, click the button with arrow to the right of data area and insert a
variable from the list. For more information, see section Combining Values in an
Object in NiceLabel Automation user guide.

* Data: content to be sent outbound.

* Encoding: encoding type for the sent data. Auto defines the encoding automatically. If needed,
select the preferred encoding type from the drop-down list.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling
options.

Execution options are:

180

* Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

* Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionis t r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

S NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

* Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Err or | d and
Act i onLast Err or Desc.

4.4.6.7. Send Data to Serial Port

This action sends data to a serial port. Use it to communicate with external serial-port devices.

@ TIP
Make sure the port settings match on both ends —in the configured action and on the
serial-port device. Serial port can be used by a single application in the machine. To
successfully use the port from this action, no other application may use the port at the
same time, not even any printer driver.

About group identifies the selected action.

* Name: allows you to define a custom action name. This makes actions easily recognizable on
the solution's list of actions. By default, action name is taken from its type.

* Description: custom information about the action. Enter a description to explain purpose and
role of action in a solution.

181

* Action type: read-only information about the selected action type.

Port group defines the serial port.

* Port name: name of the port to which the external device connects to. This can either be a
hardware COM port or a virtual COM port.

Port Settings group defines additional port connection settings.

 Bits per second: speed rate used by the external device to communicate with the PC. The usual
alias used with the setting is "baud rate". Select the value from the drop-down menu.

» Data bits: number of data bits in each character. 8 data bits are almost universally used in newer
devices. Select the value from the drop-down menu.

* Parity: method of detecting errors in a transmission. The most common parity setting, is "none",
with error detection handled by a communication protocol (flow control). Select the value from
the drop-down menu.

» Stop bits: halts the bits sent at the end of every character allowing the receiving signal
hardware to detect the end of a character and to resynchronize with the character stream.
Electronic devices usually use a single stop bit. Select the value from the drop-down menu.

* Flow control: serial port may use interface signals to pause and resume the data transmission.

Content group defines the content to be sent to serial port.

@ TIP
Fixed content, mix of fixed and variable content, or variable content alone are
permitted. To enter variable content, click the button with arrow to the right of data
area and insert a variable from the list. For more information, see section Combining
Values in an Object in NiceLabel Automation user guide.

¢ Data: content to be sent outbound.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling
options.

Execution options are:

* Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

» Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionis t r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

182

Error handling options are:

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

@ NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

* Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Error | d and
Acti onLast Error Desc.

4.4.6.8. Read Data from Serial Port

This action collects data received via serial port (RS-232) and saves it in a selected variable. Use this
action to communicate with external serial port devices.

About group identifies the selected action.

* Name: allows you to define a custom action name. This makes actions easily recognizable on
the solution's list of actions. By default, action name is taken from its type.

* Description: custom information about the action. Enter a description to explain purpose and
role of action in a solution.

* Action type: read-only information about the selected action type.

Port group defines the serial port.
* Port name: name of the port to which an external device connects to. This can either be a
hardware COM port or a virtual COM port.
Port Settings group defines additional port connection settings.

* Bits per second: speed rate used by the an external device to communicate with the PC. The
usual alias used with the setting is "baud rate".

» Data bits: specifies the number of data bits in each character. 8 data bits are almost universally
used in newer devices.

183

* Parity: specifies the method of detecting errors in a transmission. The most common parity
setting, is "none", with error detection handled by a communication protocol (flow control).

» Stop bits: halts the bits sent at the end of every character allowing the receiving signal
hardware to detect the end of a character and to resynchronize with the character stream.
Electronic devices usually use a single stop bit.

* Flow control: serial port may use interface signals to pause and resume the data transmission.

Example

A slow device might need to handshake with the serial port to indicate that data should be paused
while the device processes received data.

Options group includes the following settings:

* Read delay: optional delay when reading data from serial port. After the delay, the entire content
of the serial port buffer is read. Enter the delay manually or click the arrows to increase or
decrease the value.

* Send initialization data: specifies the string that is sent to the selected serial port before the
data is read. This option enables the action to initialize the device to be able to provide the data.
The option can also be used for sending a specific question to the device, and to receive a
specific answer. Click the arrow button to enter special characters.

Data Extraction group defines how the defined parts of received data are extracted.

» Start position: starting position for data extraction.

* End position: ending position for data extraction.

Result group defines a variable for data storing.

e Save data to variable: select or create a variable to store the received data.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling
options.

Execution options are:

» Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

» Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionis t r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

184

Error handling options are:

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

|§ NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

* Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Error | d and
Acti onLast Error Desc.

4.4.6.9. Send Data to Printer

This action sends data to a selected printer. Use it to send pre-generated printer streams to any
available printer.

NicelLabel Automation module uses the installed printer driver in pass-through mode just to be able to
send data to the target port, such as LPT, COM, TCP/IP or USB port, to which the printer is connected.

S NOTE

Possible scenario. Data received by the trigger must be printed out on the same
network printer, but on different label templates (.NLBL label files). The printer can
accept data from various workstations and will usually print the jobs in the received
order. Automation Builder module will send each label template in a separate print job,
making it possible for another workstation to insert its job between the jobs created in
our own Automation Builder module. Instead of sending each job separately to the
printer, merge all label jobs (using the action Redirect Printing to File) and send a single
"big" print job to the printer.

About group identifies the selected action.

* Name: allows you to define a custom action name. This makes actions easily recognizable on
the solution's list of actions. By default, action name is taken from its type.

185

* Description: custom information about the action. Enter a description to explain purpose and
role of action in a solution.

* Action type: read-only information about the selected action type.

Printer group selects the printer.

* Printer name: name of the printer to send the data to. Select the printer from the drop-down list
of locally installed printer drivers, enter a custom printer name, or define it dynamically using an
existing or newly created variable.

Data Source group defines the content to be sent to printer.

» Use data received by the trigger: trigger-received data it used. In this case, you want the
received printer stream to be used as an input to the filter. Your goal is to redirect it to a printer
without any modification. The same result can be achieved by enabling the internal variable
Dat aFi | eNane and using the contents of the file it refers to. For more information, see section
Using Compound Values in NiceLabel Automation user guide.

* File name: path and file name of the file containing a printer stream. Content of the specified file
is sent to a printer. Select Data source to define the file name dynamically using a variable value.

» Variable: variable (existing or new) that contains the printer stream.

* Custom: defines custom content to be sent to a printer. Fixed content, mix of fixed and variable
content, or variable content alone are permitted. To enter variable content, click the button with
arrow to the right of data area and insert a variable from the list. For more information, see
section Combining Values in an Object in NiceLabel 2019 user guide.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling
options.

Execution options are:

* Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

» Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionis t r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

186

S NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

» Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Err or | d and
Act i onLast Err or Desc.

4.4.6.10. HTTP Request

@ PRODUCT LEVEL INFO:

Automation Builder features require LMS Enterprise.

This action sends data to the destination Web server using the selected HTTP method. HTTP and
HTTPS URI schemes are allowed.

HTTP works as a request-response protocol in client-server computing model. In this action,
NiceLabel 2019 acts as a client that communicates with a remote server. This action submits a
selected HTTP request message to a server. The server returns a response message, which can
contain completion status information about the request and may also contain requested content in
its body.

About group identifies the selected action.

* Name: allows you to define a custom action name. This makes actions easily recognizable on
the solution's list of actions. By default, action name is taken from its type.

* Description: custom information about the action. Enter a description to explain purpose and
role of action in a solution.

* Action type: read-only information about the selected action type.

Connection Settings group sets connection parameters.

187

@ NOTE

This action supports Internet Protocol version 6 (IPv6).

* Destination: address, port and destination (path) of the Web server.

@ TIP
If a Web server runs on default port 80, skip the port number. Hard-code the
connection parameters and use a fixed host name or IP address. Use a variable
value to define this option dynamically. For more information, see section Using
Compound Values in NiceLabel Automation user guide.

Example

If the variable host nane provides the Web server name and the variable por t provides the port
number, you can enter the following for the destination:

[host nane] : [port]

* Request method: available request methods.

* Timeout: timeout duration (in ms) during which the server connection should be established and
response received.

» Save status reply in a variable: variable to store the status code received from the server.

TIP

Status code in range 2XX is a success code. Common "OK" response is code
200. Codes 5XX are server errors.

» Save data reply in a variable: variable to store the data received from the server.

Authentication group enables you to secure the Web server connection.

* Enable basic authentication: allows you to enter the required credentials to connect to the Web
server. User name and password can either be fixed or provided using a variable.

|§ NOTE

HTTP Basic authentication (BA) uses static standard HTTP headers. The BA
mechanism provides no confidentiality protection for the transmitted credentials.
They are merely encoded with Base64 in transit, but are not encrypted or hashed in
any way. Basic Authentication should be used over HTTPS.

188

* Show password: unmasks the password characters.

Content group defines the contents to be sent to a Web server.

» Data: content to be sent outbound. Fixed content, mix of fixed and variable content, or variable
content alone are permitted. To enter variable content, click the button with arrow to the right of
data area and insert variable from the list. For more information, see section Combining Values
in an Object in NiceLabel 2019 user guide.

* Encoding: encoding type for the sent data.

TIP

Auto defines the encoding automatically. If needed, select the preferred
encoding type from the drop-down list.

» Type: Content-Type property of the HTTP message. If no type is selected, the default
appl i cation/ x-ww«+f or m ur | encoded is used. If an appropriate type is not listed, define a
custom one or set a variable that would define it dynamically.

Additional HTTP Headers are requested by certain HTTP servers (especially for REST services).

» Additional headers: hard coded headers or headers obtained from variable values. To access
the variables, click the small arrow button to the right hand side of the text area. For more
information, see section Combining Values in an Object in NiceLabel 2019 user guide.

Certain HTTP servers (especially for REST services) require custom HTTP headers to be
included in the message. This section allows you to provide the required HTTP header.
HTTP headers must be entered using the following syntax:

header field name: header field value

For example, to use the header field names Accept , User - Agent and Cont ent - Type, you
could use the following syntax:

Accept: application/json; charset=utf-8

User-Agent: Mozillas5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/31.0.1650.63 Safari/537.36
Content-Type: application/json; charset=UTF-8

You can hard code the header field names, or you can obtain their values from trigger variables.
Use as many custom header fields as you want, just make sure that each header field is placed
ina new line.

@ NOTE

The entered HTTP headers override the already defined headers elsewhere in
the action properties, such as Content-Type.

Action Execution and Error Handling

189

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling
options.

Execution options are:

* Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

» Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionis t r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

g NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

» Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Err or | d and
Acti onLast Error Desc.

4.4.6.11. Web Service

@ PRODUCT LEVEL INFO:

Automation Builder features require LMS Enterprise.

Web Service is a method of communication between two electronic devices or software instances.
Web Service is defined as a data exchange standard. It uses XML format to tag the data, SOAP
protocol is used to transfer the data, and WSDL language is used to describe the available services.

190

This action connects to a remote Web service and executes the methods on it. Methods can be
described as actions that are published on the Web Service. The action sends inbound values to the
selected method in the remote Web service, collects the result and saves it in selected variables.

After importing the WSDL and adding a reference to the Web Service, its methods are listed in the
Method combo box.

@ NOTE

You can transfer simple types over the Web Service, such as string, integer, boolean,
but not the complex types. The WSDL must contain single binding only.

S NOTE

You plan to print product labels. Your trigger would receive only a segment of the
required data. E.g. the trigger receives the value for Pr oduct | Dand Descri pti on
variables, but not the Pr i ce. The price information is available in a separate database,
which is accessible over Web service call. Web service defines the function using a
WSDL definition. For example, function input is Pr oduct | Dand its outputis Pri ce.
The Web Service action sends Pr oduct | Dto the Web service. It executes and
makes an internal look up in its database and provide the matching Pri ce as the
result. The action saves the result in a variable, which can be used on the label.

About group identifies the selected action.

* Name: allows you to define a custom action name. This makes actions easily recognizable on
the solution's list of actions. By default, action name is taken from its type.

* Description: custom information about the action. Enter a description to explain purpose and
role of action in a solution.

* Action type: read-only information about the selected action type.

Web Service Definition group includes the following settings:

|§ NOTE

This action supports Internet Protocol version 6 (IPv6).

* WSDL: location of WSDL definition.
WSDL is usually provided by the Web service. Typically, you would enter the link to WSDL and
click Import to read the definition. If facing troubles while retrieving the WSDL from online
resource, save the WSDL to a file and enter the path with file name to load the methods from it.
NiceLabel 2019 automatically detects if the remote Web Service uses a document or RPC
syntax, and whether it communicates appropriately or not.

191

* Address: address at which the Web Service is published.

Initially, this information is retrieved from the WSDL, but can be updated before the action is
executed. This is helpful for split development / test / production environments, where the same
list of actions is used, but with different names of servers on which the Web Services run.

Fixed content, mix of fixed and variable content, or variable content alone are permitted. To
enter variable content, click the button with arrow to the right hand side of data area and insert

variable from the list. For more information, see section Combining Values in an Object in
NiceLabel 2019 user guide.

« Method: methods (functions) that are available for the selected Web service. The listis
automatically populated by the WSDL definition.

» Parameters: input and output variables for the selected method (function).

Inbound parameters expect an input. For testing and troubleshooting reasons, you can enter a

fixed value and see the preview result on-screen. Typically, you would select a variable for
inbound parameter. Value of that variable will be used as input parameter. The outbound

parameter provides the result from the function. You must select the variable that will store the

result.

¢ Timeout: timeout after which the connection to a server is established.

Authentication enables basic user authentication. This option defines user credentials that are
necessary to establish an outbound call to a remote web service.

* Enable basic authentication: enables defining the Username and Password that can be

entered manually or defined by variable values. Select Data sources to select or create the

variables.

* Show password: uncovers the masked Username and Password characters.

Details about security concerns, are available in section Securing Access to your Triggers in

NicelLabel Automation user guide.

Data Preview field allows you to perform a test Web service execution.

» Execute button executes a Web service call.
It sends values of inbound parameters to the Web service and provides the result in the

outbound parameter. Use this functionality to test the execution of a Web service. You can enter

values for inbound parameters and see the result on-screen. When satisfied with execution,

replace the entered fixed value for inbound parameter with a variable from the list.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined

conditions allow them to be run. To define these conditions, click Show execution and error handling

options.

Execution options are:

* Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This

functionality may be used while testing a form.

192

» Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionist r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

@ NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

» Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Err or | d and
Act i onLast Err or Desc.

4.4.7. Other

4.4.7.1. Get Label Information

@ PRODUCT LEVEL INFO:

Automation Builder features require LMS Enterprise.

This action returns structural information about the associated label file. It provides information about
the label dimensions, printer driver and lists all label variables, and their main properties.

The Get Label Information action returns the original information as saved in the label file. Additionally,
it also provides information after the print process has been simulated. The simulation ensures that all
labels variables get the value as they would have during a normal print. Also, the label height
information provides correct dimensions in case you define the label as a variable-height label (in this
case, the label size depends on the amount of data to be printed). The action returns the dimensions
for a label size, not for a page size.

193

The action saves label structure information in a selected variable. You can then send the data back to
the system using the HTTP Request action (or a similar outbound data connectivity action), or send it
back in trigger response, if you use a bidirectional trigger.

m (o) # About

Seftings Variables Actions Name: Get Label Information
Act v Description:
1. [Open Lakel V]
“1 L il e t Action type: Get Label Information
12 @ HTTP Request Ld

Name: P Structure

A s a Abochd & b bbb bo bo hob bk Ab a Ao e Abd

@ NOTE

This action must be nested under the Open Label action.

Variable group selects or creates a variable that stores the structural information about a label.

* Name: specifies the variable name. Select or create a variable which stores the XML-formatted
label information.

* If you want to use the information from the XML inside this trigger, you can define the and
execute it with Use Data Filter action (Automation Builder only).

* If you want to return the XML data as a response in your HTTP or Web Service trigger, use
this variable directly in the Response data field of the trigger configuration page.

* If you want to save the XML data to a file, use the Save Data to File action.

Additional settings group allows you to enable the use of provisional values.

» Use provisional values: replaces missing data source values with provisional values.

TIP

See section Variable in NiceLabel 2019 Designer user guide for detailed description
of provisional values.

Sample Label Information XML

The sample below presents a structural view of the label elements and their attributes as they are
returned.

<?xml version="1.0" encoding="UTF-8"7>
<Label >
<Origi nal >
<W dt h>25000</ W dt h>
<Hei ght >179670</ Hei ght >
<Pri nt er Nane>QLS 3001 Xe</Printer>

194

</ Original >
<Current >
<W dt h>25000</ W dt h>
<Hei ght >15120</ Hei ght >
<Pri nt er Nane>QLS 3001 Xe</Printer>
</ Current>
<Vari abl es>
<Vari abl e>
<Nane>barcode</ Name>
<Descri ption></ Descri ption>
<Def aul t Val ue></ Def aul t Val ue>
<For mat >Al 1</ For mat >
<Curr ent Val ue></ Curr ent Val ue>
<l ncr ement Type>None</ | ncr enent Type>
<l ncr enment St ep>0</ | ncr enent St ep>
<l ncr enent Count >0</ | ncr enent Count >
<Lengt h>100</ Lengt h>
</ Vari abl e>
</ Vari abl es>
</ For mat >

Label Information XML Specification

This section contains a description of the XML file structure as returned by the Get Label Information
action.

|§ NOTE

All measurement values are expressed in the 1/1000 mm units. For example width of
25000 is 25 mm.

* <Label>: thisis a root element.

» <Original>: specifies label dimensions and printer name as stored in the label file.
* Width: this element contains the original label width.
* Height: this element contains the original label height.

* PrinterName: this element contains the printer name for which the label has been created
for.

* Current: specifies label dimensions and printer name after the simulated print has been
completed.

¢ Width: this element contains the actual label width.

195

* Height: this element contains the actual label height. If a label is defined as a variable-

height label, it can increase along with label objects. For example, Text Box and RTF object

sizes may increase in vertical direction and cause the label to expand as well.

* PrinterName: this element contains printer name that will be used for printing.

Example

A printer different from the original one is going to be used if the original printer driver is

not installed on this computer, or if the printer has been changed using the Set Printer

action.

* <Variables> and <Variable>: the element Var i abl es contains a list of all prompt label
variables, each defined in a separate Var i abl e element. The prompt variables are the ones

listed in the print dialog box when you print label from NiceLabel 2019 . If there are no prompt

variables defined in the label, the element Var i abl es is empty.

¢ Name: contains variable name.

Description: contains variable description.

DefaultValue: contains default value as defined for the variable during the label design
process.

Format: contains the acceptable type of variable content (characters).

IsPrompted: contains information whether or not the variable is prompted at print time or
not.

PromptText: contains text that prompts the user for value input.
CurrentValue: contains the actual value that is used for printing.

IncrementType: contains information, if the variable is defined as a counter or not. If
identified as a counter, it tells what kind of counter it is.

IncrementStep: contains information about the counter step. Counter value increments/
decrements for this value on the next label.

IncrementCount: contains information about the point of counter value incrementing/
decrementing. Usually, the counter changes value on every label, but that can be changed.

Length: contains maximum number of stored characters in a variable.

IsPickListEnabled: contains information whether or not the user selects variable values
from a pick list.

iPickListValues: contains the actual (selectable) pick list values.

XML Schema Definition (XSD) for Label Specification XML

<?xml version="1.0" encoding="utf-8"7>
<xs:schema id="Format" xmlns:xs="http://www.w3.0rg/2001/XMLSchema"">

196

<xs: el ement name="Label"'>
<xs: conpl exType>
<xs:al |l >

<xs: el ement name="Original'>
<xs: conpl exType>
<Xs:sequence>

<xs: el ement name="Width" type="'xs:decimal"

minOccurs="1" />

<xs: el ement name="Height" type='"xs:decimal"

minOccurs="1" />

<xs: el ement name="PrinterName" type="Xs:string

minOccurs=""1" />

</ xs: sequence>
</ xs: conpl exType>

</ xs: el enent >

<xs: el enent name="Current'>
<xs: conpl exType>
<XS:sequence>

<xs: el ement name="Width" type="'xs:decimal"

minOccurs="1" />

<xs: el ement name=""Height" type="xs:decimal"

minOccurs="1" />

<xs: el ement name="PrinterName'" type="Xs:string

minOccurs=""1" />

</ xs: sequence>
</ xs: conpl exType>

</ xs: el enent >

<xs: el enent name="Variables'>

<xs: conpl exType>
<XS: sequence>

<xs: el ement name="Variable"™ minOccurs="0"

maxOccurs=""unbounded'">

type="'xs:string" minOccurs="1"

type=""xs:string" minOccurs=""1"

type=""Xs:string" minOccurs="1"

type=""xs:string" minOccurs="1"

type="'xs:string” minOccurs="1"

type="'xs:string"” minOccurs="1"

<xs: conpl exType>

/>

/>

/>

/>

/>

/>

<XS.

<XS:

<XS:

<XS:

<XS:

<XS:

<XS:sequence>

el ement

el enent

el enent

el enent

el ement

el enment

name=""Name"*

name="Description’

name=""Defaul tvalue"

name=""Format"’

name=""CurrentValue"

name=""1ncrementType"

197

<xs: el enent name="IncrementStep"
type="'xs:integer"” minOccurs="1" />
<xs: el enent name="IncrementCount"
type=""Xs:integer" minOccurs="1" />
<xs: el enent name="Length"
type="'xs:string”™ minOccurs="1" />
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
</xs:all>
</ xs: conpl exType>
</ xs: el ement >
</ xs: schema>

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling
options.

Execution options are:

» Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

» Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionis t r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

@ NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

198

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

» Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Err or | d and
Act i onLast Err or Desc.

4.4.7.2. Execute Script

This action enhances the software functionality by using custom VBScript or Python scripts. Use this
function if the built-in actions don't meet your data manipulation requirements.

Scripts can include the trigger variables — both internal variables and the variables defined or
imported from labels.

Make sure that Windows account under which the service runs has the privileges to execute the
commands in the script.

Settings Variables Actions Name: Execute Script

B

i

<

N
Aabesbbondd o

Vertically expandable
windows size

Dodeod o bbbodobs bobddend abod Ados Aodood Aodd A bbb b dododocdidd ndh, bodocdboodd

@ NOTE

The script type is configured per trigger in the trigger properties. All Execute Script
actions within a single trigger must be of the same type.

About group identifies the selected action.

* Name: allows you to define a custom action name. This makes actions easily recognizable on
the solution's list of actions. By default, action name is taken from its type.

* Description: custom information about the action. Enter a description to explain purpose and
role of action in a solution.

* Action type: read-only information about the selected action type.

Script editor offers the following features:

199

* Insert data source: inserts an existing or newly created variable into the script.
* Verify: validates the entered script syntax.

* Script editor: opens the editor which makes scripting easier and more efficient.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling
options.

Execution options are:

* Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

* Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionist r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

S NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

* Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Error | d and
Acti onLast Error Desc.

Script Editor

NiceLabel 2019 provides a script editor which makes your Python or VBScript scripting easier, error-
free and time efficient.

200

—'i' Editor ribbon
Eiclealoan| thaswdlenta, “aacaifiln”, -apceadster:_with_ailssgeia’, -fis

Script editing field

Available s¢ rlp.'ir:',J
elements

Elementdescription

)

Irits 0 wmgreherts s reads dleverd. v Eucel the snd hagibghvts okl Caly aa0 or usdeskae! il alergerm n the ietient. The
i bt e et Mgt A0 sngrat armeless ane sirings. The esu i REF-oomamied dita 2 be uried msth the RTF abyect. Foe move

o Cancal

The selection of scripting languages that should be used in Script editor differs
betweenNiceLabelDesigner ProandAutomation Builder:

* InDesigner, double-click on the form design surface to openForm Properties>Additional

Settings>Form Scripting Language.

* InAutomation Builder, go toConfiguration items >click Edit to open trigger properties>Settings>

Other > Scripting.

NiceLabel 2019uses .NET variant of Python named IronPython. It works as a fully compatible
implementation of Python scripting language which also supports .NET methods.

Editor Ribbon includes commonly used commands which are distributed over multiple functional

groups.
» Clipboard group offers Cut, Copy, Paste and Delete commands.
* Undo Redo group allows undoing or repeating script editing actions.

* File group allows loading and saving scripts in a file.

* Load from file: loads a script from an external previously saved textual file.

* Save to file: stores the currently edited script in a textual file.
» Editing group allows finding and replacing strings in a script.
* Find: locates the entered string in the script.

* Replace: replaces string in the script.

201

* Insert group: Data Source command inserts existing or newly defined data sources into the
script.

» Script group: Validate script command validates of the entered script's syntax.
Available scripting elements contain all available script items which can be used when building a

script. Double-click the element or click the Insert button to insert the element at cursor position into
the script.

Element description provides basic information about the inserted script element.

Error listincludes the errors which are reported after the Validate script command is run.

4.4.7.3. Message

Use the Message action to write custom strings (For example, custom warning messages, variable
values, and comments). The message action creates custom entries in your Automation Manager log
files. Automation log files contain application-generated information, warnings, and error
descriptions. Use Message logs to track your message variables during configuration,
troubleshooting, and debugging.

To configure Message actions, do the following:
1. Go to All Actions and select Message from the drop-down Action menu.
2. Rename your action and insert your description.

3. Configure your message Content: Caption, Message, and Message Type.
Message Types include:

* Information
* Error
* Warning
4. Expand Show execution and error handling options to set conditions for showing

messages, ignoring failures, and saving Automation errors to variables.

NiceLabel Automation Manager displays colored Messages (For example, red errors and orange
warnings) in your Automation Log pane.

Example:

You print Pasta labels with Automation. Your trigger receives variable values from ERP generated CSV
files. When your variable "Package" value is greater than 4, Automaton Log creates a warning.

202

Configuration ftems

T — — -
e PO D ¥ OPTe 4 €
Import Add Internal All Open Print Set Set UseData Down Left Run
X Delete Variables Varisble Variables® Actions ¥ Lzbel Label Printer Vaniable Filter Praview
Edit Variables Insert Action Action Order Preview

m ® # About

Settings Variables Actions Name: Package Message
Action v s Description: Displays a value of Package variable
1 [Open Label v Z
11) 4P Use Data Filter v Action type: Message
1.1 4(= Foreach line v
1.1 Package Message 4] p..p., Content
1112 %' Set Printer v Caption: Package Data source
1113 % Print Label v/ :
B9 Print Label Message: B Package ~ | [¥| Data source
Message type: Warning

Information _?
Action Execution and Errer|Han{ Error

Execution options:
(¥ Enabled)
Gandman: Package > 4_3

Error handiing:

[Ignore failure

Save error to variable: (none) A

Configuring Message actions.

Your result in Automation Manager looks like this:

Triggers
Configurations and triggers: Timestamp D Name Description
5V Simple @ 12052020 07:2351087 Printing data from simple CSV ;Trpig%er was executed - File which executes the trigger is “C\Automation .
astacsv'.
Bt gdatalfompppllCSY) 12.05. 2020 07:23:51.088 1 Action "Open Label® Label: CAAutomationtlabel.nlsl
Printing data from fixed-width-colu 12.05.2020 072351089 1.1 Action "Use Data Filter" Use data filter action for filter "Data from simple CSV" is executed.,
‘ — ' 12.05. 2020 07:2351.000 1.1 For each line Action started
12.05. 2020 07:23:51.000 1.1 For each line Loop value = 1
Logged period: C 05. 2020 07:2351.115 P P
72,05, 2020 072351975 1412 Action "Set Printer” ZEBRA Z0470-203dpi ZPL
Last 5 Minutes -
Lot Hour 12.05.2020 072351141 1113 Action "Print Label” Label: label, Printer: ZEBRA ZD420-203dpi ZPL, Quantity: 1
12.05. 2020 07:23:51385 1.1.1 For each line Loop value = 2
Last Day 12.05.2020072351390 1012 Action "Set Printer” ZEBRA ZD420-203dpi ZPL
Custom 12.05.2020 072351300 1113 Action "Print Label" Label: label, Printer: ZEBRA ZD420-203dpi ZPL, Quantity: 1
12.05. 2020 0722351402 1.1 For each line Loop value = 3
Event Level: 12.05.2020 07:23:51.400 1.1.12 Action "Set Printer” ZEERA ZD420-203dpi ZPL
| Error 12.05.2020 072351409 1113 Action "Print Label" Label: label, Printer: ZEBRA ZD420-203dpi ZPL, Quantity: 1
] 12,05, 2020 072%:51415 11 Eor each lins Loop value = 4
¥| Information C
72.05. 2020 072351417 11.12 Action "Set Printer” ZEBRA 7D420-203dpi ZPL
12.05. 2020 072351417 1113 Action "Print Label” Label: label, Printer: ZEBRA ZD420-203dpi ZPL, Quantity: 1
Filter by description: 12.05.2020 072351422 1.1.1 For each line Loop value = 5
Search X 12.05.2020 072351424 1112 Action "Set Printer" ZEBRA 7D420-203dpi ZPL
12.05.2020 072351424 1113 Action "Print Label" Label: label, Printer: ZEBRA ZD420-203dpi ZPL, Quantity: 1
Qe Log | [Refresh | [Search 12.05.2020 072351442 1.1 For each line Action completed
12.05.2020 072351442 1.1 Action "Use Data Filter" Use data filter action for filter "Data from simple CSV" is completed.
12.05.2020 072351442 1 Action "Open Label" Action completed
& 12.05.2020 07:22:19.742 Printing data from simple CSV Trigger was executed - File which executes the trigger is “C\Automation

\Pastarsy'.

NOTE

When you set your Message severity to Error, your triggers do not go to error state.
Printing is still possible.

Use Message logs for:

» configuration troubleshooting

* debugging your solutions

203

* tracking values of your selected variables

displaying your customized warnings and error messages
Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling
options.

Execution options are:

* Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

» Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionis t r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

|§ NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

* Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Err or | d and
Act i onLast Err or Desc.

4.4.7.4. Verify License

This action reads the activated license and executes the actions nested below this action only if a
certain license type is used.

204

@ TIP
Verify License action provides protection of your trigger configuration from being run
on unauthorized machines.

@ NOTE

License key that activates software can also encode the Solution ID. This is the unique
number that identifies the solution provider that sold the NiceLabel 2019 license.

If the configured Solution ID matches the Solution ID encoded in the license, the target machine is
permitted to run nested actions, effectively limiting execution to licenses sold by the solution
provider.

The triggers can be further encrypted and locked so only authorized users are allowed to open the
configuration. For more information, see section Protecting Trigger Configuration in NicelLabel
Automation user guide.

About group identifies the selected action.

* Name: allows you to define a custom action name. This makes actions easily recognizable on
the solution's list of actions. By default, action name is taken from its type.

* Description: custom information about the action. Enter a description to explain purpose and

role of action in a solution.

* Action type: read-only information about the selected action type.

License Information group allows you to select the license ID.

¢ License ID: defines the ID number of the licenses that are allowed to run the nested actions.

 [f the entered value is not the License ID that is encoded in the license, the nested actio
is not executed.

¢ |f the entered value is set to 0, the actions execute if a valid license is found.

|§ NOTE

Digital Partner UID can also be used as License ID. This option is available for
members of NiceLabel Digital Partner Program.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined

ns

conditions allow them to be run. To define these conditions, click Show execution and error handling

options.

205

http://www.nicelabel.com/partners/digital

Execution options are:

* Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

» Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionis t r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

@ NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

* Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Err or | d and
Acti onLast Error Desc.

4.4.7.5.Try

@ PRODUCT LEVEL INFO:

Automation Builder features require LMS Enterprise.

This action allows you to:

* Monitor errors while the actions are being executed.
* Run an alternative set of actions if an error occurs.
Try action creates Do and On error placeholders for actions. All actions that should execute if a

trigger fires, must be placed inside the Do placeholder. If no error is detected when executing actions
from Do placeholder, these are the only actions that ever execute. However, if an error does happen,

206

the execution of actions from Do placeholder stops and the execution switches over to actions from
On error placeholder.

@ NOTE

You must enable Synchronous Printing to catch errors with On error.

[N7 ¥

Settings Variables Actions

<

Action =R

C' Far loop
2d -E Try
21 4 -5 Do
2.1.1 PR Open Label
2.1.1.1 ¥=' Set Printer
2112 & Print Label
22 4 "3 OnError
2.2.1 ; HTTP Requast
3 m Read Data from File

<[] [«] [«] [«] [&] [&] [&] [«

Example

If any action in the Do placeholder fails, the action execution stops and resumes with the actions in
the On Error placeholder. If Try would be placed on its own, that would terminate the trigger execution.
In our case, Try is nested under the For loop action. Normally, any error in Do placeholder would also
stop executing the For loop action, even if there are still further steps until the For loop is complete. In
this case, the Save Data to File action does not execute as well. By default, each error breaks the
entire trigger processing.

However, you can also continue with the execution of the next iteration in the For loop action. To make
this happen, enable the Ignore failure option in the Try action. If the data from the current step in For
Loop causes an error in the Do placeholder, the actions from On Error execute. After that, the Save
Data to File in level 2 execute and then the For loop action continues to execute in the next iteration.

@ TIP
This action provides for an easy error detection and execution of "feedback" or
“reporting" actions. For example, if an error happens during trigger processing, you
can send out a warning. For more information, see section Print Job Status Feedback
in NiceLabel Automation user guide.

207

@ NOTE

Important! The Try action gives expected results with asynchronous actions. If your
Try loop includes the Print Label action that fails, the action execution still completes
the Try loop, and does not switch to the On error actions as expected. The result for
not switching to the On error actions is the Print Label action that runs in
synchronous mode by default. To avoid this, make sure supervised printing is on. Go
to trigger settings > Other > Feedback from the Print Engine and enable Supervised
printing.

Read more about supervised printing in section Synchronous Print Mode.

About group identifies the selected action.

* Name: allows you to define a custom action name. This makes actions easily recognizable on
the solution's list of actions. By default, action name is taken from its type.

* Description: custom information about the action. Enter a description to explain purpose and
role of action in a solution.

* Action type: read-only information about the selected action type.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling
options.

Execution options are:

* Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

» Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionis t r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

|§ NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

208

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

» Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Error | d and
Acti onLast Error Desc.

4.4.7.6. XML Transform

@ PRODUCT LEVEL INFO

The functionality from this section is available in LMS Enterprise.

This action transforms an XML document into another document using the provided transformation
rules. The rules must be provided by a .XSLT definition in a file, or by another variable source.

The action allows you to convert complex XML documents into XML documents with a more
manageable structure. XSLT stands for XSL Transformations. XSL stands for Extensible Stylesheet
Language, and works as a stylesheet language for XML documents.

XML Transform action stores the converted XML document in the selected variable. The original file is
leftintact on the disk. If you want to save the converted XML document, use action Save Data to File.

@ NOTE

Typically, you would use the action to simplify XML documents provided by the host
application. Defining XML filter for the complex XML document might take a while, or
in some cases the XML is just too complex to be handled. As alternative, you would
define the rules to convert XML into structure that can be easily handled by the XML
filter, or even skipping the need for a filter altogether. You can convert XML document
into natively-supported XML, such as Oracle XML and then simply executing it using
the Run Oracle XML Command File action.

@ TIP
Example for this action is installed with the product. To open it, go to Help > Sample
Files > XML Transformations and run the XML Transformations.misx configuration.
Details are available in the Readme file.

About group identifies the selected action.

209

* Name: allows you to define a custom action name. This makes actions easily recognizable on
the solution's list of actions. By default, action name is taken from its type.

* Description: custom information about the action. Enter a description to explain purpose and
role of action in a solution.

* Action type: read-only information about the selected action type.

Data Source group defines the XML data to be transformed.

» Use data received by the trigger: defines that the trigger-received data it used. The same
result can be achieved by enabling the internal variable Dat aFi | eNare and using the contents
of file it refers to. For more information, see section Using Compound Values in NicelLabel
Automation user guide.

* File name: defines the path and file name of the file containing the XML file to be transformed.
Contents of the specified file is used. Data source enables the file name to be defined
dynamically. Select or create a variable that contains the path and/or file name. The action
opens the specified file and applies transformation on file contents, which must be XML-
formatted.

* Variable: selects or creates the variable that contains printer stream. The contents of selected

variable is used and it must contain XML structure.

Transformation Rules Data Source (XSLT) group defines the transformation rules (XSLT document)
that are going to be applied to the XML document.

* File name: defines path and file name of the file containing the transformation rules (.XSLT).

» Custom: defines custom contents. You can use fixed content, mix of fixed and variable content,
or variable content alone. To insert a variable content, click the button with arrow to the right of
data area and insert variable from the list. For more information, see section Using Compound
Values in NiceLabel Automation user guide.

Save Result to Variable group defines the variable to store the transformed file.

* Variable: selects or creates a variable that is going to contain the result of the transformation
process. E.g. if you use the rules that convert complex XML into simpler XML, the content of the
selected variable is a simple XML file.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling
options.

Execution options are:
* Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This

functionality may be used while testing a form.

210

» Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionist r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

S NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

* Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Err or | d and
Act i onLast Err or Desc.

4.4.7.7. Group

This action configures multiple actions within the same container. All actions placed below the Group
action belong to the same group and are going to be executed together.

This action provides the following benefits:

» Better organization and displaying of action workflow. You can expand or collapse the Group
action and display the nested actions only when needed. This helps keep the configuration area
cleaner.

» Defining conditional execution. You can define a condition in the Group action just once, not
individually for each action. If the condition is met, all actions inside the Group are executed.
This can save a lot of configuration time and can reduce the number of configuration errors.
Group action provides a good method to define IF.THEN execution rules for multiple actions.

About group identifies the selected action.

* Name: allows you to define a custom action name. This makes actions easily recognizable on
the solution's list of actions. By default, action name is taken from its type.

211

* Description: custom information about the action. Enter a description to explain purpose and
role of action in a solution.

* Action type: read-only information about the selected action type.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling
options.

Execution options are:

* Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

» Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionist r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

|§ NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

« Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Err or | d and
Act i onLast Err or Desc.

4.4.7.8. Log Event

|§ PRODUCT LEVEL INFO:

Automation Builder features require NiceLabel LMS Enterprise or NiceLabel LMS
Pro.

212

This action logs an event to NiceLabel Control Center for history and troubleshooting purposes.

@ NOTE

To make Log event action active, make sure that print job logging to NiceLabel Control
Center is enabled.

About group identifies the selected action.

* Name: allows you to define a custom action name. This makes actions easily recognizable on
the solution's list of actions. By default, action name is taken from its type.

* Description: custom information about the action. Enter a description to explain purpose and
role of action in a solution.

* Action type: read-only information about the selected action type.

Event Data group provides information about the logged event.

* Information: basic description of the event that will be included in the NiceLabel Control Center
event log. Up to 255 characters are allowed in this area.

* Details: detailed description of the event to be logged in the NiceLabel Control Center. Up to
2000 characters are allowed in this area.

@ TIP
The descriptions entered in Information and Details fields allows you to filter out the
events in Control Center All Activities History. When working with Control Center, go
to History > All Activities > Define filter. For more details, read the Control Center
User Guide.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling
options.

Execution options are:

» Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

» Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionis t r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

213

http://www.nicelabel.com/Redirect?Id=98&Link=www.nicelabel.com
http://www.nicelabel.com/Redirect?Id=98&Link=www.nicelabel.com

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

S NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

» Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Err or | d and
Acti onLast Error Desc.

4.4.7.9. Preview Label

@ PRODUCT LEVEL INFO:

Automation Builder features require LMS Enterprise.

This action executes the print process and provides label image preview. By default, the preview is
saved to disk as JPEG image, but you can choose other image format. You can also control the size of
the created preview image. The action generates preview for a single label.

Once you have the label preview created in a file, you can send the file to a third party application
using one of the outbound actions, such as Send Data to HTTP, Send Data to Serial Port, Send Data
to TCP/IP Port, or use it as response message from bidirectional triggers, such as and Web Service
Trigger. The third party application can take the image and show is as label preview to the user.

About group identifies the selected action.

* Name: allows you to define a custom action name. This makes actions easily recognizable on
the solution's list of actions. By default, action name is taken from its type.

* Description: custom information about the action. Enter a description to explain purpose and
role of action in a solution.

* Action type: read-only information about the selected action type.

Preview group defines the file to be previewed and its details.

214

* File name: specifies the path and file name. If hard-coded, the same file is used every time. If
you only use the file name without path, the folder with configuration file (MISX) is used. You can
use a relative reference to the file name, where folder with .MISX file is used as root folder. Data
source option enables variable file name. Select or create a variable that contains the path
and/or file name after a trigger is executed. Usually, the value to the variable is assigned by a
filter.

* Image type: specifies the image type which is used for saving the label preview.

* Preview label back side (2-sided labels): enables preview of the back label. This is useful, if you
use double-sided labels and want to preview the label's back side.

Example

For example, if your label template defines dimension as 4" x 3" and the label printer resolution is set
to 200 DPI, the resulting preview image has dimensions of 800 x 600 pixels. Width equals 4 inches
times 200 DPI, which results in 800 pixels. Height equals 3 inches times 200 DPI, which results in 600
pixels.

Additional settings group allows you to enable the use of provisional values.

* Use provisional values: replaces missing data source values with provisional values and
displays them in the label preview.

@ TIP
Provisional value defines a custom placeholder variable value in an object while
designing labels or forms. In a label object, the provisional value is replaced by
the real variable value at print time.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling
options.

Execution options are:

* Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

» Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionis t r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

215

S NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

* Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Error | d and
Acti onLast Error Desc.

4.4.7.10. Create Label Variant

S PRODUCT LEVEL INFO:

Automation Builder features require LMS Enterprise.

This action allows you to create a review-ready variant of an existing label. Label objects in such
variants have locked data source values. Their content is defined by the current value of the
applicable data source.

The purpose of creating a review-ready variant of a label with “locked” data sources is to make the
label suitable for approval process in which data and template need to be approved together. Instead
of viewing a label without defined content for its objects, the approver reviews a variant with defined
values. This allows him to quickly see and approve the final label layout with actual values that are
going to be used for printing.

@ TIP
Label approval process is applicable to labels that are stored in Control Center
Document Storage. You can apply various approval workflow types for the stored
labels and label variants. Approval workflow selection depends on the requirements of
your business environment. See NiceLabel 2019 Control Center User Guide for more
details.

About group identifies the selected action.

216

* Name: allows you to define a custom action name. This makes actions easily recognizable on
the solution's list of actions. By default, action name is taken from its type.

* Description: custom information about the action. Enter a description to explain purpose and
role of action in a solution.

* Action type: read-only information about the selected action type.

Settings group defines the label file to be converted and the output file (label variant).

* Label name: the name of the label file to be converted into a review-ready variant with locked
data source values. Data source dynamically defines the Label name using an existing or newly
created variable.

* Print time data sources: this option allows you to define the data sources whose values are
going to be provided at the actual print time. If a data source is listed in this field, its value is not
locked and can be provided at print time. Typical examples are data sources for production
values like LOT number, expiry date, etc.

TIP

Insert only data source names without square brackets, separated by commas
or listed in a column using Enter key.

* Output file name: the name of the label variant file that is going to be ready for review. Data
source dynamically defines the Label name using an existing or newly created variable.

There are several rules that apply to the review-ready label variant:

1. Data source values are locked by default. To exclude the data sources from being locked, list
them in Print time data sources field to keep them active on the review-ready label. You can
define their values at print time.

2. Counter variables, functions, database fields and global variables are converted to non-
prompted variables.

3. Graphics are embedded.

4. The destination label variant stored in NiceLabel Control Center Document Storage is
automatically checked in. Original Label name and Print time data sources are used as
check-in comment.

5. Label variants can be opened in NiceLabel 2019 Designer in locked state.
6. Labelfiles generated with this action cannot be imported.

7. If label variants are stored in printer memory, the recall command can only provide values for
print time data sources.

8. If using NiceLabel Control Center, label preview in Document Storage allows editing of print
time data sources.

217

9. Current time and current date variables cannot be set as Print time data sources on the
review-ready label variant.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error handling
options.

Execution options are:

* Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

» Condition: defines one-line programming expression that must provide a Boolean value (t r ue
or f al se). When the result of the expressionist r ue, the action will execute. Condition offers a
way to avoid executing actions every time.

Error handling options are:

* Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option
enabled, the execution of actions continues even if the current action fails.

@ NOTE

Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level
as the current action. The error is logged, but does not break the execution of
the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting
even after the failed print action, the Print Label action must have the option Ignore failure enabled.

» Save error to variable: allows you to select or create a variable to save the error to. The same
cause of error is also saved to internal variables Act i onLast Err or | d and
Acti onLast Err or Desc.

4.5. Testing Triggers

After setting up the triggers, you are only halfway done with the configuration. Before deploying the
trigger, test it thoroughly for its intended operation upon incoming data and verify the execution of
actions.

218

Automation Builder enables you to test the configuration while you are still working on it. Some
actions have built-in test capabilities so you can focus on the execution of individual action. You can
also test every triggers with Run Preview command. However, the final test should always be done in
the real environment, providing real data and using real triggers. This is how you monitor trigger
execution using Automation Manager.

Testing execution of individual actions
Some of the actions include preview option. This allows you to change input parameters and to see
the result of the action on-screen.

* Use Data Filter: The action provides live preview of the parsed data. The rules in the selected
filter are applied to the selected input data file. The result is shown in the table. If you use sub- or
assignment areas, you can see the preview for every level of filter definition.

* Execute SQL Statement: The action allows you to preview the execution of the defined SQL
statement. You can monitor the data set resulting from the SELECT statement, and number of
rows affected by the UPDATE, INSERT and DELETE statements. The preview execution is
transaction-safe, which means that you can roll-back all changes. You can change the input
query parameters and see how they affect the result.

* Web Service: The action allows you to preview the execution of a selected method (function)
from Web Service. You can change the input parameters and see how they affect the result.

* Execute script: The action checks for syntax errors in the provided script, and also executes it.
You can change the input parameters and see how they affect the script execution.

Testing trigger execution and displaying label preview on-screen

To test the trigger from the ground up, use the built-in Run Preview functionality. You can run preview
for every trigger, no matter its type. The trigger won't fire upon changes of the monitored event. Only
a trigger started in the Automation Manager can do it. Instead, the trigger is going to execute actions
based on the data saved in a file. Make sure you have a file that contains sample data that the trigger
is going to accept in real-time deployment.

The trigger executes all defined actions (including data filtering) and displays label preview(s) on-
screen. The preview simulates the printing process in every detail. The labels would print with the
same composition and contents as shown in the preview. This includes the number of labels and their
contents. You also learn about how many print jobs are produced, how many labels are in each job and
see preview of each label. You can navigate from one label to the next in the selected print job.

Log pane displays the same information as it would be displayed in the Automation Manager. Expand
the log entries to see full detail.

|§ NOTE

After you run the preview, all actions defined for the selected trigger are run, not just
the Run Preview action. Be careful when using actions that modify the data, such as
Execute SQL Statement or Web service, because their execution is irreversible.

To preview the labels, do the following:

219

1. Open the trigger configuration.

2. Make sure the trigger configuration is saved.

3. Click the button Run Preview in Preview group in the ribbon.

4. Browse for the data file providing the typical contents that trigger will accept.

5. See theresultin a Preview tab.

Testing deployment on pre-production server

It is advisable to deploy the configuration to Automation Manager on pre-production server before
deploying it on production server. Testing in pre-production environment might identify additional
configuration issues that have not been detected during trigger testing in Automation Builder alone.

Configuration performance can also be stress-tested by adding load to the trigger and monitoring
how it performs. The testing provides important information about the available throughput and
identifies weak points. Based on the conclusions, you can implement various system optimization
techniques, such as optimizing label design to produce smaller print streams, and optimizing the
overall flow of data from the existing application into NiceLabel Automation.

Important differences between real trigger testing and previewing in Automation Builder
While previewing the trigger on-screen in Automation Builder provides a quick method of trigger
testing, you must not rely on it alone. There can be execution differences between previewing and
running the trigger for real when you use 64-bit Windows.

Even if you have your configuration working in Automation Builder, make sure to run in for real using
the Service as well.

* When you run command Run Preview, the configuration executes in Automation Builder, which
always runs as 32-bit application. Previewing your trigger in Automation Builder only tests
execution on a 32-bit platform.

* When you run triggers for real, the configuration executes in Service, which runs as 32-bit
application on 32-bit Windows, and runs as 64-bit application on 64-bit Windows. For more
information see section Running in Service Mode.

* Issues might arise if trigger processing is affected by platform differences (32-bit vs 64-bit):

» Database access: 64-bit applications require 64-bit database drivers, and 32-bit
applications require 32-bit drivers. To run configuration from Automation Builder and in the
Service, you need 32-bit and 64-bit database drivers to access your database. For more
information, see section Accessing Databases.

* UNC syntax for network files: The service account cannot access network shared files
with mapped drive letter. You have to use UNC syntax for network files. For example, use \
\server\share\files\l|abel.nlbl andnotG \files\Iabel.nl bl,whereG:is
mapped to\ \ ser ver \ shar e. For more information see section Access to Network
Shared Resources.

* If your NiceLabel Automation Service runs under a different user account that you are using for
Automation Builder, the accounts might not have the same security privileges. If you can open

220

the label in Automation Builder, the user account for the Service might not be able to access it.
To run Automation Builder under the same user account as the Service, see Using the same user
account to configure and to run triggers.

4.6. Protecting Trigger Configuration from
Editing
The trigger configuration can be protected using two methods.

* Locking trigger. Using this method you lock the trigger configuration file and protect it with a
password. Without the password nobody can edit the trigger. Enable the option Lock and
encrypt trigger in trigger Settings -> Security.

» Setting access permissions. Using this method you rely on the user permissions as are defined
in the NiceLabel Automation Options. You can enable user groups and assign different roles to
each group. If the group is assigned with the edit privileges, all members of the group can edit
triggers. This method requires that you enable user login. You can use Windows users from local
groups or active directory, or you can define NiceLabel Automationusers. See User rights and
access in Configuration.

4.7. Configuring Firewall for Network
Triggers

Network trigger is a trigger that runs using the TCP/IP protocol. In Automation, such triggers are
TCP/IP trigger, HTTP trigger and Web Service trigger. These provide network services and are bound
to the network interface card, its IP address, and the configured port number. After you deploy and
start network triggers in Automation Manager, they start listening to the inbound traffic port.

Firewalls protect computers form unauthorized attempts of incoming connections. NiceLabel installer
makes sure that inbound communication streams established to all ports owned by the Automation
Service are allowed in Windows Firewall.

A WARNING

Automation Service owns ports configured for TCP/IP triggers, but not ports defined
for HTTP trigger and Web Service trigger. These ports are bound to ID 4 (SYSTEM)
process and not to the Automation Service process.

Configure the firewall to allow communication on ports configured for HTTP and Web Service
triggers. To create an inbound rule, do the following:

221

1. Onthe computer that is running NiceLabel Automation, in Start menu, select Control Panel,
select System and Security, and select Windows Firewall.

2. Inthe navigation pane, select Advanced settings.

3. Inthe Windows Firewall with Advanced Security window, in the navigation pane, select
Inbound Rules, and then in the Actions pane, select New Rule.

4. Onthe Rule Type page, select Port, and click Next.

5. Onthe Protocol and Ports page, select Specific local ports, and enter the port number on
which your HTTP or Web Service trigger runs.

6. Click Next.
7. Onthe Actions page, select Allow the connection, and click Next.
8. Onthe Profile page, select the profiles, and click Next.

9. Onthe Name page, enter a name for the rule, and click Finish.

Similar steps must be taken with other firewall software.

4.8. Using Secure Transport Layer (HTTPS)

@ PRODUCT LEVEL INFO

The functionality from this section is available in LMS Enterprise.

You can protect the inbound traffic to the HTTP Server Trigger and Web Service Trigger by enabling
the HTTPS support. HTTPS secures the transmission of the messages exchanged over the network.
The communication security uses X.509 certificates to encrypt the data flowing between the parties.
Your information remains confidential from prying eyes because just the client and the NicelLabel
Automation can decrypt the traffic. Even if some unauthorized user does eavesdrop on the
communication he would fail to understand the meaning of the messages, because the traffic
appears as a stream of random bytes.

It makes a good security practice to encrypt the communication in cases, such as:

* You work with the sensitive and confidential data that must not be exposed to 3rd party users.

* The message must pass through networks that are outside of your control. For example, this
happens when you send data to Automation over the Internet, and not from the local network.

Enabling the secure transport layer (HTTPS)
To enable secure transport for your trigger, do the following.

In the Windows system:

222

1. Obtain the X.509 certificate from the issuer of the digital certificates (certificate authority -
CA). You need a certificate type for the 'server authentication'.

|§ NOTE

If you will self-generate the certificate, make sure to import the CA certificate
in the Trusted Authority store, so the CA signature can be verified on the
server certificate.

2. Install the X.509 certificate in the system, where NiceLabel Automation is installed. Make sure
the certificate is visible to the user account under which you run NiceLabel Automation
service. It is a good practice to install the certificate in the local computer store, not the
current user store. This allows NiceLabel Automation to use the certificate eveniif itis not
running under your current logged-in user account.

a.

b.

Open a Command Prompt window.

Type mmc and press the ENTER key (make sure you are running it with administrative
privileges).

On the File menu, click Add/Remove Snap In.

In the Add Standalone Snap-in dialog box, select Certificates.

Click Add.

In the Certificates snap-in dialog box, select Computer account and click Next.
In the Select Computer dialog box, click Finish.

On the Add/Remove Snap-in dialog box, click OK.

In the Console Root window, expand Certificates>Personal.

Right-click Certificates folder and select All Tasks>Import.

Follow the wizard to import the certificate.

Retrieve the thumbprint of a certificate you have just imported.

While still in the MMC double-click the certificate.
In the Certificate dialog box, click the Details tab.
Scroll through the list of fields and click Thumbprint.

Copy the hexadecimal characters from the box. Remove the spaces between the
hexadecimal numbers. For example, the thumbprint "a9 09 50 2d d8 2ae4 14 33 e6 f8 38
86 b0 0d 42 77 a3 2a 7b" should be specified as
"a909502dd82ae41433e6f83886b00d4277a32a7b" in code. This is cer t hash required
in the next step.

Bind the certificate to the IP address and port where the trigger is running. This action

enables certificate on the selected port number.

223

Open the Command Prompt (make sure you are running it with the administrative privileges)
and run the following command:

netsh http add sslcert ipport=0.0.0.0:56000
certhash=7866c25377554ca0cb53bcdfd5ee23ce895bdfa2
appid={A6BF8805-1D22-42C2-9D74-3366EA463245}

where:

* i pport isthe IP address-port pair, where the trigger is running. Leave the IP address at
0.0.0.0 (local computer), but change the port number to match port number in the
trigger configuration.

» cert hash is the thumbprint (SHA hash) of the certificate. This hash is 20 bytes long and
is specified as a hex string.

* appi dis GUID of the owning application. You can use any GUID here, even the one from
the sample above.

In the trigger configuration:

1. Inyour HTTP or Web Service trigger enable the option Secure connection (HTTPS).

2. Reload the configuration in the Automation Manager.

Disabling the secure transport layer (HTTPS)
In the Windows system:

* Unbind the certificate from the IP address-port pair. Run the following command in the
Command Prompt (make sure you are running it with the administrative privileges):

netsh http delete sslcert ipport=0.0.0.0:56000

where:

* i pport isthe IP address-port pair, where the trigger is running and where you bound
the certificate to.

In the trigger configuration:

1. Inyour HTTP or Web Service trigger disable the option Secure connection (HTTPS).

2. Reload the configuration in the Automation Manager.

224

5. Running and Managing Triggers

5.1. Deploying Configuration

After you have configured and tested the triggers in Automation Builder, deploy the configuration
using NiceLabel Automation service and start the triggers. At that time, the triggers become active
and start monitoring the defined events.

To deploy the configuration, use any of the following methods.
Deploying from Automation Builder

1. Start Automation Builder.

2. Load the configuration.

3. Go to Configuration Items tab.

4. Click the Deploy Configuration button in the Deploy ribbon group.
The configuration loads inside Automation Manager running on the same machine.

5. Start the triggers you want to activate.

If this configuration has already been loaded, the deployment forces its reload, while keeping the
triggers status active.

Deploying from Automation Manager
1. Start Automation Manager.
2. Goto Triggers tab.
3. Click +Add button and browse for configuration on the disk.
4. Start the triggers you want to make active.
Deploying using command-line

To deploy the configuration C: \ Proj ect\ Confi gur ati on. M SXand to run the included trigger
named as CSVTr i gger using command- line, enter the following:

NiceLabelAutomationManager.exe ADD c:\Project\Configuration._MISX
NiceLabelAutomationManager.exe START c:\Project\Configuration.MISX
CSVTrigger

For more information, see section Controlling the Service with Command-line Parameters.

225

5.2. Event Logging Options

A WARNING

Some of the described functionalities in this section require purchase of NiceLabel
LMS products.

NicelLabel Automation logs events on various locations, depending on the deployment scenario. The
first two logging features are available with every NiceLabel Automation product level.

* Logging to log database: Logging to internal log database is always enabled. Internal log
database keeps record of all events with all details. When viewing the logged information, you
can use filters to display events that match the rules. For more information, see section Using
Event Log.

The data is stored in an SQLite database. This is a temporary log repository — the events are
removed from the database on a weekly basis. The housekeeping interval is configurable in
Options. Records of old events are deleted from the database, but the database does not get
compacted (vacuumed), so it might still occupy the disk space. To compact the database, use a
3rd party SQLite management software.

* Logging to Windows Application Event Log: Important events are saved to Windows
Application Event Log in case NiceLabel Automation fails to start. This ensures a secondary
resource for logged events.

* Logging to Control Center: Logging to Control Center is available in LMS Enterprise and LMS
Pro products. Control Center is a Web-based management console that records all events on
one or more NiceLabel Automation servers. The data is stored in Microsoft SQL Server
database. You can search through the collected data, and additionally, the application also
supports automated alerts in case of certain events, printer management, document storage,
revision control system (versioning), workflows, and label reprinting.

@ NOTE

For more information, see the Control Center user guide.

5.3. Managing Triggers

Automation Manager is the management part of NiceLabel Automation software. When using
Automation Builder for configuring the triggers, you are using Automation Manager to deploy and run
the triggers in production environment. The application allows you to load triggers from different
configurations, see their live status, start/stop them, and see execution details in log file.

You can customize the view on the loaded configurations and their triggers. The last view is
remembered and applied when you run Automation Manager for the next time. If you enable view By

226

status, triggers from all open configurations that share the same status are displayed together. If you
enable view by Configurations, triggers from the selected configuration are displayed together, no
matter what their status is. Trigger status is color-coded in the trigger icon for easier identification.

The displayed trigger details change in real time — as soon as the trigger events are detected. You can
see the information items, such as trigger name, type of trigger, how many events have already been
processed, how many errors were detected, and the time that passed since the last event. If you
hover your mouse above the number of already processed triggers, you see the number of trigger
events waiting to be processed.

@ NOTE

The loaded configuration is cached in memory. If you make a change to the
configuration in Automation Builder, the Automation Manager does not automatically
apply it. To apply the change, reload the configuration.

Loading configuration

To load a configuration, click the +Add button and browse for the configuration file (MISX). Triggers
from the configuration load in suspended state. You have to start triggers to make them active. For
more information, see section Deploying Configuration.

The list of loaded configurations and statuses for each trigger is remembered. If the server is
restarted for whatever reason, NiceLabel Automation Service restores the trigger state from before
the restart.

Configuration reloading and removal

After you update and save the configuration in Automation Builder, the changes are not automatically
applied in Automation Manager. To reload the configuration, right-click the configuration name, and
click Reload Configuration. This reloads all triggers. If you have file caching enabled, the reload
forces synchronization off all files that are used by the triggers.

Starting / stopping triggers

If you load triggers from a configuration, their default state is stopped. To start the trigger, click the
Start button in the trigger area. To stop the trigger, click Stop. You can select more triggers from the
same configuration and start / stop all of them simultaneously.

You can also control starting/stopping of a configuration using command-line. For more information,
see section Controlling the Service with Command-line Parameters.

Handling trigger conflicts
Triggers can be in error state due to below listed situations. You cannot start triggers in error until you
resolve the issue.

* Trigger not configured correctly or completely: In this case, the trigger is not configured,
mandatory properties are not defined, or actions defined for this printer are not configured. You
cannot start such trigger.

227

* Trigger configuration overlaps with another trigger: Two triggers cannot monitor the same
event.

Example

Two file triggers cannot monitor the same file. Two HTTP triggers cannot accept data on the same
port. If the trigger configuration overlaps with another trigger, the second trigger cannot run because
the event is already captured by the first trigger. For more information, see Log pane for that trigger.

Resetting the error status

When the trigger execution causes an error, the trigger icon color changes to red, trigger receives
error status, and event details are logged to the logging database. Even if all of the upcoming events
complete successfully, the trigger remains in error state until you confirm that you understand the
error and that you want to clear the status. To acknowledge the error, click the icon next to the error
counter under trigger details.

Using notification pane

Notification pane is the area above the list of triggers in the Triggers tab where important messages
are displayed. Notification area displays application status messages, such as "Trial mode" or "Trial
mode expired", or warning messages, such as "Tracing has been enabled".

Viewing Logged data

Every trigger activity is logged in the database, including trigger start/stop events, successful
execution of action and errors encountered during processing. Click the Log button to see logged
events just for the selected trigger. For more information, see section Using Event Log.

5.4. Using Event Log

All activities in NiceLabel Automation are logged to a database to enable history and troubleshooting.
When you click the Log button in the Triggers tab, events for that particular trigger are displayed. The
log pane displays information for all events that are related to the defined filter.

Logging data is useful for troubleshooting. If a trigger or action cannot be executed, the application
records an error description in the log file that helps you identify and resolve the issue.

|§ NOTE

The default data retention time is 7 days and is configurable in Options. To minimize
log database size on busy systems you might want to reduce the retention period.

Filtering events
The configurable filters:

228

» Configuration and triggers: Specifies which events to display — events from the selected
trigger, or events from all triggers in the selected configuration.

* Logged period: Specifies the time frame in which the events occurred. Default time frame is
Last 5 minutes.

* Event level: Specifies the type (importance) of the events you want to display:
* Error is the type of event that breaks the execution.
* Warning is the type of event during which errors happen, but are configured to be ignored.

* Information is the type of event that logs all non-erroneous information.

NOTE

In case of errors and warnings, Automation also displays the entire
sequence of successfully executed actions in a trigger.

Nicelabel Automation Manager - Enterprise - Pre-release version - for testing purposes only = B
¢
Triggers Log About ‘l\ e
Configurations and triggers: Timestamp] Name Description
Com Port trigger g S42019143100908 €SV Medium complexity Trigger was executed - e which execies the trigger s “C:Users\Public
Seriol Port \Documents\NiceLabs Automation\Samples\CSV Mediumidata.tdt
eria 54,2019 143101008 1 Action “Use Data Filter” Use data filter action for filter "Structural definition of DATATXT" is
XML Sample executed,
XML File Trigger 542019 14:31:01.047 11 For each line Action started
CSV Medium 542019 143101058 11 For cach line Loop value = 1
CSV Medium complexity 54,2019 143101058 [AR] Action “Open Label" Label: 3 \Documents\NiceLabel 20
\CSV Mediom\label.albl
. 542010 14:31:01308 1144 Action "Set Printer" Printer name " 8RA R-402" is invalid for set printer action
Logged period:
Last 5 Minutes ‘)
Last Hour g 1= o s
Also OK actions visible. This gives
Last Day Service Communication
Custom - context to the reported error.
Service communication port: 56416/ %
Event Level: Showonly errorsand | \ - J
V] Error i —
warnings. ot 0500
T erearrog-entries when n\devihah{,‘"v;)i 7%
Filter by description: Log messages: Enors and warnings
Performance
Search X

[7] Cache files from decument storage and network shares
Clearlog || Refresh || Search 5

Precache folders from document storage

)
Cluster Support -
OK Cancel

Log level is configurable in Options.

* Filter by description: You can display all events that contain the provided string. Use this option
to troubleshoot busy triggers. The filter is applied to the trigger description field.

Clearing the log database
You can clear the log from Automation Builder. To clear the log database, click the Clear Log button.

229

A WARNING

Use log clearing with caution, because it is an irreversible command. Clear log
removes ALL logged events from the database, and is applied to all triggers, not just
to the current trigger.

Automated log database cleanups

Automation allows you to set up regular automated cleanups for log entries about the successfully
executed triggers. This is how you make sure the growing log database does reduce the system
performance.

To schedule the automated log database cleanups:

1. Openfile product . confi g in text editor.
The file is located here:

%PROGRAMDATA%\NiceLabel\NicelLabel 2019\product.config
2. Create a backup copy of the pr oduct . confi g file.

3. Automation uses two parameters to clean up the triggers. Add these two parameters to your
product. confi g file.

* /I ntegrationServicel/ LogSuccessful Tri gger Pur gel nt er val >. This parameter
defines the length of the time interval between two consecutive cleanups. Type the
interval length in minutes.

* /IntegrationService/ LogSuccessful Tri gger Pur geRenoval Age>. This
parameter checks the age of the messages about the successfully executed actions.

<confi guration>
<l ntegrationServi ce>
<LogSuccessful Tri gger Pur gel nt er val >1</
LogSuccessful Tri gger Pur gel nt er val >

<LogSuccessf ul Tri gger Pur geRenoval Age>1<LogSuccessf ul Tri gger Pur geRenova
| Age>

</IntegrationService>
</ configuration>

5.5. If your configuration fails to load...

When deployed, your Automation configuration runs as a Windows process in the background. The
Automation Manager using which you manage and monitor your configuration is merely an interface
that represents the actual Automation services. In certain cases, the configuration that you

230

developed, tested, and deployed fails to load. There are multiple possible reasons. Follow the
proposed solutions to get your Automation configuration up and running:

1. Configuration file was removed, renamed or moved to another location. You can check to
which file your deployed configuration points in Automation Manager:

Configurations + Add

CVS Compound v

(A Reload Configuration

4 Edit Configuration
£5 Openfile location

/ / % Remove Configuration

Make sure the .misx configuration file is available at the specified location, and the it still has
the same name as in Automation Manager. If you moved or renamed your configuration file,
open it in Automation Builder and deploy the configuration again.

2. Configuration file is on a network location which cannot be accessed due to network
connection problem. Check the network connectivity of your computer/server that stores the
configuration.

3. Automation service does not have permission to access the configuration file. Check
permissions for user account used by Automation service. This error indicates issues with the
Automation service running in the background.

Possible solutions are:

* If your configuration file is stored on a local disk or network share, check that you are
running your configuration under your local user or domain credentials. Running your
configuration under Local System Account may restrict access to shared network
folders and printers. Open Services, and see the properties of the NiceLabelAutomation
Service 2019.

Services

Fle Acion View Help
YRR I

Services (Local) || Name

n Sttus SttupType LogOnAs

[
s Local yste
Ser

s

o;

NiceLabel Autof

General| Log On

* If your configuration file is stored in the document storage of your Control Center, these
are the possible scenarios:

* Your Control Center uses the application authentication. The reason why your
configuration fails to load, is incorrect Automation service identity. The
Automation service identity must match the user identity as defined in your
Control Center.

231

You can find your configuration's Automation service identity in Automation

Manager >

Nicelabel Automation Manager - Enterprise - Pre-release version - for testing purposes o.

Triggers

o

Log

About tab.

About

T
X 0

Nicelabel Automation Manager

License Information
Product level
Edition

Printer limit

Account

User

Automation service identity

So e Information
Version 19.2 Dev (Build 5222)
Copyright © 1895-2019 Euro Plus

Enterprise
Label Cloud Business

100 printer(s)

@ Frne

@nicelabel.com)

NiceLabelis a registered trademark. Property of Euro Plus d.o.o.

All rights reserved.

* Your Control Center uses the Windows authentication. Your configuration fails to
load because you try to run it as a user with insufficient privileges on your Control
Center. Check under which user you are running the Automation service. Open

Services, and see the properties of the NiceLabelAutomation Service 2019.

File Action View

Help

Services -

ez |FEcE HEl reon

=]

‘ . Services (Local)

//

Name

+: Nicelabel 7 Proxy Service
>

%, Office Source Engine
% Offline Files

, Optimize drives

, OracleMTSRecoveryService
, OracleRemExecSenviceV2

' Peer Networking Grouping

% Performance Logs & Alerts
% Plug and Play

% PNRP Machine Name Public
% Portable Device Enumerator
% Power

% Print Spooler

 Remote Desktop Confiqurati

Nicelabel Automation Service 2019

«: MiceLabel Control Center Proxy Service 2019
+ Nicelabel Database Connector 2017

+: Nicelabel Proxy Service 2019

«: NiceLabel Web Printing Proxy Service 2019

% Peer Networking ldentity Manager
% Performance Counter DLL Host

Description Status Startup Type Log On As

Service for ¢ Automatic Local Syste.
Automatic

Service for ing ...
Serlthe g unning
NiceLabel Autop ervice 2019 Properties (Local ...

Automatic Local Syste..
General | Log On {wl}epandenmes
Logonas

() Local System account
Allow service to interact with desktop

@® This aceourt: Browss

+; Peer Name Resolution Protocol

Password: seessessreenee

Confim password; | sesssssssssssss

ation Service
Service

, Printer Extensions and Netifications
% Problem Reports and Solutions Control Pane
% Program Comptibility Assistant Service

% Quality Windows Audio Video Experience

; Remote Access Auto Connection Manager

% Remote Access Connection Manager

Cancel

on

Extended 2, Standard

NOTE

In both cases, see NiceLabelControl Center user guide for more
details on the available authentication methods and user privileges.

232

* Your Control Center runs in Label Cloud. The reason why your configuration fails to
load, is incorrect Automation service identity. The Automation service identity
must match the Label Cloud user sign in.

You can find your configuration's Automation service identity in Automation
Manager > About tab.

Nicelabel Automation Manager - Enterprise - Pre-release version - for testing purposes o.

Triggers

o

Log About

- oW
X 0

Nicelabel Automation Manager

License Information
Product level

Edition

Printer limit

Account

User

Automation service identity

Software Information
Versiol 2 Dev (Build 5222)
Copyright © 1395-2018 Euro Plus.

Enterprise
Label Cloud Business

100 printer(s)

@ Sign out

@ricelabel.com)

NiceLabel is a registered trademark. Property of Eure Plus d.o.o.

All rights reserved.

233

6. Performance and Feedback
Options

6.1. Parallel Processing

@ PRODUCT LEVEL INFO
This functionality is available in LMS Enterprise and LMS Pro.

NiceLabel Automation supports parallel processing for both — inbound and outbound processing.
This ensures maximum efficiency on any system with installed software. NiceLabel Automation
executes multiple tasks simultaneously, while still preserving the order in which the triggers have
been added. Throughput of label job processing depends greatly on the hardware in use.

Inbound Parallel Processing

You can run many triggers on the same machine. They all simultaneously respond to changes in the
monitored events. Each trigger remembers the data of unprocessed events on the queue list. This list
buffers incoming data in case none of the print processes is available at the moment. As soon as one
of the print processes becomes available, the first job is taken from queue using FIFO (First In, First
Out) principle. This ensures the correct order of inbound data processing. However, it does not ensure
the FIFO principle for printing. See the next section below.

E NOTE

Parallel processing means more than just running multiple triggers at once. Each
trigger can also allow concurrent connections. TCP/IP, HTTP, and Web Service triggers
all accept concurrent connections from many clients. Also, file trigger can be
configured to monitor a set of files in a folder. This is configurable by file mask.

Outbound Parallel Processing

Usually, the result of a trigger is label printing process. For this process, you are using data received
by the trigger to print it on labels. NiceLabel Automation service runs the printing processes (aka
"print engines") in parallel in the background. Modern processors have two or more independent
central processing units called cores. Multiple cores can run multiple instructions at the same time,
increasing the overall speed of processing. In case of NiceLabel Automation, multiple cores increase
print job processing, and ultimately label printing performance.

By default, each NicelLabel Automation instance runs each printing process as a separate thread on
every available core. The more powerful CPU you have, the more throughput is available. This
maximizes the usage of the available CPU power. The software installs with reasonable defaults

234

defining that every available core accommodates a single thread for print processing. Under normal
circumstances, there is no need to make any changes on the defaults. If the configuration setup
requires a change, see section Changing Multi-threaded Printing Defaults.

If there are multiple printing processes available, the data from the first event can be printed by one
printing process, while the data from the second event could be printed by a different printing
process simultaneously, if the second printing process is available at that time. If the second event did
not provide a significant amount data, the printing process might provide the data for the printer
faster than the first printing process, breaking the order. In such case, data from the second event
could print before the data from the first event. To ensure FIFO principle also for printing, see section
Synchronous Print Mode.

6.2. Caching Files

To improve the time-to-first label and performance in general, NiceLabel Automation supports file
caching. When loading the labels, images and database data from network shares, you might
experience delays while printing the labels. NiceLabel Automation must fetch all required files before
the printing process can begin.

There are two levels of caching that complement each other.

* Memory cache: Memory cache stores the already used files. The labels that have been used at
least once are loaded in the memory cache. When a trigger requests a printout of the same
label, the label is immediately available for printing process. Memory cache is enabled by
default. Its contents are cleared after you remove or reload a configuration. The label file is
checked for changes for each Open Label action. If there is a newer label available, it loads
automatically, replacing the old version in the cache.

@ NOTE

After alabel is not in use for 8 hours, it is offloaded from the memory cache.

* Persistent cache: Persistent cache stores data to disk —its role is to provide medium term
storage for files. Caching is managed per file object. After afile is being requested from the
network share, the service first verifies if the file is already present in cache, and uses it. If a file
is notin the cache, it is fetched from network share and cached for future use. The cache
service continuously updates cache contents with new versions of files. You can configure the
time intervals for version checking in Options menu.

Prolonging the Time Period for Label Offloading

After a label is used for the first time, it is loaded in the memory cache. The label becomes available
for instant printing the next time it is required. Memory cache housekeeping process removes all
labels that haven't been in use for 8 hours or more.

To prolong the time interval in which labels are offloaded from memory cache, do the following:

235

1. Navigate to the NiceLabel Automation System folder.
%PROGRAMDATA%\NiceLabel\NicelLabel 2019

2. Make a backup copy of the file pr oduct . confi g.
3. Openproduct. confi gina texteditor. The file has XML structure.
4. Add the element Conmon/ Fi | eUpdat er/ Pur geAge.

5. This parameter defines the number of seconds that define the time frame for keeping labels in
memory cache. NiceLabel Automation keeps track of the time when each label was used for
printing for the last time. When that time frame reaches the defined threshold, the labels are
unloaded from memory.

NOTE
Default value: 28800 (8 hours). Maximum value is 2147483647.

The pr oduct . confi g file should have the following contents:

<?xml version="1.0" encoding="utf-8"?>
<confi guration>
<Conmon>
<Fi | eUpdat er >
<Pur geAge>28800</ Pur geAge>
</ Fi | eUpdat er >
</ Comron>

</ configuration>

6. After you save the file, NiceLabel Automation Service automatically applies the setting.

Enabling Persistent Cache

@ PRODUCT LEVEL INFO

The functionality from this section is available in LMS Enterprise.

To enable and configure persistent cache, open the Option, select NiceLabel Automation and enable
Cache remote files.

* Refresh cache files: Defines the time interval in minutes in which the files in the cache will be
synchronized with the files in the original folder. This is the time interval that you allow the
system to use the old version of the file.

* Remove cache files when older than: Defines the time interval in days for removing all files in
cache that haven't been accessed for the specified time duration.

NiceLabel Automation uses the following local folder to cache remote files:

236

%PROGRAMDATA%\NiceLabel\NicelLabel 2019\FileCache

S NOTE

File caching supports label and picture file formats. After you enable file caching,
restart Automation service to make the changes take effect.

Forcing Reload of the Cache Content
NiceLabel Automation automatically refreshes cache content upon the defined time interval. Default
value is 5 minutes.

To manually force cache reloading, do the following:

1. Open Automation Manager.
2. Locate the configuration that contains the trigger for which you want to force-reload labels.
3. Right-click the configuration.

4. Select Reload Configuration.

6.3. Error Handling

If an error occurs while executing an action, NiceLabel Automation stops executing all actions in the
trigger. If there are actions defined after the current action that reports an error, these actions are not
executed.

For example, actions are defined as shown in the screenshot below. If Set Printer action fails due to
invalid name or inaccessible printer, the actions Print Label and HTTP Request are not executed.
Action processing stops at Set Printer, Automation Manager shows the trigger in error state and the
trigger status feedback (if enabled) reports "wrong printer specified / printer not accessible".

However, in this particular case you don't want to use synchronous feedback which is sent
automatically if enabled in the trigger that supports synchronous feedback. Status feedback must be
provided asynchronously using the HTTP Request action after the print job is created (or not). After
the print process completes, update an application with its status. To achieve this, send the
application an HTTP formatted message.

In this case, the HTTP Request action must be executed regardless of success of all the actions in
the list above it. Enable the Ignore failure option for all actions that are placed above the HTTP
Request action. The option is available under Execution and error handling options of an action.

237

»/

Action Execution and Error Handling

Execution options:

¥| Enabled

Condition:

Error handling:
Ignnr&failure

Save error to variable -

If a particular action fails, NiceLabel Automation starts executing the next action on the higher level of
hierarchy.

Example

If the Set Printer action on level 1.1 fails, the execution does not continue with Print Label action on
level 1.2 because it will likely fail as well. It continues with the HTTP Request action on level 2,
because it is the next action in the higher-level hierarchy.

The same logic can be implemented for looping actions, such as Use Data Filter, Loop and For Each
Record. With these actions, you iterate through all members on the list. If processing of one member
fails from whatever reason, by default NiceLabel Automation stops processing all other members and
reports an error. If you enable Ignore failure option, the processing of the failed member stops, but
NicelLabel Automation continues with the next member. At the end, the error is reported anyway.

6.4. Synchronous Print Mode

@ PRODUCT LEVEL INFO
This functionality is available in LMS Enterprise and LMS Pro.

6.4.1. Asynchronous Print Mode

The default operation mode of NiceLabel Automation is asynchronous mode. Asynchronous mode is
a form of printing, during which a trigger sends data for printing and closes connection with the print
subsystem. The trigger does not wait for the result of the printing process and does not receive any
feedback. Immediately after the data is sent, the trigger is ready to accept a new incoming data
stream.

238

Asynchronous mode boosts trigger performance and increases the number of triggers that can be
processed in a time frame. Each printing process has buffer in front - this is where the trigger feeds
the print requests in. The buffer accommodates for trigger spikes and makes sure no data is lost.

If an error occurs during processing, it still gets logged in Automation Manager (and NiceLabel
Control Center, if you use it), but the trigger by itself is not aware of it. When running Automation in
asynchronous print mode, you cannot define conditional actions that would execute, if the trigger
executionisin error.

- Trigger Actions - Execution

6.4.2. Synchronous Print Mode

In comparison to asynchronous mode, synchronous mode doesn't break connection when the
printing process begins. In this mode, the trigger sends data for printing and keeps the connection to
the print subsystem established for as long as it is busy executing actions. When the printing process
is complete (successfully or with an error), the trigger receives feedback about the status.

You can use this information inside the actions that are defined in the same trigger and decide to
execute another action in case an error occurs. You can also send print job status back to the data-
issuing application. For more information, see section Print Job Status Feedback.

- Trigger Actions Execution

Example

You can report printing status to the ERP application that provided the data.

You are going to use the synchronous mode if you want to receive status feedback within the trigger,
or if you want to ensure FIFO printing mode. In this case, the data that is received with trigger events
is printed using the same order as during its reception.

@ NOTE

When a trigger runs in synchronous printing mode, it communicates with a single
printing process only. Enabling synchronous printing mode ensures the FIFO method
of manipulating events in the outbound direction (printing). By default, multi-core
processing cannot ensure the printing order.

Enabling the Synchronous Print Mode
Print mode is definable per-trigger. To enable synchronous mode in a trigger, do the following:

239

1. Open the properties of the trigger.
2. Goto Settings tab.
3. Select Other.

4. Insection Feedback from the Print Engine, enable option Supervised printing.

6.5. Print Job Status Feedback

The application that provides data for label printing into NiceLabel Automation might expect to
receive information about print job statuses. Feedback can be as simple as "All OK" in case of a
successful print job generation, or detailed error description in case of an issue. Due to performance
reasons, NiceLabel Automation NiceLabel Automation disables feedback possibility by default. This
ensures high-throughput printing as trigger doesn't care about the print process execution. The
errors are logged to log database, but the trigger does not handle them.

You can also use this method to send feedback about other data the trigger collects. This can be
status of network printers, number of jobs in the printer spooler, list of labels in a folder, list of
variables in the specified label file, and many more.

@ NOTE

To enable feedback support from print engine, enable synchronous print mode. For
more information, see section Synchronous Print Mode.

Enable print job status feedback using one of the two available methods.

Trigger provides feedback about print job status (Synchronous feedback)

Some triggers have built-in feedback possibility. If synchronous print mode is enabled, the trigger is
internally aware of the job status. The client can send the data into trigger, keep the connection open
and wait for the feedback. To use this feedback method, select and use a trigger type that supports
providing feedback.

If an error happens with any of the actions, the internal variable Act i onLast Er r or Desc contains the
detailed error message. You can send its value as-is or customize it.

For more information, see details about the respective trigger types.

* Web Service Trigger: This trigger type supports feedback by design. The WSDL (Web Service
Description Language) document describes details about the Web Service interface and
instructs how to enable feedback. You can use the default reply that returns error description in
case the print action failed. Or, you can customize the response and send back content of any
variable. The variable itself can contain any data, including label preview or label print job (binary
data).

* HTTP Server Trigger: This trigger type supports feedback by design. NiceLabel Automation
uses standard HTTP response codes to indicate print job status. You can customize the HTTP

240

response and send back content of any variable. The variable itself can contain any data,
including label preview or label print job (binary data).

» TCP/IP Server Trigger: This trigger supports feedback, but not automatically. To make it deliver
feedback, configure the data-providing client not to break the connection once the data is sent.
After the print process completes, the next action on the list (Send Data to TCP/IP Port) might
have the setting Reply to sender enabled. Provide feedback over the established still-open
connection.

Action provides feedback about print job status (Asynchronous feedback)

In case of triggers that do not natively support feedback or in case you want to send feedback
messages during the trigger processing, define an action that sends feedback to a selected
destination. In this case, the data-providing application can close the connection as soon as the
trigger data is delivered.

Example

You used the TCP/IP trigger to capture the data. The client dropped connection immediately after the
data was sent, so we cannot reply over the same connection. In such cases, you can use another
channel to send feedback. You can configure any of the outbound-connectivity actions, such as
Execute SQL Statement, Open Document/Program, HTTP Request, Send Data to TCP/IP Port, and
others. You would place such action under the Print Label action.

If you want to send feedback only for specific status, such as "error occurred", you can use the
following methods.

* Using condition on action: Print job status is exposed in two internal variables
(Acti onLast Error | Dand Act i onLast Er r or Desc). The first one contains error ID or
contains value 0 in case of no reported errors. The second one contains a detailed error
message. Use values of these variables in conditions on actions that you want to execute in
case of errors. For example, you would use the action HTTP Request after printing. The action
would send feedback in if an error occurred. To enable such feedback, do the following:

1. Open trigger properties.

2. Inribbon group Variable, click the Internal Variables button and enable variable
ActionLastErrorl D

3. Goto Actions tab.
4. Add the action Send Data to HTTP.
5. Inside the action's properties expand Show execution and error handling options.

6. For Condition, enter the following. The action with this condition executes only if an error
occursand Acti onLast Er r or | Dcontains the error ID (any value greater than 0). By
default, the conditions runs using VBScript syntax.

ActionLastErroriID > O

241

7. You also have to enable the Ignore failure option on each action you expect to fail. This
instructs Automation not to stop executing actions entirely, but to continue with the next
action on the same hierarchical level.

Ig NOTE

For more information, see section Error Handling.

* Using action Try: Action Try eliminates the need for coding conditions. The action gives you two
placeholders. Placeholder Do contains actions that you want to run. If any error occurs when
running them, the execution breaks, and actions in the On error placeholder are executed. You
would use outbound-connectivity actions in this placeholder to provide a print job status
feedback. For more information, see section Try.

6.6. Excluding printers from automated
printing

In certain cases, your printing environment requires you to exclude some of your printers from the
automated printing process. Possible reasons why you should exclude printers from the automated
printing are your company printing policy or the limitations of you license.

By default, Automation prevents automated printing using file printers, such as Microsoft Shared Fax
Driver, Microsoft Print To PDF, Microsoft XPS Document Writer, and similar. These file printers require
the users to manually select the location for their "printouts". The request for manual user intervention

causes the print engine to stop, reporting an error.

To prevent the Automation from using specific printers in the running configurations:

@ NOTE

When specifying the excluded printers from the automated printing in the
product . confi g file, you must also explicitly list your file printers.

1. Openfile pr oduct . confi g in text editor.
The file is located here:
%PROGRAMDATA%\NiceLabel\NiceLabel 2019\product.config

2. Create a backup copy of the pr oduct . confi g file.

3. Automation uses two parameters to check which printer model and printer port should be
excluded from automated printing. Add these parameters to your pr oduct . confi g file.

* /I ntegrationService/Di sabl edPrinterDrivers and type the printer models you
want to exclude from automated printing.

242

* /I ntegrationService/ D sabl edPri nt er Port s and type the ports you want to
exclude from automated printing.

o= Nicelabel Graphics Driver Properties

General | Sharing | Ports | Advanced | Color Management | Security | Driver Settings

“q} Nicelabel Graphics Driver

Location:

Comment:

Model: Nicelabel Graphics Driver

Features e

Color: No Paperavailak’:‘\-re-:--r---"""-— Use prlnter model hame.

Double-sided: No Custom
Staple: No
Speed: Unknown

Maximum resclution: 300 dpi

Preferences... Print Test Page

oK Cancel HApply Help

<confi guration>
<IntegrationService>
<Di sabl edPrinterDrivers>NiceLabel Graphics
Driver,NicePrinter1200dpi</ Di sabl edPrinterDrivers>

<Di sabl edPri nt er Port s>LPT1,LPT2</ Di sabl edPri nt er Port s>
</IntegrationService>
</ configuration>

4. Once you define the printer models and printer ports in the pr oduct . confi g file, you can
still run your Automation configurations, but your updated settings prevent printing on the

listed printers. Automation reports an error if the these printers are part of the running
configurations.

|§ NOTE

Automated printing does not stop if the excluded printers are used in the
Redirect Printing to File action.

6.7. Using Store/Recall Printing Mode

Store and Recall printing mode optimizes the printing process. It enhances printer response by
reducing the amount of data that needs to be sent during repetitive printing tasks.

243

With store and recall mode activated, NiceLabel Automation does not need to resend the complete
label data for each printout. Instead, the labels (templates) are stored in the printer memory. Fixed
objects are stored as such, while placeholders are defined for the variable objects. NiceLabel
Automation only sends data for variable label objects and the recall commands. The printer applies
received data in the placeholders on the stored label and prints the label by recalling it from the
memory. Typically, a few bytes of data are sent to the printer, compared to a few kilobytes as would be
the case during normal printing.

The action consists of two processes:

» Store label: During this process, the application creates a description of the label template
formatted in the selected printer's command language. When done, the application sends the
created command file to the printer memory and stores it. You can store a label from label
designer or from NiceLabel Automation using the Store label to printer action.

|§ NOTE

The label must have the store and recall printing mode defined in its properties
before you can store it to printer.

* Recall (print) label: A label stored in the printer memory is printed out immediately. Using the
recall process, NiceLabel Automation creates another command file to instruct the printer which
label from its memory should be printed. The actual amount of data sent to the printer depends
on the current situation. For fixed labels without any variable contents, the recall command file
only contains the recall label command. For variable labels that contain variable fields, the
command file includes the values for these variables and the recall label command.

To recall a label from NiceLabel Automation just use one of the usual printing actions. When
executed, the action analyzes the label and enables the appropriate printing mode: normal print
or recall print, as defined in the label.

A WARNING

Before activating this mode, make sure the appropriate printer driver is selected for
the label printer. Not all label printers have the ability to use the store and recall
printing mode. The printer driver for which the label was created in the label designer
must also be installed on the machine where NiceLabel Automation is running.

6.8. High-availability (Failover) Cluster

@ PRODUCT LEVEL INFO

The functionality from this section is available in LMS Enterprise.

NicelLabel Automation supports Microsoft high-availability (fail-over) cluster. A fail-over cluster is a
group of independent computers that work together to increase the availability of label printing

244

through NiceLabel Automation. The clustered servers (called nodes) are connected by physical
cables and by software. If one or more of the clustered nodes fail, other nodes begin to provide
service (a process known as fail-over). In addition, the clustered roles are proactively monitored to
verify that they are working properly. If they are not working, they are restarted or moved to another
node. The clients providing data connect to the IP address that belongs to the entire cluster, and not
to the individual node IP addresses.

To enable NicelLabel Automation to perform in a high-availability cluster, do the following:

» Set up Microsoft Failover Clustering feature on your Windows Servers.
* Install NiceLabel Automation on each node.

* Enable fail-over cluster support in NiceLabel Automation properties on each node.
Do the following:

1. Open File > Options > Automation.
2. Under Cluster Support group, enable Failover Cluster Support.

3. Browse for the folder, located outside of both nodes, but still accessible with full access
privileges to NiceLabel Automation software. Important system files that both nodes
need will be copied to this folder.

» Configure the cluster to start NiceLabel Automation on the second node in case the master
node is down.

6.9. Load-balancing Cluster

@ PRODUCT LEVEL INFO

The functionality from this section is available in LMS Enterprise.

NiceLabel Automation supports Microsoft load-balancing cluster. Load-balancing cluster is a group
of independent computers that work together to increase the availability and scalability of label
printing through NiceLabel Automation. The clustered servers (called nodes) are connected by
physical cables and by software. The incoming requests for label printing are distributed among all
nodes in a cluster. The clients providing data connect to the IP address belonging to the cluster, and
not to individual node IP addresses.

@ NOTE

You can use TCP/IP-based triggers with load-balancing cluster. These triggers are
TCP/IP Server Trigger, HTTP Server Trigger, Web Service Trigger, and Cloud Trigger.

To enable NicelLabel Automation for load-balancing, do the following:

245

» Set up Microsoft Load-balancing Clustering feature in your Windows Servers.
* Install NiceLabel Automation on each node.

* Load the same configuration files in Automation Manager on each node.

246

1.

Understanding Data Structures

This section demonstrates data structures that are frequently used in automation scenarios. When
working with various data files, we have to analyze their structure, extract the relevant values from
fields of interest, and print them on labels. Each of the below listed case is used in sample
configurations that are included in the Automation installation package. For more information, see
section Examples.

* Text Database

Compound CSV
Binary Files
Legacy Data
Command Files
XML Data

JSON Data

7.1. Binary Files

Binary files contain plain text and binary characters, such as control codes (characters below ASCII
code 32). The Unstructured Data Filter supports binary characters. You can use binary characters to
define fields positions, and you can also use binary characters for field values.

Typical example would be data export from a legacy system, in which the data for each label is
delimited with a Form Feed character <FF>.

7.1.1. Example

In this case, Automation trigger captures the print stream. The yellow-highlighted data section must
be extracted from the stream and sent to a different printer. The filter is configured to search for <FF>
as field-end position.

247

%_12345}(@PJL USTATUSOFF
@QPJL INFO STATUS

@PJL USTATUS DEVICE=ON

BRI - 12345 < [aaRfey»-12345%

~M027L
~h02700270
D11

015

PE

a
ol

Q0001
131100000300070001-001-001
1e42055007500500001001019
1322000001502859

W

E

BRI - 1234 5 x|SRy > -1 2345X@PJL USTATUSOFF
RoRIeR-12345%

For more information, see section Examples.

7.2. Command Files

Command files are plain text files containing commands that are executed one at a time from top to
bottom. NiceLabel Automation supports native command files, as well as Oracle and SAP XML
command files. For more information see section Command Files Specifications, Oracle XML
Specifications, and SAP All XML Specifications.

7.2.1. Example

The label | abel 2. nl bl is going to print to CAB A3 203DPI printer.

LABEL "label2_nlbl"

SET code="12345"

SET article="FUSILLI"
SET ean="383860026501"
SET weight="1,0 kg"
PRINTER "CAB A3 203DPI*
PRINT 1

248

For more information, see section Examples.

7.3. Compound CSV

Compound CSV is a text file that contains data in two structures —in a standard CSV structure, and in
a multi-line header that uses a non-standard structure. The contents of a compound CSV file cannot
be parsed using a single filter. To parse data in both structures, configure two separate filters:

e Structured Text Filter for fields in CSV structure

e Unstructured Data Filter for fields in the header non-standard structure

Configuration that includes a compound CSYV file, requires two actions to execute both filters on the
received data.

7.3.1. Example

Data items from line 3 until the end of the document have CSV structure and are parsed by the
Structured Text filter. Data items in the first two lines do not have any particular structure and are
parsed using Unstructured Data filter.

OPTPEPPQPFO NLO04002 ;F75- TEP77319022891-001- 001

OPT2 zg2lbprt.p 34.1.7.7 GOLF+ label
print“printer';"label™;"Ibl_qty";"f logo™;"f _field_1";"f field_2";"f field_3
"Production0l1l";"label.nlbl";"1"; "l ogo-ni cel abel . png"; "ABCS1161P"; " Post :
non g

"Production01"; "l abel.nlbl";"1"; "I ogo-ni cel abel . png"; " ABCS1162P"; " Post :
nom o

"Production0l1"; "l abel.nlbl";"1"; "I ogo-ni cel abel . png"; " ABCS1163P"; " Post :
non g
"Production0l1";"label.nlbl";"1"; "I ogo-ni cel abel . png"; " ABCS1164P"; " Post :
non g
"Production0l1";"label.nlbl";"1"; "I ogo-ni cel abel . png"; " ABCS1165P"; " Post :
neon g

For more information, see section Examples.

7.4.Legacy Data

Legacy data are unstructured or semi-structured exports from legacy applications. These exports do
not use CSV or XML data structures. To extract relevant data from such files, use the Unstructured

249

Data Filter and define the positions of fields of interest. The filter in Automation extracts field values
and makes them available for printing on labels.

7.4.1. Example

The file below follows no structure related rules. Each field must be configured manually.

HAW.EY ANNI E ER12345678 ABC XYZ

9876543210
PRE OP 07/11/712 F 27/ 06/ 47 St. Ken Hospital 3
G015 134 557 564 9 A- 08/11/12 LDBS F- PB 1
GO15 134 654 234 0O A- 08/11/12 LDBS F- PB 2
G015 134 324 563 C A- 08/11/12 LDBS F- PB 3

Antibody Screen: Negative
Store Sample :
SAMPLE VALID FOR 24 HOURS, NO TRANSFUSION HISTORY SUPPLIED

07/11/12 B,31.0001245_E O Rh(D) Pos PHO
RLUH BT

For more information, see section Examples.

7.5. Text Database

Text database is an alias for text files with structured fields, such as CSV (comma separated file), or
text files with fixed-width fields. In either case, you can click the Import Data Structure button and
follow the wizard to import the fields. If you have a data file with delimited structure and the number of
fields varies from one copy to another, enable the Dynamic structure feature and let NicelLabel
Automation handle the data extraction and mapping to variables automatically. For more information,
see section Enabling Dynamic Structure.

7.5.1. Example

* File with delimited fields: The first line in the file contains field names that the filter can import.

Product 1D;Code EAN;Product_desc;Package
CAS006;8021228110014 ; CASONCELL1 ALLA CARNE 250G;6

250

PAS501;8021228310001;BIGOLI 250G;6

PAS502G1 ;8021228310018 ; TAGLIATELLE 250G;6
PAS503GI ;8021228310025 ; TAGLIOLINI 250G;6
PAS504 ;8021228310032 ; CAPELLI D"ANGELO 250G;6

* File with fixed-width fields: Fields contain a fixed number of characters.

CAS006 8021228110014 CASONCELLI ALLA CARNE 250G 6
PAS501 8021228310001 BIGOLI 250G 6
PAS502G1 8021228310018 TAGLIATELLE 250G 6
PAS503GI 8021228310025 TAGLIOLINI 250G 6
PAS504 8021228310032 CAPELLI D*ANGELO 250G 6

For more information, see section Examples.

7.6. XML Data

@ PRODUCT LEVEL INFO
This functionality is available in LMS Enterprise and LMS Pro.

XML stands for eXtensible Markup Language. XML tags are not predefined, you are free to define your
own tags to describe the data. XML is designed to be self-descriptive.

XML structure is defined by elements, attributes (and their values), and text (element text).

7.6.1. Examples

Oracle XML

Processing of Oracle XML is an integral part of the software. You don't have to configure any filters to
extract the data, just run the built-in action Run Oracle XML Command File. For more information on
the XML structure, see section Oracle XML Specifications.

<?xml version="1.0" standalone=""no"?>
<l abel s _FORMAT="case. nl bl ** _PRINTERNAME=""Pr oducti on01" _QUANTITY=""1">
<| abel >
<vari abl e name="CASEID"">0000000123</ vari abl e>
<vari abl e name=""CARTONTYPE"/ >
<vari abl e name="ORDERKEY''>0000000534</ vari abl e>
<vari abl e name="BUYERPO"/ >

251

<vari abl e name=""ROUTE"></vari abl e>
<vari abl e name="CONTAINERDETAILID"">0000004212</ vari abl e>
<vari abl e name=""SERIALREFERENCE'">0</ vari abl e>
<vari abl e name="FILTERVALUE'">0</vari abl e>
<vari abl e name="INDICATORDIGIT">0</ vari abl e>
<vari abl e name="DATE">11/19/2012 10: 59: 03</vari abl e>
</ | abel >
</l abel s>

General XML
If the XML structure in not natively supported in the software, define the XML filter, and define rules to
extract the data. For more information, see section Understanding Filters.

<?xml version="1.0" encoding="utf-8"7>
<asx: abap xmlns:asx="http://www.sap.com/abapxml"™ version="1.0">
<asx:val ues>
<NI CELABEL_JOB>
<TI MESTAMP>20130221100527. 788134</ TI NESTAVP>
<USER>PGRI </ USER>
<| T_LABEL_DATA>
<LBL_NANME>goods_r ecei pt. nl bl </ LBL_NAVE>
<LBL_PRI NTER>Pr oduct i on01</ LBL_PRI NTER>
<LBL_QUANTI TY>1</ LBL_QUANTI TY>
<MAKTX>MASS ONE</ MAKTX>
<MATNR>28345</ MATNR>
<MEl NS>KG</ MEI NS>
<WDATU>19. 01. 2012</ WDATU>
<QUANTI TY>1</ QUANTI TY>
<EXI Dv>012345678901234560</ EXI DV>
</ | T_LABEL_DATA>
</ NI CELABEL_JOB>
</ asx:val ues>
</ asx: abap>

NiceLabel XML

Processing of NiceLabelXML is an integral part of the software. You don't have to configure any filters
to extract the data, just run the built-in action Run Command File. For more information on the XML
structure, see section XML Command File.

<ni ce_comands>
<| abel name="I abel 1. nl bl ">

<session_print_job printer="CAB A3 203DPI " skip=0 job name="job
name 1" print_to_file="fil ename 1">

252

<sessi on quantity="10"">
<vari abl e name="variable name 1" >variabl e val ue 1</
vari abl e>
</ sessi on>
</ session_print_job>

<print_job printer="Zebra R-402” quantity="10" skip=0
identical_copies=1 number_of _sets=1 job_name="j ob nane 2"
print_to_file="fil enane 2'">
<vari abl e name="variablel”™ >1</vari abl e>
<vari abl e name="variable2" >2</vari abl e>
<vari abl e name="variable3" >3</vari abl e>
</print_job>
</ | abel >
</ ni ce_conmands>

For more hands-on information on how to work with XML data, see section Examples.

7.7. JSON Data

@ PRODUCT LEVEL INFO
This functionality is available in LMS Enterprise and LMS Pro.

JavaScript Object Notation (JSON) is an open-standard file format. JSON uses human-readable text
to transmit data objects consisting of name-value pairs, and array data types (or any other
serializable value). JSON is a very common data format used for asynchronous browser-server
communication, including as a replacement for XML.

There are multiple online resources describing the similarities and differences between JSON and
XML. The table below describes a portion of them:

JSON XML
Itis JavaScript Object Notation It is Extensible markup language
It is based on JavaScript language. It is derived from SGML.
Itis a way of representing objects. It is a markup language and uses tag structure

to represent data items.

It does not provides any support for It supports namespaces.
namespaces.
It supports array. It doesn't supports array.

253

JSON

Its files are very easy to read as compared to
XML.

It doesn't use end tag.
Itis less secure.
It doesn't supports comments.

It supports only UTF-8 encoding.

XML

Its documents are comparatively difficult to
read and interpret.

It has start and end tags.
It is more secure than JSON.
It supports comments

It supports various encoding.

Source: https://www.geeksforgeeks.org/difference-between-json-and-xml/

Examples

{
"DELIVERYNOTE": {

"LIST_CUSTOMER_INFO™: {
"CUSTOMER_INFO": {
""CUSTOMER_NAME": "Customer A",
"CUSTOMER_STREET_ADDRESS": "Test St",
""CUSTOMER_POST_ADDRESS™: "1234, Test City",
"CUSTOMER_NUMBER™: "1234",
"CURRENCY": "EUR",
"DELIVERY_METHOD": "Express delivery",
"EDI_INFORMATION": "EDI",
"ORDER_TYPE": "CSO",
"ORDER_NUMBER™: "123",
“"LIST_ITEM™: {
"ITEM": [
{
"ARTICLE_NUMBER™: '0001",
"ARTICLE_NAME™": "Collins Complete Woodworker®s Manual',
"PRICE"™: "23.3"

}.
{
"ARTICLE_NUMBER™: "0002",
"ARTICLE_NAME": "Be Careful What You Wish For (Clifton
Chronicles)",
"PRICE"™: "16.6"
}.
{
"ARTICLE_NUMBER™: "0003",
"ARTICLE_NAME": "Mockingjay (part 111 of Hunger Games
Trilogy)"”,
"PRICE"™: "25.0"
}
1
by

254

https://www.geeksforgeeks.org/difference-between-json-and-xml/

“"NICELABEL_JOB™": {
"TIMESTAMP™ : "20130221100527.788134",

"USER":

"PGRI",

IT_LABEL_DATA"™: {

"LBL_NAME™": "goods_receipt.nlbl",
“"LBL_PRINTER": "Production01",
"LBL_QUANTITY™: "1",

“"MAKTX™: ""MASS ONE",

"“"MATNR": ''28345",

“MEINS™: "KG",

"WDATU"™: "19.01.2012",
“"QUANTITY™: 1",

"EXIDV": '012345678901234560"

255

8. Reference and Troubleshooting

8.1. Command File Types

8.1.1. Command Files Specifications

Command files contain instructions for the print process. These instructions are expressed with
NiceLabel commands. Commands are executed one at a time from beginning to the end of the file.
The files support Unicode formatting, so you can include multi-lingual contents. Command files come
in three different flavors.

8.1.2. CSV Command File

The commands available in CSV command files are a subset of NiceLabel commands. The following
commands are available: LABEL, SET, PORT, PRINTER and PRINT.

CSV stands for Comma Separated Values. CSV file is a text file in which values are delimited by
comma (,) character. Such text file can contain Unicode value (important for multi-language data).
Each line in the CSV command file contains commands for a single label print action.

The first row in a CSV command file must contain commands and variable names. The order of
commands and names is not important, but all records in the same data stream must follow the same
structure. Variable nane- val ue pairs are extracted automatically and sent to the referenced label. If
the variable with the name from CSV does not exist on the label, no error message is displayed.

8.1.2.1. Sample CSV Command File

The sample presents the structural view on the fields that you can use in the CSV command file.

@Label ,@Printer,@Quantity,@Skip,@ldenticalCopies,NumberOfSets,@Port,Product_
ID, Product_Name

labell.nlbl, CAB A3 203 DPI, 100, , , , , 100A, Product 1

label2.nlbl, Zebra R-402, 20, , , , , 200A, Product 2

CSV Commands Specification

256

The commands in the first line of data must be expressed with at (@ character. The fields without @ at
the beginning are names of variables. These fields are extracted with their values as nane- val ue

pairs.

8.1

@Label: Specifies the label name to be used. It's a good practice to include label path and
filename. Make sure the service user can access the file. For more information, see section
Access to Network Shared Resources in NiceLabel Automation user guide. A required field.

@Printer: Specifies the printer to be used. It overrides the printer defined in the label. Make sure
the service user can access the printer. For more information, see section Access to Network
Shared Resources. Optional field.

@Quantity: Specifies the number of labels to be printed. Possible values: numeric value,
VARIABLE or UNLIMITED. For more information, see section Print Label. A required field.

@SKkip: Specifies the number of labels to be skipped at the beginning of the first printed page.
This feature is useful if you want to re-use the partially printed sheet of labels. Optional field.

@IldenticalCopies: Specifies the number of label copies that should be printed for each unique
label. This feature is useful when printing labels with data from database or when you use
counters, and you need label copies. Optional field.

@NumberOfSets: Specifies the number of times the printing process should repeat. Each label
set equals a single occurrence of printing process. Optional field.

@Port: Specifies the port name for the printer. You can override the default port as specified in
the printer driver. You can also use it to redirect printing to file. Optional field.

Other field names: All other fields define names of variables from the label. The field contents
are saved to the variable of the same name as its value.

3. JOB Command File

JOB command file is a text file that contains NiceLabelcommands. The commands execute in top-to-
bottom order. The commands usually start with LABEL (to open label), then SET (to set variable value)
and finally PRINT (to print label). For more information about the available commands, see section

Using Custom Commands.

8.1.

3.1. Sample JOB Command File

This JOB file open| abel 2. nl bl , sets variable values and prints a single label. Because no PRINTER
command is used to redirect printing, the gets printed using the printer name as defined in the label.

LABE
SET
SET
SET

L "label2_.nlbl"
code="12345"
article="FUSILLI"
ean='383860026501"

257

SET weight="1,0 kg"
PRINT 1

8.1.4. XML Command File

The commands available in the XML Command files are a subset of NiceLabel commands. The
following commands are available: LOGIN, LABEL, SET, PORT, PRINTER, SESSIONEND,
SESSIONSTART and SESSIONPRINT. The syntax for these commands differs to some extent if they
are used in an XML file.

Root element in the XML Command file is <Ni ce_Conmmands>. The next element that must follow is
<Label >. This element specifies the label to be used.

To start printing the labels , there are two available methods: print labels normally using the element
<Print _Job>, or print labels in a session using the element <Sessi on_Pri nt _Job>. You can also
change the printer to which the labels are printed, and additionally set the variable value.

8.1.4.1. Sample XML Command File

The sample below serves as a structural overview of the elements and their attributes as you can use
them in an XML command file

<ni ce_comuands>
<| abel name="labell.nlbl">

<session_print_job printer="CAB A3 203DPI" skip=0 job_name="job
name 1" print _to file="filename 1'>
<sessi on quantity="10">
<vari abl e name="variable name 1" >variable value 1</
vari abl e>
</ sessi on>
</session_print_job>

<print_job printer="Zebra R-402" quantity="10" skip=0
identical _copies=1 number_of sets=1 job name="job name 2"
print_to file="filename 2'>
<vari abl e name="variablel" >1</vari abl e>
<vari abl e name="variable2" >2</vari abl e>
<vari abl e name="variable3" >3</vari abl e>
</ print_job>
</1 abel >
</ ni ce_commands>

258

XML Command File Specification

This section contains description of the XML Command file structure. There are several elements that
contain attributes. Some attributes are required while the others are optional. Some attributes can
occupy pre-defined values only, while for the others, you can specify custom values.

* <Nice_Commands>: This is a root element.

* <Label>: Specifies the label file to be opened. If the label is already opened, it does not re-open.
The label file must be accessible from this computer. For more information, see section Access
to Network Shared Resources. This element can occur several times within the command file.

* Name: This attribute contains label name. You can include the path along with the label
name. Required.

* <Print_Job>: The element that contains data for a single label job. This element can occur
several times within the command file.

* Printer:: Use this attribute to override the printer defined in the label. The printer must be
accessible from this computer. For more information, see section Access to Network
Shared Resources. Optional.

* Quantity: Use this attribute to specify the number of labels to be printed. Possible values:
numeric value, VARIABLE or UNLIMITED. For more information on parameters, see section
Print Label. Required.

 Skip: Use this attribute to specify how many labels should be skipped at the beginning.
This feature is useful if you print a sheet of labels to laser printer, but the sheet is partial
already printed. For more information, see the see section Print Label. Optional.

* Job_name: Use this attribute to specify the name of your job file. The specified name is
visible in the print spooler. For more information, see section Set print job name. Optional.

* Print_to_file: Use this attribute to specify the file name to which you want to save the
printer commands. For more information, see section Redirect Printing to File. Optional.

* ldentical_copies: Use this attribute to specify the number of copies you need for each
label. For more information, see section Print Label. Optional.

* <Session_Print_Job>: The element that contains commands and data for one or more
sessions. The element can contain one or more <Sessi on> elements. It considers session print
rules. You can use this element several times within the command file. For available attributes,
look up the attributes for the <Pr i nt _Job> element. All of them are valid, you just cannot use
the quantity attribute. See the description of <Sessi on> element to find out how to specify
label quantity in session printing.

» <Session>: The element that contains data for one session. When printing in session, all labels
are encoded into a single print job and sent to the printer.

* Quantity: Use this attribute to specify the number of printed labels. Possible values:
numeric value, string VARIABLE, or string UNLIMITED. For more information on parameters,
see section Print Label. Required.

259

¢ <Variable>: The element that sets the variable values on the label. This element can occur
several times within the command file.

* Name: The attribute contains the variable name. Required.

XML Schema Definition (XSD) for XML Command File

<?xml version="1.0" encoding=""utf-8"?7>
<xs: schema targetNamespace="http://tempuri.org/XMLSchema.xsd"
elementFormDefault="qualified" xmlns="http://tempuri.org/XMLSchema.xsd"
xmIns:mstns="http://tempuri.org/XMLSchema.xsd"” xmlns:xs="http://www.w3.0rg/
2001/XMLSchema’">
<xs: el ement name="nice_commands'>
<xs: conpl exType>
<XS: sequence>
<xs: el ement name="label" maxOccurs="unbounded"
minOccurs=""1">
<xs: conpl exType>
<Xs:sequence>
<xs: el ement name="print_job"
maxOccurs=""unbounded" minOccurs="0">
<xs: conpl exType>
<XS:sequence>
<xs: el ement name="'database"
maxOccurs=""unbounded™ minOccurs="0"">
<xs: conpl exType>
<xs: si npl eCont ent >
<xs: extension
base=""xs:string">
<xs:attribute
name=""name" type="'xs:string" use="required" />
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>
</ xs: el enent >
<xs: el ement name=""table"
maxOccurs=""unbounded™ minOccurs="0"">
<xs: conpl exType>
<xs: si npl eCont ent >
<xs: extension
base=""xs:string">
<xs:attribute
name=""name" type="'xs:string" use="required" />
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>

260

</ xs: el emrent >
<xs: el ement name="'variable"
maxOccurs=""unbounded"™ minOccurs="0"">
<xs: conpl exType>
<xs: si npl eCont ent >
<xs: extension
base=""xs:string">
<xs:attribute
name=""name" type="'xs:string" use="required" />
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>
</ xs: el emrent >
</ xs: sequence>
<xs:attribute name="quantity"
type="'Xs:string" use="required" />
<xs:attribute name="printer"
type="'xs:string" use="optional™ />
<xs:attribute name="skip"
type="'xs:integer" use="optional" />
<xs:attribute name="identical _copies"
type="'xs:integer" use="optional" />
<xs:attribute name="number_of sets"
type="'Xs:integer" use="optional" />
<xs:attribute name="job_name"
type="'xs:string" use="optional" />
<xs:attribute name="print_to_file"
type="'Xs:string" use="optional™ />
<xs:attribute
name="print_to_ file append" type="xs:boolean" use="optional™ />
<xs:attribute
name=""clear_variable values" type=""xs:boolean' use="optional™ />
</ xs: conpl exType>
</ xs: el emrent >
<xs: el ement name="'session_print_job"
maxOccurs=""unbounded"™ minOccurs="0">
<xs: conpl exType>
<Xs:sequence>
<xs: el ement name="database"
maxOccurs=""unbounded' minOccurs="0">
<xs: conpl exType>
<xs: si npl eCont ent >
<xs: extensi on
base=""xs:string">
<xs:attribute
name=""name" type="xs:string"” use="required" />

261

</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>
</ xs: el enent >
<xs: el ement name=""table"
maxOccurs=""unbounded’™ minOccurs="0">
<xs: conpl exType>
<xs: si npl eCont ent >
<xs: extensi on
base=""xs:string">
<xs:attribute
name=""name" type="'xs:string" use="required" />
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>
</ xs: el enent >
<xs: el enent name="'session"
minOccurs=""1" maxOccurs="unbounded'>
<xs: conpl exType>
<XS: sequence>
<xs: el enent
name="variable" minOccurs="0" maxOccurs="unbounded>
<xs: conpl exType>

<xs: si npl eCont ent >

<xS: extensi on base="xs:string">

<xs:attribute name="name" type="Xxs:string" use="required" /
>
</
XS: ext ensi on>
</
xs: si npl eCont ent >
</ xs: conpl exType>
</ xs: el emrent >
</ xs: sequence>
<xs:attribute
name=""quantity" type="'xs:string" use="required" />
</ xs: conpl exType>
</ xs: el emrent >
</ xs: sequence>
<xs:attribute name="printer"
type="'Xs:string" use="optional™ />
<xs:attribute name="skip"
type="'xs:integer’ use="optional™ />

262

<xs:attribute name="job_name"
type="'Xs:string" use="optional" />
<xs:attribute name="print_to_file"
type="'Xs:string" use="optional™ />
<xs:attribute
name="print_to file append" type="xs:boolean" use="optional™ />
<xs:attribute
name=""clear_variable_values"™ type="xs:boolean”™ use="optional™ />
</ xs: conpl exType>
</ xs: el ement >
</ xs: sequence>
<xs:attribute name="name" type="xs:string"
use="‘required” />
<xs:attribute name="close" type='"xs:boolean"
use="optional™ />
<xs:attribute name="clear_variable values"
type="'xs:boolean" use="optional™ />
</ xs: conpl exType>
</ xs: el ement >
</ xs: sequence>
<xs:attribute name="quit" type="'xs:boolean" use="required" />
</ xs: conpl exType>
</ xs: el enent >
</ xs: schema>

8.1.5. Oracle XML Specifications

Oracle defines the XML format so that the XML contents can be understood, parsed and printed on
labels. The XML Document Type Definition (DTD) defines the XML tags that are used in an XML file.
Oracle generates XML files according to this DTD, and any 3rd party software translates XML files
according to this DTD.

To execute an Oracle XML command file, use the Run Oracle XML Command File action.

8.1.5.1. XML DTD

The following is the XML DTD that is used while forming an XML for both — synchronous and
asynchronous XML formats. The DTD defines elements that are used in the XML file, list of their
attributes, and next level elements.

<IELEMENT labels (label)*>
<IATTLIST labels _FORMAT CDATA #IMPLIED>
<IATTLIST labels _JOBNAME CDATA #IMPLIED>

263

<IATTLIST labels |
<IATTLIST labels |

QUANTITY CDATA #IMPLIED>
PRINTERNAME CDATA #IMPLIED>

<IELEMENT Hlabel (variable)*>

<IATTLIST label F
<IATTLIST label _J
<IATTLIST label Q

8.1.5.2. Sample

This is the Oracle XML providing data for one label (there is only one <I abel > element).

<?xml version="1.0
<IDOCTYPE labels S
<l abel s FORMAT ="
_JOBNAME="'Serial'">
<| abel >
<vari abl e
<vari abl e
<vari abl e
<vari abl e
<vari abl e
<vari abl e
<vari abl e
</ | abel >
</ | abel s>

When executing this sample Oracle XML file, the label seri al . nl bl is printed with the following

variable values.

ORMAT CDATA #IMPLIED>
OBNAME CDATA #IMPLIED>
UANTITY CDATA #IMPLIED>

Oracle XML

" encoding="UTF-8" standalone="no"?>
YSTEM ""label .dtd">
Serial .nlbl"™ QUANTITY="1" PRINTERNAME=""""

name= "item">0 Ring</vari abl e>

name= "revision'>V1</vari abl e>

name= "lot"">123</vari abl e>

name= "serial_number'>12345</ vari abl e>

name= "lot_status'>123</vari abl e>

name= "serial_number_status''>Active</vari abl e>
name= "‘organization'>Al</vari abl e>

Variable name

item

revision

lot

serial_number
lot_status
serial_number_status

organization

Variable value
O Ring

V1

123

12345

123

Active

A1

There will be 1 printed copy of the label with spooler job name Ser i al . The printer name is not
specified in the XML file, so the label prints to the printer as defined in the label template.

264

8.1.6. SAP All XML Specifications

NiceLabel Automation can present itself as an RFID device controller, capable of encoding RFID tags
and printing labels. For more information about SAP All XML specifications, see the document SAP
Auto-ID Infrastructure Device Controller Interface on SAP web page.

To execute such command file, use the Run SAP All XML Command File action.

8.1.6.1. Sample SAP All XML

This is the SAP All XML providing data for one label (note that there is only one <I abel > element).

<?xml version="1.0" encoding="UTF-8"7>
<Command xmlIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi :noNamespaceSchemalLocation=""Command.xsd">
<WiteTagDat a readerID="DEVICE ID">
<ltenp
<Fi el dLi st Tormat="c:\SAP Demo\SAP label_nlbl"
JobName="Writer_Device20040929165746" quantity=""1"">
<Fi el d name="EPC''>00037000657330</ Fi el d>
<Fi el d name="EPC_TYPE">SGTIN-96</ Fi el d>
<Field
name="EPC_URN">urn:autoid:tag:sgtin:3.5.0037000.065774.8</ Fi el d>
<Fi el d name="PRODUCT"">Product</ Fi el d>
<Fi el d name=""PRODUCT_DESCRIPTION">Product description</Fi el d>
</ Fi el dLi st >
</ltenp
</ Wit eTagDat a>
</ Command>

When executing this sample SAP Al XML file, the label c: \ SAP Deno\ SAP | abel . nl bl is printed
with the following variable values.

Variable name Variable value

EPC 00037000657330

EPC_TYPE SGTIN-96

EPC urn:autoid:tag:sgtin:3.5.0037000.065774.8
PRODUCT Product

PRODUCT_DESCRIPTION Product description

There will be 1 printed copy of the label with spooler job name Wit er _Devi ce2004092916574.
Printer name is not specified in the XML file, so the label will be printed using the printer that is
defined in the label template.

265

8.2. Custom Commands

8.2.1. Using Custom Commands

NiceLabel commands are used in command files to control label printing. NiceLabel Automation
executes the commands within command files in top-to-bottom order. For more details, see section
Command Files Specifications.

You can use specific custom commands if they are available in your NiceLabel Automation productin
form of an action.

Example

Itis possible to the use the SETPRINTPARAM command if you can select the Set Print Parameter
action (available with product levels Pro and Enterprise).

NiceLabel Commands Specification
COMMENT

When developing a command file, it is good practice to document your commands. This helps you
decode what the script really does when you look at the code after some time. Use semicolon (;) at
the beginning of the line. Everything following the semicolon is treated as comment and does not get
processed.

CLEARVARIABLEVALUES

CLEARVARIABLEVALUES

This command resets variable values to their default values.
CREATEFILE

CREATEFILE <file name> [, <contents>]

This command creates a text file. Use the text file to give signal to a third party application that the
print process has begun or ended, depending on the location where you put the command. Use UNC
syntax for network resources. For more information, see section Access to Network Shared
Resources.

DELETEFILE

266

DELETEFILE <file name>

Deletes the specified file. Use UNC syntax for network resources. For more information, see section
Access to Network Shared Resources.

EXPORTLABEL

EXPORTLABEL ExportFileName [, ExportVariant]

This command automates the "Export to printer" command that is available in label designer. The
label is exported directly to the printer and stored in printer memory for off-line printing. The user
recalls the label using printer keyboard or by sending a command file to the printer. The same
functionality is available also with Store label to printer action.

@ NOTE

To specify the label for exporting, use the LABEL command first.

» ExportFileName: This mandatory parameter defines the file name of generated printer
commands.

* ExportVariant: Some printers support multiple export variants. When exporting manually, the
user can select the export variant in the dialog. With the EXPORTLABEL command, you have to
specify which export variant you want to use. The variants are visible in the label designer after
you enable the Store/Recall printing mode.

The first variant in the list has value 0. The second variant has value 1, etc.
If you do not specify any variant type, value 0 is used as default.

For more information about off-line printing, see section Using Store/Recall Printing Mode.

IGNOREERROR

IGNOREERROR <on> [,<off>]

This command specifies that the error occurring in the JOB file does not terminate the printing
process if the following errors occur:

¢ |Incorrect variable name is used.
* Incorrect value is sent to the variable.
¢ Label does not exist / is not accessible.

¢ Printer does not exist / is not accessible.

LABEL

267

LABEL <label name> [,<printer_name>]

This command opens the label to be printed. If the label is already loaded, it does not get re-opened.
You can include the path name. Enclose the label name in double quotes if the name or path contains
spaces. Use UNC syntax for network resources. For more information, see section Access to Network
Shared Resources.

The optional pri nt er _nane specifies the printer, for which the label is opened. Use this setting if you
want to override the printer name that is saved in the label template. If the driver for the provided
printer name is not installed or not available, the command raises an error.

MESSAGEBOX

MESSAGEBOX <message> [,<caption>]

This command logs the custom nmessage into the trigger log. If the message contains space
characters or commas, enclose the text in double quotes ().

PORT

PORT <file name> [, APPEND]

This command overrides port as defined in the printer driver and redirects printing to a file. If file path
or file name contain spaces, enclose the value in double quotes ("). Use UNC syntax for network
resources. For more information, see section Access to Network Shared Resources.

The APPEND parameter is optional. By default, the file gets overwritten. Use this parameter to append
data into the existing file.

Once you use the PORT command in JOB file, it remains valid until the next PORT command, or until
the end of file (whichever comes first). If you use PRINTER command after the PORT command has
been executed, the PORT setting overwrites the port defined for the selected printer. If you want to
use the actual port that is defined for the selected printer, you have to use another PORT command

with empty value, such as PORT = .

PRINT

PRINT <quantity> [,<skip> [,<identical label copies> [,number of label
sets]1]

This command starts the printing process.

* Quantity: Specifies the number of printed labels.

* <number>: The specified number of labels gets printed.

268

* VARIABLE: Specifies that a label variable is defined as variable quantity and that it
contains the number of labels to be printed. The label determines how many labels get
printed.

* UNLIMITED: If you use a database to acquire values for objects, unlimited printing prints
as many labels as there are records in the database. If you do not use a database, the
maximum number of labels that thermal printer internally supports gets printed.

» Skip: Specifies the number of labels you want to skip on the first page. The parameter is used
for printing labels on sheets of paper. If the part of the page has already been used, reuse the
same sheet by shifting the starting location of the first label.

* | dentical label copies: Specifies how many copies of the same label must be printed.

* Number of label sets. Specifies the number of times the whole printing process should repeat
itself.

@ NOTE

Make sure the quantity values are provided as numeric value, not as a string value. Do
not enclose the value in double quotes.

PRINTER

PRINTER <printer name>

This command overrides the printer as defined in the label file. If the printer name contains space
characters, enclose it in double quotes (").

Use the printer name as displayed in the status line of label design application. Printer names usually
match the listed names under Printers and Faxes in Control Panel, but not always. If using network
printers, you might see the name displayed in syntax\ \ server\ share.

PRINTJOBNAME

PRINTJOBNAME

This command specifies the print job name as displayed in Windows Spooler. If the name contains
space characters or commas, enclose the value in double quotes (").

SESSIONEND

SESSI10ONEND

This command closes print stream. Also see SESSIONSTART.

269

@ NOTE

SESSIONEND must be sent as the only item in Send Custom Command action. If you
would like to send additional commands, use separate Send Custom Command
actions.

SESSIONPRINT

SESSIONPRINT <quantity> [,<skip>]

This command prints the currently referenced label and adds it into the currently open session-print
stream. You can use multiple SESSIONPRINT commands one after another and join the referenced
labels in a single print stream. The stream does not close until you close it using SESSIONEND
command. The meaning of quantity and skip parameters is the same as with NiceCommand PRINT.
Also see SESSIONSTART command.

* Quantity: Specifies the number of labels to be printed.

» Skip: Specifies the number of labels you want to skip on the first page. The parameter is used
for printing labels on sheets of paper. If the part of the page has already been used, you can
reuse the same sheet by shifting the start location of the first label.

SESSIONSTART

SESSIONSTART

This command initiates the session-print type of printing.

The three session-print-related commands (SESSIONSTART, SESSIONPRINT, SESSIONEND) are
used together. When you use command PRINT, data for each label is sent to the printer in a separate
print job. If you want to join label data for multiple labels into a print stream, use the session print
commands. To do so, start with the SESSIONSTART command, followed by any number of
SESSIONPRINT commands. The sequence ends with SESSIONEND command.

Use these commands to optimize label printing process. Printing of labels that belong to a single print
job is much faster than printing labels using multiple print jobs.

Use the rules below to make sure the session print does not break:

* You cannot change the label within a session.
* You cannot change the printer within a session.

* You must set values for all variables from the label within a session, even if some of the variables
have empty values.

SET

270

SET <name>=<value> [,<step> [,<number or repetitions>]]

This command assigns the variable name with val ue. The variable must be defined on the label, or an
error is raised. If the variable isn't on the label, an error occurs. St ep and nunber of repetitions
are parameters for counter variables. These parameters specify the counter increment value and the
number printed labels before the counter changes value.

If a value contains spaces or comma characters, enclose the text in double quotes ("). Also see
TEXTQUALIFIER.

If you want to assign a multi-line value, use \ r \ n to encode a newline character.\ r is replaced with
CR (Carriage Return) and\ n is replaced with LF (Line Feed).

Be careful when setting values to variables that provide data for pictures on the label, as backslash
characters might be replaced with other characters.

Example

If you assign a value "c:\My Pictures\raw.jpg" to the variable, the "\r" is replaced with CR character.

SETPRINTPARAM

SETPRINTPARAM <paramname> = <value>

This command allows you to fine-tune the printer settings just before printing. The supported
parameter for printer settings (par armane) are:

* PAPERBIN: Specifies the tray that contains label media. If the printer is equipped with more than
one paper / label tray, you can control which one is used for printing. The name of the tray
should be acquired from the printer driver.

* PRINTSPEED: Specifies the printing speed. The acceptable values vary from one printer to the
other. See printer's manuals for exact range of values.

* PRINTDARKNESS: Specifies the printing darkness / contrast. The acceptable values vary from
one printer to another. See printer manuals for exact range of values.

* PRINTOFFSETX: Specifies the left offset for all printing objects. The value for parameter must
be numeric, positive or negative, in dots.

* PRINTOFFSETY: Specifies the top offset for all printing objects. The value for parameter must
be numeric, positive or negative, in dots.

* PRINTERSETTINGS: Specifies the custom printer settings to be applied to the print job. The
parameter requires the entire DEVMODE for the target printer, provided in a Base64-encoded
string. The DEVMODE contains all parameters from the printer driver at once (speed, darkness,
offsets and other). For more information, see section Understanding printer settings and
DEVMODE.

271

S NOTE

The Base64-encoded string must be provided inside double quotes (").

TEXTQUALIFIER

TEXTQUALIFIER <character>

Text-qualifier is the character that embeds data value that is assigned to a variable. Whenever a data
value includes space characters, it must be included with text-qualifiers. The default text qualifier is a
double quote character ("). Because double quote character is used as shortcut for inch unit of
measure, it is sometimes difficult to pass the data with inch marks in the JOB files. You can use two
double quotes to encode one double quote, or use TEXTQUALIFIER.

Example

TEXTQUALIFIER %

SET Variable = %EPAK 12"X10 7/32"%

8.3. Access to Network Shared Resources

This section defines best practice steps for using network shared resources.

» User privileges for service mode. The execution component of NiceLabel Automation runs in
service mode under a specified user account inheriting access privileges of that account. For
NicelLabel Automation to be able to open label files and user printer drivers, the associated user
account must have granted the same privileges. For more information, see section Running in
Service Mode.

* UNC notation for network shares. When accessing the file on a network drive, make sure you
are using the UNC syntax (Universal Naming Convention), and not the mapped drive letters. UNC
is a naming convention that specifies and maps network drives. NiceLabel Automation tries to
replace the drive-letter syntax with UNC syntax automatically.

Example

If a file is accessible as G \ Label s\ | abel . nl bl , refer to itin UNC notation as\ \ ser ver
\ shar e\ Label s\ | abel . nl bl (where G: drive is mapped to\\ server\ share).

* Notation for accessing files in Control Center. If you open a file in Document Storage within
Control Center, you can use HTTP notation suchas ht t p: / / ser ver nane: 8080/ | abel . nl bl ,
or WebDAV notation such as\ \ ser ver name@080\ DavWW\Root \ | abel . nl bl .

272

Additional notes:

* User account under which the NiceLabel Automation service runs is also used to get files
from Document Storage. This user must be configured in Control Center Configuration.
This makes sure the user has access to the Document Storage files.

* WebDAV access can only be used with Windows user authentication type in Control
Center.

S NOTE

The Document Storage is available with products LMS Enterprise and LMS Pro.

* Printer drivers availability. To print labels to network shared printer, you will have to make the
printer driver available on the server where NiceLabel Automation is installed on. Make sure the
user account that NiceLabel Automation Service runs under has access to the printer driver. If
the network printer was just installed on the machine, NiceLabel Automation might not see it
until your restart the Service. To allow automatic notification of new network printer drivers, you
have to enable the appropriate inbound rule in the Windows firewall. For more information, see
Knowledge Base article KB 265.

8.4. Document Storage and Versioning of
Configuration Files

Document Storage is a functionality of NiceLabel Control Center. It enables the NiceLabel Control
Center to perform as a shared file repository on the server, in which users can store their files, retrieve
them, and control their revisions.

Document Storage contextual tab enables you to perform document storage actions straight from
Automation Builder. This makes accessing and opening the Automation file in NiceLabel Control
Center unnecessary.

E NOTE

This contextual tab requires connection with NiceLabel Control Center. LMS
Enterprise license is mandatory for such configurations.

Revisioning group allows you to perform the available document storage actions:

* Check Out: Checks out the file from NiceLabel Control Center document storage and makes it
available for editing. The checked-out file is marked and locked for editing for any other user. All
other users will see the current revision of the file, while the author already works on a new draft.

273

http://kb.nicelabel.com/index.php?t=faq&id=265

@ NOTE

After opening a document from the document storage (File > Open > Document
Storage), the editing commands remain disabled until you check out the document.

* Check In;: Checks the file to NiceLabel Control Center document storage after the editing is
done. When you check in the filg, its revision number increments by one. The entered comment
is added to file log.

* Discard Checkout: Discards checkout of the current file and gives other users full access to the
file.

A WARNING

If you click Discard Checkout, all changes since the last file checkout will be
lost.

* Document Storage: Opens document storage location of the connected NicelLabel Control
Center.

8.5. Accessing Databases

Whenever NiceLabel Automation needs to get data from a database, make sure that the necessary
database driver is installed on the Windows system. Database drivers are provided by the company
developing the database software. The driver that you install must match the bitness of your Windows
system. NiceLabel software always runs in the bitness of your Windows system.

8.5.1. 32-bit Windows

If you have 32-bit Windows, you can only install 32-bit database drivers. The same database driver is
be used to configure the trigger in Automation Builder and to execute trigger execution in NicelLabel
Automation Service. All NiceLabel Automation components run as 32-bit applications.

8.5.2. 64-bit Windows

If you have 64-bit Windows, you can install 64-bit or 32-bit database drivers. The applications that are
running in 64-bit use 64-bit database drivers. The applications that are running in 32-bit use 32-bit
database drivers.

By default, Automation Service runs as 64-bit process. As such, it uses 64-bit database drivers to
make a database connection. If 64-bit database drivers are not available on the system on which

274

Automation Service is running, the database connection task offloads to the NiceLabel Proxy
process. This process always runs as 32-bit process.

8.6. Automatic Font Replacement

You might design your label templates to print text objects using internal printer fonts. These are the
fonts that are stored in your printer's memory. If you try to print such labels to a different kind or
printer, the selected internal fonts might not be available. The new printer probably supports an
entirely different set of internal fonts. The font layout might be similar in such case, but is available
under a different name.

Font mismatch might also occur if the Truetype font that you are using on your labels is not installed
on the computer on which you run Designer to design and print labels.

You can configure Designer to automatically replace the fonts used on the label with compatible
fonts. | such case, Designer maps and replaces the fonts using their names. If the original font is not
available, Designer uses the first available replacement font defined in the mapping table.

If there are no suitable replacement fonts, Designer uses the Arial Truetype font.

|§ NOTE

After configuring font replacement, mapping rules execute when you change the
printer for your label.

Configuring the Font Mapping

1. Open File Explorer and navigate to the following folder:

%PROGRAMDATA%\NicelLabel\NiceLabel 2019

2. Copy fontmapping.def file to fontmapping.local.def.
3. Open the fontmapping.local.def file in your favorite text XML editor.
4. Inside the FontMappings element, create a new element with a custom name.
5. Inside the new element, create at least two elements named as Mapping.
* Value of the first element named Mapping must contain the name of the original font.

* Value of the second element named Mapping must contain the name of the replacement
font.

275

NOTE

Additional Mapping elements with new font names are allowed. If the first
replacement font is not available, Designer tries the next one. If no
replacement fonts are available, Arial Truetype is used instead.

NOTE

The file fontmapping.local.def is your file and is preserved during the
upgrades. On the other hand, fontmapping.def belongs to NiceLabel
and is overwritten during the upgrades. Do not modify the

fontmapping.def file.

Sample Mapping Configuration
In the example below, two font mappings are defined.

* The first mapping converts any Avery font into a matching Novexx font. For example, Avery

YT100 font gets replaced with Novexx YT100, Avery 1 font gets replaced with Novexx 1. If the

Novexx font is not available, Arial Truetype font is used instead.

* The second mapping converts Avery YT100 font into Novexx YT104. If that font is not available,

then Zebra 0 font is used. If this font is also not available, Arial Truetype is used instead.

* The second mapping overrides the first one.

<?xml version="1.0" encoding="utf-8"7>

<Aver yNovexx>
<Mappi ng>Avery</ Mappi ng>
<Mappi ng>Novexx</ Mappi ng>
</ Aver yNovexx>
<Text Repl acenent >
<Mappi ng>Avery YT100</ Mappi ng>
<Mappi ng>Novexx YT104</ Mappi ng>
<Mappi ng>Zebra 0</ Mappi ng>
</ Text Repl acenent >
</ Font Mappi ngs>

8.7. Automating Reports

@ PRODUCT LEVEL INFO

This functionality is available in LMS Enterprise and LMS Pro.

276

Combine your business system data with labels containing Reports. Create reports in NicelLabel
Designer and fill your reports with data from your business systems in NiceLabel Automation.

Your completed reports use your business system data to print. NiceLabel Automation:
* Receives your business system data.
* Parses your data with a data filter.
* Populates your Report with parsed data.

» Executes printing for your new populated reports with a trigger.

8.7.1. Creating temporary databases

You need to design your Reports before you automate them. To design reports, you need to connect
them to a database.

If you use data from external business systems for reports, you have no database to work with. To
work correctly, report data needs a hierarchical structure with clearly defined elements.

Create a temporary database with data from your business system (Usually XML or JSON data). With
your temporary database, design and configure your reports. Your temporary database is only for
setup. Configured reports print using Automation triggers, not your temporary database.

Data from your business system with no
hierarchy.

Data with hierarchy you can use to print reports.

277

r<dataroot xmlns:od="urn:schemas-wmicrosoft-com:officedata” xwlns:xsi="http://wuw.wd.org/2001/XMLSchema-instance™
®2i:inolNamespaceichemalocation="Pasta. xsd" generaced="2020-058-31T15:43:51">
<Total>211</Totals
v<Pastar
<ProductID>PASS01</ProductID:
<CodeEAN>8021228310001</ CodeE AN
<ProductName>BIGOLI 250G</Productiame:
<Packager6</Package>
<oategoryrLong pastad/categoryr
<Description>& long, thin, cylindrical pasta of Italian origin. 3paghetti is wade of semolina or flour and
water.</Descriptions
</Pastar
v<Pasta>
<ProductID>PASS02GI</ProduntID>
«<CodeEAN-8021228310015</ CodeE AN
<Productiame> TAGLTATELLE 250G</Productiame:
<Package>6</Package>
<oategoryrRibbon-cut pasta</categorys
<Description>Rikbbon style pasta are often rolled flat and then cut. This can be done by hand or
mechanically.</Iescription>
</ Pastar

Sample XML data you need to design reports (unparsed).

For you temporary database, create a CSV text database file. You have multiple options:

1. Manually convert your data structure to a CSV text file:

8 “data.csv - Motepad

File Edit Format Miew Help
"category™,"CodeEAN™ ,"Description”, "Package”,"ProductID”,"ProductMame™

Manually creating temporary CSV text databases.

2. Use acommon XML to Excel or XML to CSV conversion tool and manually format your data in

a spreadsheet.

3. Use an Automation data filter to automatically parse your data into a CSV text database (Refer

to your included XML to CSV sample file for more information).

8.7.2. Designing automated Reports

Open Designer to create your Report with your temporary CSV text database:

1. Connect your temporary CSV text database to your Report.

2. Design your report using your CSV text data as variables for objects in in your Repeater
Definition.

NOTE

Match your variable names with data names in your data filter to map your
data correctly.

., Counter
. Functions = | |Pasta sample report

+ Add new function
£ Databases
+ Database wizard
[datacsv
[category
[codetan
[Description
[package
& productip
& ProductName

Fresh Pasta Company
123, Pasta Plazza
Milano

ProductiD Product name

|passol BIGOLI 250G

FRESH PASTA (.

COMPANY
1-800-call-pasta
Category Ean Code:

. |1|| I|||" I l " I| |||||||;|

8021228310001

278

Designing reports with your temporary CSV text database.

8.7.3. Creating data filters

Create a data filter in Automation to use in your report (Refer to your included example trigger for
more information on creating XML filters):

H] m Element properties

Data Preview

Settings Structure

Usage: | None

4 ([) dataroot
) xminsod et
€ o) xminsosi
¢+ xsinaNamespaceSchemalocation
£ +) generated
- (/) Pasta
<y o
¢

Configuring your XML data filter.

Tips for creating data filters for reports:

Name: | dataroot

Previews file name: C:A\Users\Vid-PC Work\Desktop\report style printing demohaut. \Pasta.xml

£50pen 3 Refresh

T<2xml version="1
2 <dataroot xmins:
3 <Total>211</To
4 <pasta>

<ProductID>PAS501</ProductID:

<CodeERN>8021228310001</CodeEAN>

IGOLI 250G</

<Package»6</Package>

<category>Long pasta</category>

<Description>h long, thin, cylindrical pasta of Italian ori

coding="UTF-£"7>

11 </Pasta>
2 <Basta>

<Broduct ID>PAS502GI</ProductiD>
<CodeEAN>8021228310018</ COdeEAN>
LIATELLE 250G</!
<Package>6</Package>
<categoryyRibhon-cut Dasta</categorv:
<Description>Ribbon style pasta are often rolled flat and t

18 </Pasta>
0 <Pasta>

<Product ID>PAS503GT</ProductID>
<CodeEAN>8021226310025</ CodeEAN>

<ProductName >TAGLIOLINI 2506¢/ProductNames
<Package>6</Package>

<category>Ribbon-cut pasta</category>

<Description>Ribbon style pasta are often rolled flat and t

<Product ID>PRS504</Product ID>
<CodeEAN>8021228310032</CodeEAN>
<ProductName>CAPELLI D'ANGELO 250G</ProductNane>

* You can use Structure Import Wizard to import your data structure.

* Name your elements in data blocks of repeatable elements.

» Set your elements as assignment areas or set sub-items as variables.

8.7.4. Creating triggers for your new data filter

NOTE

For your trigger to work, your data source names in Designer must match the data
block field names in your data filter.

* Include a Use Data Filter action to apply your data filter.

n: schenas-nicrosoft-com: officedata” xmlns(|

279

Q £ About Data Preview
Seftings Variables Actions Narne: Use Data Filter
Previewfile name: \Pastasm|
Action M Description: This data filter collects all data by XML filter and asigns =
1 w i itto their respected variables v ’ | 5 0pen T Refresh
4P Use Data Filter AR Use *Collect records for reports' When printing to - % ProductlD CodeAN ProductMame
11 a0 Open Label ¥ o rction e 1 PASS01 8021228310001 BIGOL 250G
141 D Redirect Printing to PDF & e Use Data Fiter 2 PASS02GI 8021228310078 TAGLIATELLE 250(
192 print Label ¥ w. Filter 3 PASS03GI 8021228310025 TAGLIOLINI 250G
4 PASS04 8021228310032 CAPELLID'ANGEL
Name: (ZHE MR RN 5 PASS0S 8021228310049 PAPPARDELLE 25(
6 PASSOGGI 8021228310056 SFOG.LASAGNE 2
Warmin: Changin el emeveoll icing e ctons Tonsaor 2001228310000 | MACCHERONGH
8 PAS508 8021228310070 RUOTE 250G
Use dats receiived by the rigger O PASS09 8021228310087 FUSILLI 250G
® File name: NPastaxeml £ [Data source 10 PASST1 8021228410183 SCIALATIELLI 2501
11 PAS512 8021228410244 SFOG.VERDE LAS.
Custom 12 PASS1Z §021226310094 SEDANINI250G
13 PASS14 8021228310100 GRAMIGNA 2506
14 PASS1S 8021228310209 ARMONICHE 250
15 PASS16 5021228410251 SPAG.CHITARRA :
v 16 PAS51T 8021228410312 PENNE 250GProd
17 PVESOR 5021228410282 TAGLIATELLE VER
18 PVES03 8021228410299 TAGLIOLINI VERD
19 QUADD6 8021228410336 QUAD.PROSC.CRI
ppRing 20 RAG020 8021228410268 TOR.GIG.RIC/SPIM
Variables will be automatically populated with values fram the assignment area. Mapping is 21|RAGHA S021 228410275 | TOR GIGFUNGHI
defined bythe structure and contents of the data. 22|RAGO20 |8021228410213 | RAVIMAGRO 2501
FH Show execution and error handiing options 23|RAGO2A | 8021208410220 | RAVFUNGHI 250
24 RAGUZ6 8021228410237 RAVFORMAGGI 2
25 RAVO20TO 8021228410015 TORRIC/SPIN 25(

* Enable Collect records for report to collect all records in a table Automation uses to open
your report labels.

NOTE

Use the same data structure names in your reports, triggers, and filters.

* Include a Print Label action.

About
@ o

Settings Variables Actions MName: Print Label
Action Lal=0r 4 Description: Mote: Set quantaty option to All (unlimited
1 quantity).

‘T’ Use Data Filter L4 ; %
110y Qpen Label 7 o. Action type: Print Label
111 Redirect Printing to POF v Quantity
1 B9 Print Label v N.. Labels:
13 Data scurce

® All {unlimited quantity)

"Variable quantity (defined from label variable)

[H Show adwanced print options
[Show execution and ervor handling options

* Enable All (unlimited quantity).

Run your trigger. Your report now automatically updates with new data and prints with your trigger.

8.8. Changing Multi-threaded Printing
Defaults

PRODUCT LEVEL INFO
This functionality is available in LMS Enterprise and LMS Pro.

280

Every NicelLabel Automation product can take advantage of multiple processor cores — each core
runs a print process independently. Half of the number of cores is used for processing concurrent
normal threads, and the remaining half for processing concurrent session-print threads.

@ NOTE

Under normal circumstances, you never have to change the default settings. Make
sure you know what you are doing when changing these defaults.

To modify the number of the concurrent print threads, do the following:

1. Openfile pr oduct . confi g intext editor.
The file is located here:

%PROGRAMDATAY%\NiceLabel\NiceLabel 2019\product.config

2. Change the values for elements MaxConcurrentPrintProcesses and
MaxConcurrentSessionPrintProcesses.

<confi guration>
<l ntegrationServi ce>
<MaxConcurrent Pri nt Processes>1</ MaxConcurrent Pri nt Processes>
<MaxConcurr ent Sessi onPri nt Processes>1</
MaxConcur r ent Sessi onPri nt Processes>
</l ntegrationService>
</ configuration>

3. Save the file. NiceLabel Automation automatically updates the service with the new number of
print threads.

8.9. Compatibility with NiceWatch Products

NiceLabel Automation allows you to load trigger configurations that were built using legacy
NiceWatch products. In the majority of cases, you can run NiceWatch configuration using NiceLabel
Automation without any modifications.

NicelLabel Automation products are using a new .NET based print engine optimized for performance
and low memory footprint. The new print engine does not support each label design option that is
available in the label designer. Each new release of NiceLabel Automation is closing the gap, but you
might still come across certain unavailable features.

Resolving Incompatibility Issues
NiceLabel Automation warns you if you try to print existing label templates that contain design
features which are not supported with the new print engine.

281

If there are incompatibilities with NiceWatch configuration file or label templates, Automation notifies

you about:

Compatibility with trigger configuration: While opening the NiceWatch configuration (MIS
file), NiceLabel Automation checks it against the supported features. Not all features from
NiceWatch are available in NiceLabel Automation. While some are not available at all, some of
them are configured differently. If the MIS file contains unsupported features, you will see them
listed. Automation removes these features from the configuration.

If you come across such a case, open the .MIS file in Automation Builder and resolve the
incompatibility issues. You will have to use the available NiceLabel Automation features to re-
create the removed configuration items.

Compatibility with label templates: If your existing label templates contain unsupported print
engine features as provided by NiceLabel Automation, you will see error messages in the Log
pane. This information is visible in the Automation Builder (when designing triggers) or in
Automation Manager (when running the triggers).

In this case, you have to open the label file in label designer and remove unsupported features
from the label.

|§ NOTE

For more information about incompatibility issues with NiceWatch and label
designers, see Knowledge Base article KB251.

Opening NiceWatch Configuration for Editing

Open the existing NiceWatch configuration (.MIS file) in Automation Builder and edit it in Automation
Builder. You can save the configuration as a .MISX file only.

To edit the NiceWatch configuration, do the following:

1.

2.

Start Automation Builder.

Go to File > Open NiceWatch File.

In the Open dialog box, browse for the NiceWatch configuration file (.MIS file).
Click OK.

If the configuration contains unsupported features, they are displayed in a list. Automation
removes them from the configuration.

Opening NiceWatch Configuration for Execution

You can open NiceWatch configuration (.MIS file) in Automation Manager without conversion to the
NiceLabel Automation file format (MISX file). If the triggers from NiceWatch are compatible with
NiceLabel Automation, you can start using them right away.

To open and deploy NiceWatch configuration, do the following:

1.

Start Automation Manager.

282

http://kb.nicelabel.com/index.php?t=faq&id=251

2. Click +Add button.

3. InOpen dialog box, change the file type into NiceWatch Configuration.
4. Browse for the NiceWatch configuration file (MIS file).

5. Click OK.

6. Automation Manager will display the trigger from the selected configuration. To start the
trigger, select it and click Start.

|§ NOTE

If there are compatibility issues with NiceWatch configuration, open it in Automation
Builder and reconfigure it.

8.10. Controlling Automation Service with
Command-line Parameters

Read this section to learn how to use command prompt to:

» Start or stop Automation services.
» Control which configurations are loaded.

» Control which triggers are active.

S NOTE

Make sure you are running Command Prompt in elevated mode (with administrative
permissions). Right-click cmd . exe and select Run as Administrator.

Starting and Stopping the Services
To start both services, use the following commands:

net start NicelLabelProxyService2019

net start NicelLabelAutomationService2019

If you want to open configuration file when the Service is started, use:

net start NicelLabelAutomationService2017 [Configuration]

For example:

283

net start NicelLabelAutomationService2019 "c:\Project\configuration_MISX"

To stop services, use the following commands:
net stop NicelLabelProxyService2019

net stop NicelLabelAutomationService2019

Managing the Configurations and Triggers
NiceLabel Automation service can be controlled using Automation Manager command-line
parameters. Use the following general syntax:

NiceLabelAutomationManager.exe COMMAND Configuration [TriggerName] [/[SHOWUI]

@ NOTE

Include full path to the configuration name. Do not use the file name alone.

To ADD configuration

The provided configuration gets loaded into service. No trigger is started. If you include the / SHOAUI
parameter, Automation Manager Ul is started.

NiceLabelAutomationManager.exe ADD c:\Project\configuration.MISX /SHOWUI

To RELOAD configuration

The provided configuration gets reloaded into service. The running status of all triggers is preserved.
Reloading the configuration forces the refresh of all files cached for this configuration. For more
information, see section Caching Files. If you include the / SHONUI parameter, Automation Manager Ul
is started.

NiceLabelAutomationManager.exe RELOAD c:\Project\configuration_MISX /SHOWUI

To REMOVE configuration

The provided configuration and all of its triggers are unloaded from service.

284

NiceLabelAutomationManager.exe REMOVE c:\Project\configuration.MISX

To START a trigger

The referenced trigger is started in the already loaded configuration.

NiceLabelAutomationManager.exe START c:\Project\configuration.MISX
CSVTrigger

To STOP a trigger

The referenced trigger is stopped in the already loaded configuration.

NiceLabelAutomationManager.exe STOP c:\Project\configuration.MISX CSVTrigger

Status Codes
Status codes provide feedback about the command-line execution. To enable the status codes
return, use the following command-line syntax:

start /wait NicelLabelAutomationManager.exe COMMAND Configuration
[TriggerName] [/SHOWUI]

The status codes are captured inthe err or | evel system variable. To see the status code, execute
the following commanad:

echo %errorlevel%

List of status codes:

Status Code Description

0 No error occurred

100 Configuration file name not found
101 Configuration cannot be loaded
200 Trigger not found

201 Trigger cannot start

285

Providing User Credentials for Application Authentication

If you have configured the LMS Enterprise or LMS Pro system to use Application Authentication (not
Windows Authentication), you have to provide user credentials with sufficient permissions to
manage the configurations and triggers.

There are two command-line parameters you can use:

* -USER:[user nane] . Where [user nane] is a placeholder for the actual user name.

* -PASSWORD:[passwor d] . Where [passwor d] is a placeholder for the actual password.

8.11. Database Connection String
Replacement

Configuration file for Automation Service can include database connection string replacement
commands.

You can configure the service to replace certain parts of a connection string while the trigger is
running. This enables a single instance of Automation to run the same configuration, but actually use
a different database server for database related functionality. This allows the user to configure
triggers in development environments and run them in production environment without any changes
in the configuration.

Connection string replacement logic is defined in the Dat abaseConnect i ons. Confi g file thatis
located in the Automation system folder.

%PROGRAMDATA%\NicelLabel\NiceLabel 2019

Configuration file defines from-to pairs using its XML structure. The <Repl acenent > element
contains one <Fr on® and one <To> element. During trigger execution, the "from" string is replaced
with the "to" string. You can define as many <Repl acenent > elements as necessary.

Configuration file is not installed along with Automation. You can add it yourself using structure from
the example below. The same search & replace rules are applied to all triggers running in the
Automation Service on this machine.

@ NOTE

Make sure you restart both Automation services after adding the config file into the
Automation System folder.

286

Example

An existing trigger contains connection to the Microsoft SQL server named nmy SQLSer ver and the
database named my Dat abase. You want to update the connection string to use the database

NEW ny Dat abase on the server NEW nmy SQLSer ver.

Two replacement elements have to be defined — one to change the server name and one to change
the database name.

<?xml version="1.0" encoding="UTF-8"?>
<Dat abaseConnect i onRepl acenent s>
<Repl acenent >
<Fr onrData Source=mySQLServer</ Fron>
<To>Data Source=NEW_mySQLServer</ To>
</ Repl acenent >
<Repl acenent >
<FronrlInitial Catalog=myDatabase</ Fron
<To>Initial Catalog=NEW_myDatabase</ To>
</ Repl acenent >
</ Dat abaseConnect i onRepl acenent s>

8.12. Entering Special Characters (Control
Codes)

Special characters or control codes are binary characters that are not represented on the keyboard.
You cannot type them the way normal characters are because they must be encoded using a special
syntax. You would need to use such characters when communicating with serial-port devices,
receiving data on TCP/IP port, or when working with binary files, such as print files.

There are two methods of entering special characters:

* Enter the characters manually using one of the described syntax examples:

* Use syntax <speci al _char act er _acr oni n®, such as <FF> for FormFeed, or <CR> for
CarriageReturn, or <CR><LF> for newline.

» Use syntax <#hex_code>, such as <#0D> (decimal 13) for CarriageReturn or <#00> for
null character.

For more information, see section List of Control Codes.

* Insert the listed characters. Objects that support special characters as their content have an
arrow button on their right side. The button contains a shortcut to all of the available special
characters. When you select a character in the list, it is added to the content. For more
information, see section Using Compound Values.

287

8.13. List of Control Codes

ASCII Code Abbreviation Description

1 SOH Start of Heading

2 STX Start of Text

3 ETX End of Text

4 EOT End of Transmission

5 ENQ Inquiry

6 ACK Acknowledgment

7 BEL Bell

8 BS Back Space

9 HT Horizontal Tab

10 LF Line Feed

11 VT Vertical Tab

12 FF Form Feed

13 CR Carriage Return

14 SO Shift Out

15 Sl Shift In

16 DLE Data Link Escape

17 DC1 XON - Device Control 1
18 DC2 Device Control 2

19 DC3 XOFF - Device Control 3
20 DC4 Device Control 4

21 NAK Negative Acknowledgment
22 SYN Synchronous ldle

23 ETB End Transmission Block
24 CAN Cancel

25 EM End of Medium

26 SUB Substitute

27 ESC Escape

28 FS File Separator

29 GS Group Separator

30 RS Record Separator

31 us Unit Separator

188 FNC1 Function Code 1

189 FNC2 Function Code 2

288

190 FNC3 Function Code 3
191 FNC4 Function Code 4

8.14. Licensing and Printer Usage

Depending on the license type, your NiceLabel product might be limited to a number of printers you
can use simultaneously. In case of a multi-user license NiceLabel keeps track of the number and
names of different printers you have used for printing on all NiceLabel clients in your environment.
The unique printer identifier is a combination of printer driver name (not printer name), printer location
and port.

"To use a printer" means that one of the below listed actions has been taken within the Automation
configuration:

¢ Print Label
e Send Data To Printer
* Preview Label

¢ Set Print Parameter

Each of these actions signalizes that a printer has been used. The associated printer is added to the
list of used printers and remains listed for 7 days since last usage. To remove a printer from the list, do
not use it for a period of 7 days and it will be removed automatically. The software displays the Last
Used information so you know when the 7-day period passes for each printer. You can bind a printer
seat to a specific printer by clicking the Reserved check box. Reservation ensures printer availability
at all times — even if a printer has been idle for more than 7 days.

A WARNING
If you exceed the number of seats defined by your license, the software enters the 30-
day grace period. While in this mode, the number or allowed printers is temporarily
increased to twice the number of printers allowed by license.

Grace period provides plenty of time to resolve licensing issues without any printing downtime or loss
of ability to design labels. Exceeded number of allowed printers is usually an effect of printer
replacement in your environment. It happens if old and new printers are used simultaneously, or if you
add new printers. If you do not resolve license violation within the 30-day grace period, the number of
available printers is reduced to the number of purchased seats starting with the last used printer on
the list.

TIP

To learn more about NiceLabel 2019 licensing, read the dedicated document —
NiceLabel 2019 Licensing.

289

http://www.nicelabel.com/Redirect?Id=48&Link=www.nicelabel.com

8.15. Running in Service Mode

NiceLabel Automation runs as a Windows service and is designed not to require any user intervention
while processing data and executing actions. The service is configured to start when the operating
system is booted and runs in the background for as long as Windows is running. NiceLabel
Automation remembers the list of all loaded configurations and active triggers. The last-known state
is automatically restored when the server restarts.

The service runs with privileges of the user account selected during the installation. The service
inherits all access permissions of that user account, including access to network shared resources,
such as network drives, and printer drivers. Use the account of an existing user with sufficient
privileges, or even better, create a dedicated account just for NiceLabel Automation.

You can manage the service by launching the Services from Windows Control Panel. In a modern
Windows operating system, you can also manage the services using Services tab in Windows Task
Manager. You would use Services to execute tasks such as:

» Starting and stopping the service.

* Changing the account under which the service logs on.

Good Practices Configuring the User Account for Service

* While being possible, it is considered a bad practice to run the service under the Local System
Account. This is a predefined local Windows account with extensive privileges on the local
computer, but is usually without privileges to access network resources. NiceLabel Automation
requires full access to the account's % enp%folder, which might not be available for Local
System Account.

* If creating a new user account for NiceLabel Automation service, make sure that you login
Windows with this new user for at least once. This makes sure that the user account is fully
created. E.g., when you log in, the temporary % enp%folder is created.

* Disable the requirement to occasionally change password for this user account.
* Make sure the account has permissions to Log on as service.
* Run the Service in x64 (64-bit) mode.
Accessing Resources
NiceLabel Automation inherits all privileges from the Windows user account under which the service

runs. The service executes all actions under that account name. Label can be opened if the account
has permissions to access the file. Label can be printed if the account has access to the printer driver.

If using revision control system and approval steps inside Document Storage in Control Center, you
have to make the service's user account a member of the 'Print-Only' profile, such as Operator. When
done, configure access permissions for the specific folder to read-only mode or profile Operator.
This makes sure that NiceLabel Automation only uses the approved labels, not drafts.

For more information, see section Access to Network Shared Resources.

290

Service Mode: 32-bit vs 64-bit

NiceLabel Automation can run on 32-bit (x86) and 64-bit (x64) systems natively. The execution mode
is auto-determined by the Windows operating system. NiceLabel Automation runs in 64-bit mode on
64-bit Windows, and in 32-bit mode on 32-bit Windows.

* Printing: There are benefits of running Automation as a 64-bit process, such as direct
communication with the 64-bit printer Spooler service on 64-bit Windows. This eliminates the
well-known issue caused by the SPLWOWG64.EXE, which is a 'middleware' that enables 32-bit
applications to use the 64-bit printer spooler service.

» Database access: While running as a 64-bit process, NiceLabel Automation Service requires
the 64-bit version of database drivers to be able to access the data. For more information, see
section Accessing Databases.

|§ NOTE

If you don't have 64-bit database drivers for your database, you cannot use NicelLabel
Automation in 64-bit mode. You have to install it on a 32-bit system, or force it to run in
32-bit mode.

Forcing x86 Operation Mode on Windows x64
There might be reasons to run NicelLabel Automation as a 32-bit application on 64-bit Windows.

To force NiceLabel Automation into x86 mode on Windows x64, do the following:

* Select Start > Run.
* Typeinregedit and press Enter.

* Navigate to the key

HKEY_LOCAL_MACHINE\SYSTEM\ControlSetOOl\services
\NicelLabelAutomationService2017

* Change the file name to NiceLabelAutomationService2019.x86.exe, while keeping the existing
path.

¢ Restart NiceLabel Automation service.

A WARNING

Itis not recommended to change the NiceLabel Automation service mode. If you
decide to change it anyway, make sure you perform an extensive trigger testing
before deploying the configuration in production environment.

291

8.16. Search Order for Requested Files

When loading a specified label or image file, NiceLabel Automation tries to locate the requested file
on multiple predefined locations.

NicelLabel Automation locates the file in the following order:

1.

Check if the file exists on the location as specified by the action.

Check if the file exists in the same folder as the configuration file (MISX).

Check if the label file exists in .\Labels folder (for graphic files check \Graphics folder).
Check if the label file exists in .\Labels folder (for graphic files check .\Graphics folder).

Check if the file exists in the global Labels folder (Graphics folder for graphics files) as
configured in the options.

If the file is not found on any of these locations, the action fails and the error is raised.

8.17. Securing Access to your Triggers

Certain deployments require secured access to the triggers. NiceLabel Automation allows you to
enable security measures that grant trigger access only to trustworthy network devices. Security
configuration depends on the trigger type. Some of the trigger types allow configuration of security
access by design. For all triggers that are based on TCP/IP protocol, you can further define all details
within the Windows Firewall.

Configuring Firewall

When using TCP/IP based triggers, such as TCP/IP Server Trigger, HTTP Server Trigger or Web
Service Trigger make sure you allow external applications to connect to the triggers. Each trigger runs
within NiceLabel Automation service, to which access is governed by Windows Firewall.

@ NOTE

By default, the Windows Firewall is configured to allow all inbound connections to the
NiceLabel Automation service. This makes it easier for you to configure and test
triggers, but can be susceptible to unauthorized access.

If the NiceLabel Automation deployment in your company is a subject to strict security regulations,
you must update the firewall rules according to them.

For example:

* You can fine-tune the firewall to accept incoming traffic from well-known sources only.

* You can allow inbound data only on pre-defined ports.

292

* You can allow connection only from certain users.

* You can define on which interfaces your will accept incoming connection.

To make changes in the Windows Firewall, open the Windows Firewall with Advanced Security
management console from Control Panel > System And Security -> Windows Firewall > Advanced
Settings.

@ NOTE

If NiceLabel Automation is linked to NiceLabel Control Center products, make sure
you enable inbound connection on port 56415/TCP. If you close this port, you won't
be able to manage NicelLabel Automation from Control Center.

Allowing Access Based on the File Access Permissions

File trigger executes upon the time-stamp-change event in the monitored file or files. You must place
the trigger files in a folder, which the NicelLabel Automation service can access. The user account
running the Service must be able to access the files. Simultaneously, access permissions to the
location also determine, which user and/or application can save the trigger file. You should set up
access permissions in a way that only authorized users can save the files.

Allowing Access Based on the IP Address & Hostname
You can protect access to TCP/IP Server trigger with two lists of IP addresses and host names.

* Thefirst list 'Allow connections from the following hosts' contains IP addresses or host names
of devices that can send data to the trigger. If a device has its IP address listed here, it is allowed
to send data to the trigger.

* The second list 'Deny connections from the following hosts' contains IP addresses or host
names of devices that are not allowed to send data. If a device has its IP address listed here, it is
not allowed to send data to the trigger.

Allowing Access Based on User names & Passwords

You can protect access to HTTP Server trigger by enabling the user authentication. When enabled,
each HTTP request sent to the HTTP Server trigger must include the 'user name & password'
combination that matches the defined combination.

Allowing Access Based on Application Group Membership
You can protect access to HTTP Server trigger adding users to an application group in Control Center.
With this option enabled, only authenticated members of this group are allowed to access the trigger.

8.18. Session Printing

Session printing enables printing of multiple labels using a single print job. If session printing is
enabled, the printer receives, processes and prints all labels in the print job at once. As a result,
printing speed increases due to continuous process of bundled label printing.

293

@ TIP
Session printing serves as an alternative to the normally used non-session printing,
during which each label is sent to a printer as a separate print job.

@ NOTE

Automation activates session printing automatically based on the configuration of
actions.

How does session printing start?

Session printing automatically starts if For Loop, For Every Record or For Each Line actions are
present in the workflow. In such case, the nested Print Label action automatically enables session
printing. This means that print actions for all items in the loop are included in a single print job.

(5] N ¥

Settings Variables Actions

Action

1 ‘C' For loop
1.1 AE}W Cpen Label

Session Printing ON

114 ' Set Printer

112 5" Set Print lob Name L
113 o Redirect Printing to File L
114 & Print Label ¥

How does session printing end?
Each session printing ends either with a finished loop or with Print Label action combined with at least
one of the following conditions:

* Printer changes. If you select another printer using the Set Printer action, session printing ends.

* Printer port changes. If you redirect the print job to a file using the Redirect Printing to File
action, session printing ends.

* Label changes. If you select another label to be printed using Open Label action, session
printing ends.

* Custom command that ends session printing is sent. If you send SESSIONEND command using
the Send Custom Command action, session printing ends.

@ NOTE

In this case, SESSIONEND must be sent as the only item in Send Custom
Command action. If you would like to send additional commands, use separate
Send Custom Command actions.

294

S NOTE

More complex configurations might have multiple loops nested within each other. In
such case, session printing ends when the outermost parent loop exits.

8.19. Tips and Tricks for Using Variables in
Actions

If using variables in NiceLabel Automation actions, follow these recommendations.

* Enclose variables in square brackets. If you have variables with spaces in their names and
refer to variables in actions, such as Execute SQL Statement or Execute Script, enclose the
variables in square brackets, asin[Product Nane] . Also use square brackets if variable
names are the same as reserved names, e.g. in the SQL Statement.

* Place colon in front of the variable name. To refer to variables in Execute SQL Statement
action or in Database Trigger, you have to place a colon (;) in front of the variable name, such
as: [Product |D].The SQL parser understands it as 'variable value'.

SELECT * FROM MyTable WHERE ID = :[ProductiD]

* Convert values to integer for computation. If you want to execute a numeric calculation with
variables, make sure that you convert variable values to integers. Defining variables to be
numeric only limits the acceptable characters for defining the value, but doesn't change the
variable type. NiceLabel Automation treats all variables of string type. In VBScript, you would
use the function Cl nt () .

» Set default / start up values for scripts. When using variables in actions, make sure these
variables have some default value assigned, or the script checking might fail. You can define
default values in variable properties, or in a script (and remove them after testing the script).

8.20. Tracing Mode

By default, NiceLabel Automation logs events into log database. This includes higher-level
information gathering, such as:

* action execution logging
« filter execution logging

* logging of trigger status updates

For more information, see section Event Logging Options.

295

However, default logging doesn't keep track of the deep under-the-hood executions. If
troubleshooting is needed on the lower-level of the code execution, you must enable tracing mode. In
this mode, NiceLabel Automation logs details about all internal executions that take place during
trigger processing. Tracing mode should only be enabled during troubleshooting to collect logs and
then disabled to resume normal operation.

A WARNING

Tracing mode slows down processing. It should only be used when instructed so by
NicelLabel technical support team.

Enabling the tracing mode
To enable the tracing mode, do the following:

1. Navigate to the NiceLabel Automation System folder.
%PROGRAMDATA%\NiceLabel\NiceLabel 2019

2. Create backup copy of pr oduct . confi g file.
3. Openproduct. confi g file in text editor. The file has an XML structure.

4. Addthe element Cormon/ Di agnhost i cs/ Traci ng/ Enabl ed and assign value True to it.
The file should have the following contents:

<?xml version="1.0" encoding="utf-8"7>
<configuration>
<Commmon>
<Di agnosti cs>
<Tr aci ng>
<Enabl ed>True</ Enabl ed>
<Fol der >c:\Troubleshooting\TracinglLogs</ Fol der >
</ Tr aci ng>
</ Di agnhosti cs>
</ Common>

</ confi guration>

5. After you save the file, NiceLabel Automation Service automatically applies the setting.

6. By default, tracing files (*LOG file extension) appear in the same System folder.
To override the log folder, use pr oduct . conf i g file. Specify the custom log folder in the
Fol der element. This element is optional.

7. To confirm that tracing mode is enabled, start the Automation Manager. With tracing mode
enabled, it displays text Tracing has been enabled in the notification pane above the trigger
list.

296

8.21. Understanding Printer Settings and
DEVMODE

E NOTE

DEVMODE data structure is part of the GDI Print API structure in Windows. This
section includes highly technical content, relevant only for specific requirements.

Whenever you print labels with NiceLabel software (or any document in Windows applications for that
matter), the printing application reads printer settings as defined in the printer driver and applies them
to the print job. The same label can be printed using different printers just by selecting another printer
driver. Each time, printer settings of a newly selected printer apply to the label.

Printing a text document using two different laser printers usually produces the same or at least a
comparable result. Printing labels using two different label printers can produce very inconsistent
results. To produce comparable results, the same label file might require additional printer driver
settings, such as adjustment of offsets, speed, and temperature of printing. NiceLabel also applies
printer settings to every printout. By default, printer settings are saved inside the label file for the
selected printer.

What is DEVMODE?

DEVMODE is a Windows structure that holds printer settings (initialization and environment
information about a printer). It contains two parts: public and private. Public part contains data that is
common to all printers. Private part contains data that is specific to a particular printer. Private part
can be of variable length and contains all specific manufacturer related settings.

* Public part: This part encodes general settings that are exposed in the printer driver model,
such as printer name, driver version, paper size, orientation, color, duplex, and similar. Public part
remains unchanged any printer driver and does not support specifics related to label printers
(thermal printers, industrial ink jet printers, laser engraving machines).

* Private part: This part encodes settings that are not available in the public part. NiceLabel
printer drivers use this part to store the printer model-specific data, such as printing speed,
temperature setting, offsets, print mode, media type, sensors, cutters, graphics encoding, RFID
support, and similar. Data structure within the private part of DEVMODE is a stream of binary
data defined by driver developers.

DEVMODE Changing

DEVMODE data structure is stored in Windows registry. There are two copies of the structure: default
printer settings and user-specific printer settings. You can alter the DEVMODE (printer settings) by
changing the parameters in the printer driver. The first two options are Windows related, while the
third option is available with NiceLabel software.

» Default printer settings: These settings are defined in Printer properties > Advanced tab >
Printing Defaults.

297

http://msdn.microsoft.com/en-us/library/windows/desktop/ff686802(v=vs.85).aspx

» User specific settings: These settings are stored separately for each user in the user's
HKEY_CURRENT _USER registry key. By default, user specific settings are inherited from the
printer's default settings. The user specific settings are defined in Printer properties >
Preferences. All modifications here only affect the current user.

* Label specific settings: Label author that uses NiceLabel software can embed the DEVMODE
into the label. This makes printer settings portable. If the label is copied to another computer,
printer settings travel with it. To embed printer settings into the label, enable the option Use
custom printer settings saved in the label using Document Properties in Designer Pro. You
can change the in-label printers settings by selecting Printer panel in Document Properties.

Applying custom DEVMODE to printout

In NiceLabel Automation, you can open a label file and apply a custom DEVMODE to it. When printing
a label, its design is taken from the .NLBL file, and the DEVMODE applies the specific printer-related
formatting. This allows you to have a single label master. In such case, label printout remains the same
no matter which printer you use for printing because optimal settings for that printer are applied.

To apply a custom DEVMODE to a label, you can use two options:

1. Using an action, more specifically parameter Printer settings.

2. JOB command file, more specifically command SETPRINTPARAM with parameter
PRINTERSETTINGS. For more information, see section Using Custom Commands.

8.22. Using the Same User Account to
Configure and Run Triggers

NiceLabel Automation Service always runs under credentials of the user account configured for the
service. However, Automation Builder always runs under credentials of the currently logged-in user.
The credentials of service account and currently logged-in account might be different.

While you can preview the trigger in Automation Builder without any issues, the Service might report
an error message caused by credentials mismatch. While the currently logged-in user has
permissions to access folders and printers, the user account that the Service uses might not.

You can test the execution of triggers in Automation Builder using the same credentials as Service
does. To do so, run Automation Builder under the same user account as defined for the Service.

To run Automation Builder under a different user account, do the following:

1. Press and hold Shift key, then right click the Automation Builder icon.
2. Select Run as different user.
3. Enter the credentials for the same user, as used in NiceLabel Automation Service.

4. Click OK.

298

If you plan to frequently run Automation Builder under credentials of the other user account, see the
Windows-provided command-line utility RUNAS. Use the switches / user to specify the user
account, and/ savecr ed. The latter allows you to enter the password only once, and then it is
remembered for the next time.

299

9. Examples

NiceLabel Automation ships with examples that describe the configuration procedures for frequently
used data structures and provide configuration of actions. You can quickly learn how to configure
filters to extract data from CSV (Comma Separated Values) files, from legacy data exports, from
printers files, from XML documents, from binary files, just to name a few.

Shortcut to sample folder is available in Automation Builder.
To open the sample folder in Windows Explorer do the following:

1. Open Automation Builder.

2. Under Resources, click Sample Files.

Resources

@ Hep

Tutorials

[B] Tutorials

L[Knowledge Base

‘:} Support

3. The folder with the example files opens in Windows Explorer.

4. See README.PDF file in each folder.

Samples are installed in the following folder:

Example

%PUBLI C% Docurnent s\ Ni ceLabel 2019\ Aut omat i on\ Sanpl es
which would resolve to

c:\ Users\ Public\ Docunent s\ Ni ceLabel 2019\ Aut onat i on\ Sanpl es

300

10. Technical Support

You can find the latest builds, updates, workarounds for problems and Frequently Asked Questions
(FAQ) on the product web site at www.nicelabel.com.

For more information please refer to:
* Knowledge base: http://www.nicelabel.com/support/knowledge-base
* NicelLabel Support: http://www.nicelabel.com/support/technical-support
* NicelLabel Tutorials: http://www.nicelabel.com/learning-center/tutorials

¢ NicelLabel Forums: http://forums.nicelabel.com/

|§ NOTE

If you have a Service Maintenance Agreement (SMA), please contact the premium
support as specified in the agreement.

301

http://www.nicelabel.com/support/knowledge-base
http://www.nicelabel.com/support/technical-support
http://www.nicelabel.com/learning-center/tutorials
http://forums.nicelabel.com/

	NiceLabel Automation 2019 User Guide
	Table of Contents
	1. Welcome to NiceLabel Automation
	2. Setting Up Application
	2.1. Architecture
	2.2. System Requirements
	2.3. Installation
	2.4. Activation
	2.5. Trial Mode
	2.6. File Tab
	2.6.1. Open
	2.6.2. Compatibility with NiceWatch Products
	2.6.3. Save
	2.6.4. Save as
	2.6.5. Options
	2.6.6. About
	2.6.6.1. Losing your Label Cloud connection

	3. Understanding Filters
	3.1. Configuring Structured Text Filter
	3.1.1. Structured Text Filter
	3.1.2. Defining Fields
	3.1.3. Enabling Dynamic Structure

	3.2. Configuring Unstructured Data Filter
	3.2.1. Unstructured Data Filter
	3.2.2. Defining Fields
	3.2.3. Defining Sub Areas
	3.2.4. Defining Assignment Areas

	3.3. Configuring XML filter
	3.3.1. XML Filter
	3.3.2. Defining XML Fields
	3.3.3. Defining Repeatable Elements in XML Filter
	3.3.4. Defining XML Assignment Area

	3.4. Configuring JSON filter
	3.4.1. JSON Filter
	3.4.2. Defining JSON Fields
	3.4.3. Defining Repeatable Elements in JSON Filter
	3.4.4. Defining JSON Assignment Area

	3.5. Setting Label and Printer Names from Input Data

	4. Configuring Triggers
	4.1. Understanding Triggers
	4.2. Defining Triggers
	4.2.1. File Trigger
	4.2.2. Serial Port Trigger
	4.2.3. Database Trigger
	4.2.4. TCP/IP Server Trigger
	4.2.5. TCP/IP Client Trigger
	4.2.6. HTTP Server Trigger
	4.2.7. Web Service Trigger
	4.2.8. Cloud Trigger
	4.2.8.1. Deploying Cloud Trigger with Label Cloud
	Deployment Stages for Label Cloud
	Configuring cloud trigger in Automation Builder
	Setting up Cloud Trigger Access for the External integrator
	Creating subscription on the Developer Portal
	Calling your cloud trigger (Label Cloud deployment)
	Quick Check if your Cloud trigger works

	4.2.8.2. Deploying Cloud Trigger with your on-premise Control Center
	Configuring cloud trigger in Automation Builder
	Calling the cloud trigger (On-premise deployment)

	4.2.9. Scheduler Trigger
	4.2.9.1. General
	4.2.9.2. Recurrences

	4.3. Using Variables
	4.3.1. Variables
	4.3.2. Using Compound Values
	4.3.3. Internal Variables
	4.3.4. Global Variables

	4.4. Using Actions
	4.4.1. Actions
	4.4.1.1. Defining actions
	4.4.1.2. Nested actions
	4.4.1.3. Action execution
	4.4.1.4. Conditional actions
	4.4.1.5. Identifying actions in configuration error state
	4.4.1.6. Disabling actions
	4.4.1.7. Copying actions
	4.4.1.8. Navigating the action list
	4.4.1.9. Describing the actions

	4.4.2. General
	4.4.2.1. Open Label
	4.4.2.2. Print Label
	4.4.2.3. Run Oracle XML Command File
	4.4.2.4. Run SAP AII XML Command File
	4.4.2.5. Run Command File
	4.4.2.6. Send Custom Commands

	4.4.3. Printer
	4.4.3.1. Set Printer
	4.4.3.2. Set Print Job Name
	4.4.3.3. Redirect Printing to File
	4.4.3.4. Set Print Parameter
	4.4.3.5. Redirect Printing to PDF
	4.4.3.6. Printer Status
	4.4.3.7. Store Label to Printer
	4.4.3.8. Print PDF Document

	4.4.4. Variables
	4.4.4.1. Set Variable
	4.4.4.2. Save Variable Data
	4.4.4.3. Load Variable Data
	4.4.4.4. String Manipulation

	4.4.5. Batch Printing
	4.4.5.1. For Loop
	4.4.5.2. Use Data Filter
	4.4.5.3. For Every Record

	4.4.6. Data & connectivity
	4.4.6.1. Open Document/Program
	4.4.6.2. Save Data to File
	4.4.6.3. Read Data from File
	4.4.6.4. Delete File
	4.4.6.5. Execute SQL Statement
	4.4.6.6. Send Data to TCP/IP Port
	4.4.6.7. Send Data to Serial Port
	4.4.6.8. Read Data from Serial Port
	4.4.6.9. Send Data to Printer
	4.4.6.10. HTTP Request
	4.4.6.11. Web Service

	4.4.7. Other
	4.4.7.1. Get Label Information
	4.4.7.2. Execute Script
	Script Editor

	4.4.7.3. Message
	4.4.7.4. Verify License
	4.4.7.5. Try
	4.4.7.6. XML Transform
	4.4.7.7. Group
	4.4.7.8. Log Event
	4.4.7.9. Preview Label
	4.4.7.10. Create Label Variant

	4.5. Testing Triggers
	4.6. Protecting Trigger Configuration from Editing
	4.7. Configuring Firewall for Network Triggers
	4.8. Using Secure Transport Layer (HTTPS)

	5. Running and Managing Triggers
	5.1. Deploying Configuration
	5.2. Event Logging Options
	5.3. Managing Triggers
	5.4. Using Event Log
	5.5. If your configuration fails to load...

	6. Performance and Feedback Options
	6.1. Parallel Processing
	6.2. Caching Files
	6.3. Error Handling
	6.4. Synchronous Print Mode
	6.4.1. Asynchronous Print Mode
	6.4.2. Synchronous Print Mode

	6.5. Print Job Status Feedback
	6.6. Excluding printers from automated printing
	6.7. Using Store/Recall Printing Mode
	6.8. High-availability (Failover) Cluster
	6.9. Load-balancing Cluster

	7. Understanding Data Structures
	7.1. Binary Files
	7.1.1. Example

	7.2. Command Files
	7.2.1. Example

	7.3. Compound CSV
	7.3.1. Example

	7.4. Legacy Data
	7.4.1. Example

	7.5. Text Database
	7.5.1. Example

	7.6. XML Data
	7.6.1. Examples

	7.7. JSON Data

	8. Reference and Troubleshooting
	8.1. Command File Types
	8.1.1. Command Files Specifications
	8.1.2. CSV Command File
	8.1.2.1. Sample CSV Command File

	8.1.3. JOB Command File
	8.1.3.1. Sample JOB Command File

	8.1.4. XML Command File
	8.1.4.1. Sample XML Command File

	8.1.5. Oracle XML Specifications
	8.1.5.1. XML DTD
	8.1.5.2. Sample Oracle XML

	8.1.6. SAP AII XML Specifications
	8.1.6.1. Sample SAP AII XML

	8.2. Custom Commands
	8.2.1. Using Custom Commands

	8.3. Access to Network Shared Resources
	8.4. Document Storage and Versioning of Configuration Files
	8.5. Accessing Databases
	8.5.1. 32-bit Windows
	8.5.2. 64-bit Windows

	8.6. Automatic Font Replacement
	8.7. Automating Reports
	8.7.1. Creating temporary databases
	8.7.2. Designing automated Reports
	8.7.3. Creating data filters
	8.7.4. Creating triggers for your new data filter

	8.8. Changing Multi-threaded Printing Defaults
	8.9. Compatibility with NiceWatch Products
	8.10. Controlling Automation Service with Command-line Parameters
	8.11. Database Connection String Replacement
	8.12. Entering Special Characters (Control Codes)
	8.13. List of Control Codes
	8.14. Licensing and Printer Usage
	8.15. Running in Service Mode
	8.16. Search Order for Requested Files
	8.17. Securing Access to your Triggers
	8.18. Session Printing
	8.19. Tips and Tricks for Using Variables in Actions
	8.20. Tracing Mode
	8.21. Understanding Printer Settings and DEVMODE
	8.22. Using the Same User Account to Configure and Run Triggers

	9. Examples
	10. Technical Support

