
NiceLabel Automation 10
User Guide
Rev-2024-3

Table of Contents
1. Welcome to NiceLabel Automation ... 7

1.1. Architecture .. 8
1.2. System Requirements .. 9
1.3. Installation .. 9
1.4. Activation ... 10
1.5. Trial Mode ... 10
1.6. File Tab ... 11

1.6.1. Open .. 11
1.6.2. Compatibility with NiceWatch Products .. 12
1.6.3. Save .. 13
1.6.4. Save as .. 14
1.6.5. Options .. 14
1.6.6. About ... 21

2. Understanding Filters ... 23
2.1. Configuring Structured Text Filter ... 25

2.1.1. Structured Text Filter ... 25
2.1.2. Defining Fields .. 26
2.1.3. Enabling Dynamic Structure ... 29

2.2. Configuring Unstructured Data Filter ... 31
2.2.1. Unstructured Data Filter .. 31
2.2.2. Defining Fields .. 34
2.2.3. Defining Sub Areas .. 38
2.2.4. Defining Assignment Areas ... 40

2.3. Configuring XML filter .. 42
2.3.1. XML Filter ... 42
2.3.2. Defining XML Fields .. 43
2.3.3. Defining Repeatable Elements in XML Filter .. 46
2.3.4. Defining XML Assignment Area .. 49

2.4. Configuring JSON filter .. 52
2.4.1. JSON Filter ... 52
2.4.2. Defining JSON Fields .. 53
2.4.3. Defining Repeatable Elements in JSON Filter .. 56
2.4.4. Defining JSON Assignment Area .. 61

2.5. Setting Label and Printer Names from Input Data ... 64
3. Understanding Triggers .. 66

3.1. File Trigger .. 68
3.2. Serial Port Trigger .. 72
3.3. Database Trigger ... 74
3.4. TCP/IP Server Trigger .. 82
3.5. TCP/IP Client Trigger ... 86
3.6. HTTP Server Trigger .. 90
3.7. Web Service Trigger ... 96
3.8. Scheduler Trigger .. 106

2

3.8.1. General .. 106
3.8.2. Recurrences ... 107

3.9. LPS Trigger ... 109
3.10. Testing Triggers .. 109
3.11. Using Secure Transport Layer (HTTPS) ... 111
3.12. Protecting Trigger Configuration from Editing .. 115
3.13. Configuring Firewall for Network Triggers .. 115

4. Variables ... 117
4.1. Using Compound Values .. 118
4.2. Internal Variables .. 119
4.3. Global Variables .. 121

5. Actions .. 123
5.1. Defining actions .. 123
5.2. Nested actions .. 123
5.3. Action execution .. 124
5.4. Conditional actions .. 124
5.5. Identifying actions in configuration error state ... 125
5.6. Disabling actions ... 125
5.7. Copying actions ... 125
5.8. Navigating the action list .. 126
5.9. Describing the actions ... 126
5.10. General ... 126

5.10.1. Open Label ... 126
5.10.2. Print Label .. 128
5.10.3. Run Oracle XML Command File .. 132
5.10.4. Run SAP AII XML Command File .. 133
5.10.5. Run Command File .. 135
5.10.6. Send Custom Commands .. 137

5.11. Printer ... 139
5.11.1. Set Printer .. 139
5.11.2. Set Print Job Name ... 140
5.11.3. Redirect Printing to File ... 142
5.11.4. Set Print Parameter ... 144
5.11.5. Redirect Printing to PDF .. 151
5.11.6. Printer Status .. 153
5.11.7. Store Label to Printer ... 158
5.11.8. Print PDF Document .. 160

5.12. Variables ... 162
5.12.1. Set Variable .. 162
5.12.2. Save Variable Data .. 163
5.12.3. Load Variable Data .. 165
5.12.4. String Manipulation ... 167

5.13. Batch Printing .. 169
5.13.1. For Loop ... 169
5.13.2. Use Data Filter .. 171
5.13.3. For Every Record ... 174

3

5.14. Data & connectivity .. 177
5.14.1. Open Document/Program .. 177
5.14.2. Save Data to File ... 179
5.14.3. Read Data from File ... 180
5.14.4. Delete File .. 183
5.14.5. Execute SQL Statement ... 184
5.14.6. Send Data to TCP/IP Port .. 189
5.14.7. Send Data to Serial Port ... 192
5.14.8. Read Data from Serial Port .. 194
5.14.9. Send Data to Printer .. 196
5.14.10. HTTP Request .. 198
5.14.11. Web Service .. 201

5.15. Other .. 204
5.15.1. Get Label Information .. 204
5.15.2. Execute Script ... 210

5.15.2.1. Script Editor ... 211
5.15.3. Message .. 213
5.15.4. Verify License ... 215
5.15.5. Try ... 217
5.15.6. XML Transform ... 219
5.15.7. Group ... 221
5.15.8. Log Event ... 223
5.15.9. Preview Label ... 224
5.15.10. Create Label Variant .. 226

6. Running and Managing Triggers ... 229
6.1. Deploying Configuration ... 229
6.2. Event Logging Options ... 230
6.3. Managing Triggers ... 230
6.4. Using Event Log ... 232
6.5. If your configuration fails to load... .. 236

7. Performance and Feedback Options ... 239
7.1. Parallel Processing .. 239
7.2. Caching Files .. 240
7.3. Error Handling ... 242
7.4. Synchronous Print Mode .. 244

7.4.1. Asynchronous Print Mode ... 244
7.4.2. Synchronous Print Mode ... 244

7.5. Print Job Status Feedback ... 247
7.6. Excluding printers from automated printing ... 249
7.7. Using Store/Recall Printing Mode ... 250
7.8. High-availability (Failover) Cluster ... 251
7.9. Load-balancing Cluster .. 252

8. Understanding Data Structures ... 253
8.1. Binary Files ... 253

8.1.1. Example ... 253
8.2. Command Files ... 254

4

8.2.1. Example ... 254
8.3. Compound CSV ... 255

8.3.1. Example ... 255
8.4. Legacy Data .. 255

8.4.1. Example ... 255
8.5. Text Database ... 256

8.5.1. Example ... 256
8.6. XML Data .. 257

8.6.1. Examples ... 257
8.7. JSON Data .. 259

9. Reference and Troubleshooting .. 263
9.1. Command File Types ... 263

9.1.1. Command Files Specifications ... 263
9.1.2. CSV Command File ... 263

9.1.2.1. Sample CSV Command File .. 263
9.1.3. JOB Command File ... 264

9.1.3.1. Sample JOB Command File .. 264
9.1.4. XML Command File .. 265

9.1.4.1. Sample XML Command File .. 265
9.1.5. Oracle XML Specifications ... 270

9.1.5.1. XML DTD ... 270
9.1.5.2. Sample Oracle XML .. 270

9.1.6. SAP AII XML Specifications ... 271
9.1.6.1. Sample SAP AII XML .. 271

9.1.7. PAS Command File ... 272
9.1.7.1. PAS Command File Example ... 273

9.2. Custom Commands ... 273
9.2.1. Using Custom Commands ... 273

9.3. Access to Network Shared Resources ... 279
9.4. Document Storage and Versioning of Configuration Files ... 280
9.5. Accessing Databases .. 281

9.5.1. 32-bit Windows ... 281
9.5.2. 64-bit Windows ... 282

9.6. Automatic Font Replacement ... 282
9.7. Automating Reports ... 284

9.7.1. Creating temporary databases ... 285
9.7.2. Designing automated Reports .. 286
9.7.3. Creating data filters ... 286
9.7.4. Creating triggers for your new data filter ... 287

9.8. Changing Multi-threaded Printing Defaults .. 288
9.9. Compatibility with NiceWatch Products ... 289
9.10. Controlling Automation Service with Command-line Parameters 291
9.11. Database Connection String Replacement ... 295
9.12. Entering Special Characters (Control Codes) ... 296
9.13. List of Control Codes ... 297
9.14. Licensing and Printer Usage ... 298

5

9.15. Running in Service Mode .. 299
9.16. Search Order for Requested Files .. 301
9.17. Securing Access to your Triggers .. 301
9.18. Session Printing .. 303
9.19. Tips and Tricks for Using Variables in Actions ... 305
9.20. Tracing Mode .. 305
9.21. Understanding Printer Settings and DEVMODE ... 307
9.22. Using the Same User Account to Configure and Run Triggers 308

6

1. Welcome to NiceLabel Automation
Automation is an application that automates repetitive tasks.

NiceLabel Automation helps you deploy and run an optimal business label printing system by synchronizing
business events with label production. Automated printing without human interaction is by far the most
effective way to remove user errors and to maximize performance.

Label printing automation using a trigger-based application revolves around the following three core
processes:

Trigger
Triggers are a simple but powerful function that help automate your work. At its core, a trigger is a cause
and effect of the statement: "If a monitored event happens, do something."

Here, we are talking about IF .. THEN processing. Triggers are good at handling repetitive events.

Automated label printing is triggered by a business operation. NiceLabel Automation is set to monitor a
folder, file, or a communication port. If a business operation takes place, a file change or incoming data is
detected. This triggers the label printing process.

Learn more about various Triggers:

• File Trigger

• Serial Port Trigger

• Database Trigger

• Scheduler Trigger

• TCP/IP Server Trigger

• TCP/IP Client Trigger

• HTTP Trigger

• Web Service Trigger

• Cloud Trigger

7

Data Extraction and Placement
Once a trigger starts the printing, NiceLabel Automation extracts label data and inserts it into variable
objects that are placed on a label.

Data extraction Filters support:

• Structured text files

• Unstructured text files

• Various XML files

• JSON files

Action Execution
After matching the data with variable objects on a label, NiceLabel Automation starts performing actions.
A basic set of actions usually includes Open Label and Print Label to print the extracted data on a label.
You can also send data to custom local or network file locations, Web servers, hardware devices, and much
more.

There are more than 30 actions available. Together, they cover a vast majority of scenarios that are
common in today's business environments.

Learn more about basic and advanced printing Actions.

1.1. Architecture

NiceLabel Automation is a service-based application. Execution of all rules and actions runs as a
background process under credentials of the user account that is defined for the Service.

NiceLabel Automation consists of three components.

• Automation Builder: Developer uses this application to create triggers, filters and actions, and to use
them in a working configuration. Actions that belong to such a configuration execute after a trigger
receives data. This application always runs as a 32-bit application.

• Automation Manager: This is the management application that monitors the execution of triggers
in real time, and orders the triggers to start or stop. Automation Manager always runs as a 32-bit
application.

• NiceLabel Automation Service: This is the 'print engine' that executes rules defined in the triggers.
There are two service applications: NiceLabel Automation Service and NiceLabel Proxy Service. The
Service always detects 'bitness' of the Windows machine and runs it at the same level (e.g. as a 64-bit
application on 64-bit Windows), while the Proxy Service always runs as a 32-bit process.

8

1.2. System Requirements

NOTE
Always double-check for the latest system requirements on this web page: System
Requirements.

1.3. Installation

NOTE
Below is the summarized version of the installation procedure. For more information, see
the NiceLabel Automation Installation Guide.

Before you begin with the installation, make sure your infrastructure is compatible with System
Requirements.

To install NiceLabel Automation, do the following:

1. Download the installation file from NiceLabel License Center, then run the downloaded executable
file.

2. Follow Setup Wizard prompts.
During the installation, Setup prompts for user name under which NiceLabel Automation
NiceLabel Automation service is going to run under. Make sure you select a real user name,
because the service inherits privileges associated with that specific user name. For more
information, see section Running in Service Mode.

9

https://help.nicelabel.com/hc/articles/4414078620817
https://help.nicelabel.com/hc/articles/4414078620817
https://help.nicelabel.com/hc/categories/4405140034833-NiceLabel-10-Installation-Guide
https://help.nicelabel.com/hc/articles/4406065208593-System-Requirements
https://help.nicelabel.com/hc/articles/4406065208593-System-Requirements

Version upgrading
To upgrade NiceLabel Automation to the latest release, install the new version on top of the installed one
by overwriting it. During the upgrade, the old version is removed and replaced with the new one. All existing
settings are preserved. Upgrade deletes the log database content.

1.4. Activation

Connect Automation to License Center to enable processing of configured triggers. The activation
procedure requires an Internet connection.

NOTE
You can activate the software either from Automation Builder or Automation Manager.

When you open Automation for the first time, Sign in window pops up where your License Center address
is already entered. Click Sign in with browser, then follow the instructions in the newly opened browser tab
with the login request.

For more information about activating Automation, see the License Center User Guide.

1.5. Trial Mode

Trial mode allows you to test NiceLabel Automation for up to 30 days. Trial mode offers the same feature
set as a licensed version and therefore enables complete evaluation of the product before you purchase it.
Automation Manager continuously displays the trial notification message and the number of remaining trial
days. After the trial mode expires, NiceLabel Automation service stops processing triggers. The countdown
of 30 days begins with the day of installation.

10

https://help.nicelabel.com/hc/articles/21741913803921-Activating-NiceLabel-and-signing-in-to-License-Center

NOTE
You can extend the trial mode by contacting your NiceLabel reseller and requesting an
additional trial license key. You have to activate the trial license key. For more information,
see section Activation.

1.6. File Tab
File tab serves as document management panel. The below listed options are available:

• New: creates a new configuration file.

• Open: opens existing configuration files.

• Open NiceWatch File: opens a legacy NiceLabel NiceWatch configuration.

• Save: saves the active configuration file.

• Save as: allows saving the active configuration file by defining its name and location.

• Options: opens the dialog for configuring the program defaults.

• About: provides license and software version information.

• Exit: closes the application.

1.6.1. Open

Open dialog allows you to open the existing configurations in Automation Builder.

Browse allows selecting the configuration files on local or connected network drives.

Document Storage opens the document storage location of the connected NiceLabel Control Center. The
Document Storage option allows you to manage your copy of the stored configuration file.

Recent Files field lists the latest configuration files that have been edited. Click any of them to open the file.

11

1.6.2. Compatibility with NiceWatch Products

NiceLabel Automation allows you to load trigger configurations that were built using legacy NiceWatch
products. In the majority of cases, you can run NiceWatch configuration using NiceLabel Automation
without any modifications.

NiceLabel Automation products are using a new .NET based print engine optimized for performance and
low memory footprint. The new print engine does not support each label design option that is available in
the label designer. Each new release of NiceLabel Automation is closing the gap, but you might still come
across certain unavailable features.

Resolving Incompatibility Issues
NiceLabel Automation warns you if you try to print existing label templates that contain design features
which are not supported with the new print engine.

If there are incompatibilities with NiceWatch configuration file or label templates, Automation notifies you
about:

• Compatibility with trigger configuration: While opening the NiceWatch configuration (.MIS file),
NiceLabel Automation checks it against the supported features. Not all features from NiceWatch are
available in NiceLabel Automation. While some are not available at all, some of them are configured
differently. If the MIS file contains unsupported features, you will see them listed. Automation
removes these features from the configuration.
If you come across such a case, open the .MIS file in Automation Builder and resolve the
incompatibility issues. You will have to use the available NiceLabel Automation features to re-create
the removed configuration items.

• Compatibility with label templates: If your existing label templates contain unsupported print engine
features as provided by NiceLabel Automation, you will see error messages in the Log pane. This
information is visible in the Automation Builder (when designing triggers) or in Automation Manager
(when running the triggers).
In this case, you have to open the label file in label designer and remove unsupported features from
the label.

NOTE
For more information about incompatibility issues with NiceWatch and label designers, see
NiceLabel Automation Compatibility with NiceLabel Designers V6 and NiceWatch V5.

12

https://help.nicelabel.com/hc/articles/4405114748817-NiceLabel-Automation-Compatibility-with-NiceLabel-Designers-V6-and-NiceWatch-V5

Opening NiceWatch Configuration for Editing
Open the existing NiceWatch configuration (.MIS file) in Automation Builder and edit it in Automation
Builder. You can save the configuration as a .MISX file only.

To edit the NiceWatch configuration, do the following:

1. Start Automation Builder.

2. Go to File > Open NiceWatch File.

3. In the Open dialog box, browse for the NiceWatch configuration file (.MIS file).

4. Click OK.

5. If the configuration contains unsupported features, they are displayed in a list. Automation removes
them from the configuration.

Opening NiceWatch Configuration for Execution
You can open NiceWatch configuration (.MIS file) in Automation Manager without conversion to the
NiceLabel Automation file format (.MISX file). If the triggers from NiceWatch are compatible with NiceLabel
Automation, you can start using them right away.

To open and deploy NiceWatch configuration, do the following:

1. Start Automation Manager.

2. Click +Add button.

3. In Open dialog box, change the file type into NiceWatch Configuration.

4. Browse for the NiceWatch configuration file (.MIS file).

5. Click OK.

6. Automation Manager will display the trigger from the selected configuration. To start the trigger,
select it and click Start.

NOTE
If there are compatibility issues with NiceWatch configuration, open it in Automation Builder
and reconfigure it.

1.6.3. Save

Save saves the active configuration using the same file name that was used for opening it.

13

NOTE
If a configuration has been opened for the first time, Save directs you to the Save as dialog.

1.6.4. Save as

Save as allows saving the active configuration file by defining its name and location. You can save your
configuration files to your local disc or Document Storage in your NiceLabel Control Center

Recent folders field lists the folders that were recently used for saving the configuration files.

1.6.5. Options

Use settings in this dialog box to customize the application. Select a group from the left-hand panels and
configure its settings.

Folders
This panel allows you to select the default storage folders for labels, forms, databases, and picture
files. The default folder location is current user's Documents folder. These are also the default folders
in which NiceLabel Automation searches for files if you provide file names without their full path. For more
information about the file search order, see section Search order for the Requested Files.

Folder-related changes propagate to NiceLabel Automation Service within a minute. To apply changes
immediately, restart the service.

NOTE
The settings that you apply here are saved into the profile of the currently logged-in user. If
your NiceLabel Automation Service runs under a different user account, you have to log into
Windows using that other account, and change the default label folder. You can also use
Windows command-line utility RUNAS to run Automation Builder as that other user.

Language
Language panel allows selecting the NiceLabel Automation interface language. Select the appropriate
language and click OK.

NOTE
The change is applied after you restart the application.

14

Global Variables
Global Variables panel defines which location with stored global variables should be used:

• Use global variables stored on the server (NiceLabel Control Center): Sets the global variable storage
location to be on the NiceLabel Control Center.

• Use global variables stored in a file (local or shared): Sets the global variable storage location in a
local or shared folder. Enter the exact path or click Open to locate the file.

15

Licensed Printers

NOTE
Keeping the information on the use of licensed printers is available with multi-user licenses.

Licensed Printers panel provides logged information about the number of printers that have been used in
your printing environment.

Details on Licensed Printers group displays how many of the permitted printer seats are in use after
printing on multiple printers.

• Number of printers allowed by license: Number of permitted printers to be used with the current
NiceLabel 10 license.

• Number of used printers in the last 7 days: Number of printers that have been used with NiceLabel 10
during the last 7 days.

TIP
During a 7-day period, NiceLabel 10 license allows only the specified number of
different printers to be used.

WARNING
Purchased license defines the number of allowed printers. After you exceed this number, a
warning appears. After doubling the number of allowed printers, you can no longer print on
additional printers.

See printing statuses in multiple columns:

• Printer: Name or model of the printer that was selected for the print job.

NOTE
If the connected printer is shared, only printer model is displayed.

• Location: Name of the computer from which the print job has been sent.

• Port: Port used by the printer.

• Last Used: Time passed since the last print job.

• Reserved: Prevents the printer from being removed after idling for more that 7 days.

16

NOTE
If a printer remains unused for more then 7 days, it is removed automatically unless the
Reserved option is enabled.

Permissions panel allows you to lock printer usage on local workstation.

• This workstation can only use reserved printers: With this option enabled, only reserved printers are
allowed for label editing and printing in NiceLabel 10.

TIP
Use this option to avoid exceeding the number of available licensed printer seats by
printing on unwanted printers or print-to-file applications. Reserve dedicated thermal
or laser labeling printers and limit printing only to them. This ensures continuous
printing of labels with a multi-user license.

This option can also be enabled using the product.config file:

1. Navigate to the System folder.
%PROGRAMDATA%\NiceLabel\NiceLabel 10

2. Make a backup copy of the product.config file.

3. Open product.config in a text editor. The file has an XML structure.

4. Add the following lines:

<Configuration>

 <Activation>

 <ReservePrinters>Example Printer Name</ReservePrinters>

 </Activation>

 <Common>

 <General>

 <ShowOnlyReservedPrinters>True</ShowOnlyReservedPrinters>

 </General>

 </Common>

</Configuration>

5. Save the file. The Example Printer is reserved.

17

Control Center
Control Center panel allows you to enable and configure the monitoring of events and print jobs. NiceLabel
Control Center enables centralized event and print job reporting, and centralized storage of global variables.

NOTE
This tab becomes available with LMS Pro or LMS Enterprise licenses.

Address group defines which NiceLabel Control Center server should be used.

• Control Center server address: URL of the connected NiceLabel Control Center server. You can select
from the list of automatically discovered servers on the network, or enter a server address manually.

Event Monitoring group defines what types of events should be logged by the connected NiceLabel Control
Center.

• Print Events: Logs the print related events from the workstation.

• Error Events: Logs all reported errors.

NOTE
By default, Print Events and Error Events are logged by the NiceLabel Control Center.

• Trigger Activity: Logs all fired triggers.

• Trigger Status Change Events: Logs the trigger status changes which have been caused by the fired
triggers.

Print Job Monitoring group enables you to log the completed and ongoing print jobs to NiceLabel Control
Center.

• Enable Print Job Logging to Server: Activates print job logging.

• Detailed printing control: Enables monitoring of statuses that are reported by the connected printer.

NOTE
There are two requirements to make this option available:

• The printer must support bidirectional communication.

• NiceLabel printer driver must be used for printing.

18

Automation
These settings define the application's advanced features.

NOTE
The changes become active after you restart the application.

Service Communication

• Service communication port: Automation Manager controls the service using TCP/IP protocol on the
selected port. If the default port is not suitable for you to be used on the computer, select another port
number. Be careful not to select a port number that is already in use by another application.

Log

• Clear log entries daily at: Defines the start of the housekeeping process. Old events are erased from
the log database.

• Clear log entries when older than (days): Specifies event retention in the log database. All events
older than the specified number of days are erased from the database at each housekeeping event.

• Log messages: Specifies the scope of event recording in the log. During the development and testing
phases, you might want to enable verbose logging. In this case, enable all messages to improve the
tracing of trigger execution. Later on, while in production phase, minimize the amount of logging and
enable logging of errors only.

Performance

•

Cache files from document storage and network shares: To improve the time-to-first label and to
increase performance in general, NiceLabel Automation supports file caching. After you load the
labels, images, and database data from network shares, all required files must be fetched before the
printing process can begin.

TIP
If you enable local caching, the effect of network latency is reduced as label and
picture files are loaded from your local disk.

Automation service uses the following local folder to cache the remote files: %PROGRAMDATA%
\NiceLabel\NiceLabel 10\FileCache.

19

• Refresh intervals (minutes): Defines the time interval within which the files in the cache are
synchronized with files in the original folder. This is the time limit for the system to use a version
that may not be the latest.

• Delete unused cached files after (days): Defines the time interval after which all files are
removed from cache.

NOTE
File caching supports label and picture file formats. After you enable file caching,
restart Automation service to make the changes take effect.

• Precache folders from document storage allows you to locally cache the files from Control Center
document storage folders on your computer. With enabled precaching, the content of local cache
keeps synchronizing with the selected document storage folders.

NOTE
In comparison with caching, precaching reduces the printing time for your first printed
label.

Add each document storage folder in a separate line.

/Labels/Folder1

/Labels/Folder2

NOTE
Your Automation Builder must be connected to the Control Center to enable the offline
synchronization of cached files.

Cluster Support

This setting enables support for high-availability (failover) type of cluster in NiceLabel Automation. Select
the folder which both nodes in the cluster will use to share information about real-time trigger statuses.

20

Designer
Designer panel enables you to configure the opening behavior of NiceLabel 10.

• Display each document in its own window: If enabled, additionally opened documents appear in
separate windows of NiceLabel 10. This applies to both – newly created and existing documents.
If you decide to disable this option, additionally opened documents appear within the currently active
instance of NiceLabel 10.

• Printer Settings Source allows you to choose the source of printer settings.

• Use printer settings from the printer driver: Select this option if you prefer printing using the
printer driver settings. This option allows you to standardize the printer settings in your working
environment.

• Use custom printer settings saved in the label: Each label may have its own printer settings
defined and saved by the user. Select this option to use custom settings for your labels while
printing.

1.6.6. About

About dialog provides information about your NiceLabel product license, enables license purchasing (when
in trial mode) and activation, provides software details, and enables you to change the product level of
NiceLabel 10.

License information group includes:

• Trial mode duration: Information about the remaining days for product evaluation. This segment is no
longer visible after purchasing and activating the product license.

• Purchase License: Button directs you to the NiceLabel online store.

• Activate license: Button opens the NiceLabel 10 license activation dialog. See NiceLabel 10
installation guide for details about the license activation process. After activating the license, this
button is renamed to Deactivate License – after clicking it and confirming the deactivation, your copy
of NiceLabel 10 is no longer activated.

• Change product level: Opens the product level selection dialog. When in trial mode, you can choose
and evaluate all product levels. With an activated license, you can change your product level only to
lower levels.

NOTE
Product level changes take effect after restarting the application.

• Upgrade license: Opens the product level upgrade dialog. See NiceLabel 10 installation guide for
details about the license upgrade process.

21

https://nicelabelhelpcenter.zendesk.com/hc/en-001/categories/4405140034833-NiceLabel-10-Installation-Guide
https://nicelabelhelpcenter.zendesk.com/hc/en-001/categories/4405140034833-NiceLabel-10-Installation-Guide
https://nicelabelhelpcenter.zendesk.com/hc/en-001/categories/4405140034833-NiceLabel-10-Installation-Guide

Software information group includes information about the installed software version and build number.

22

2. Understanding Filters
NiceLabel Automation uses filters to define structure of the data received by triggers. Each time a trigger
receives data, one or many filters parse the received data. This process extracts relevant values for your
configuration. Each filter includes rules to identify fields within received data.

NOTE
As a result, the filter provides a list of fields and their values (name:value pairs).

Filter Types
For more information, see sections Structured Text Filter, Unstructured Data Filter, XML filter, and JSON
Filter.

Data Structure
Filter complexity depends on the data structure. Files with structured data, such as CSV or XML files, make
data extraction easy. In this case, field names are already defined by the data. Extraction of name:value
pairs is quick. In case of data without a clear structure, it takes more time to define the extraction rules. You
might come across such data when exporting documents and reports from legacy systems, intercepted
communication between devices, and captured print streams.

The filter defines a list of fields that are extracted from the incoming data once you run the filter.

NiceLabel Automation supports various types of input data that can all be parsed by one of the supported
filter types. Make sure you select the correct filter to match the type of incoming data. For example, you
would use Structured Text filter for incoming CSV data, JSON filter for incoming JSON data, and XML
filter for incoming XML data. For any unstructured data, you would use Unstructured Data filter. For more
information, see section Understanding Data Structures.

Extracting Data
Filter is a set of rules and doesn't do any extraction by itself. To run the filter, run the Use Data Filter action.
This action executes filter rules against the data and extracts the values.

Each trigger type can execute as many Use Data Filter actions as necessary. If you receive compound input
data that cannot be parsed by a single filer alone, define multiple filters and execute their rules using a
sequence of Use Data Filter actions. Finally, use the extracted values from all actions on the same label.

23

Mapping Fields to Variables
To use the extracted values, you have to store them in variables. The Use Data Filter action does both
– extracts values and saves them in variables. To configure this process, map each variable with the
respective field. The value of the field is then saved in the mapped variable.

TIP
It's a good practice to define fields and variables with matching names. In this case, the
auto-mapping feature links variables to the fields of the same names, eliminating the need
for manual mapping.

Auto-mapping is available for all supported filter types. With auto-mapping enabled, the Use Data Filter
action extracts values and automatically maps them to the variables with the same names as field
names. For more information, see the section Enabling Dynamic Structure for Structured Text filter, Defining
Assignment Area for Unstructured Data filter, and Defining Assignment Area for XML or JSON filters.

24

Running Actions with Extracted Data
Usually, you want to run actions using the extracted data, such as Open Label, Print Label, or some of the
outbound connectivity actions. It is critically important that you nest your actions under the Use Data Filter
action. This ensures that the nested actions are run for each data extraction.

Example

If you have a CSV file with 5 lines, the nested actions also run for 5 times; once for each data extraction. If
the actions are not nested, they only execute once and only contain data from the last data extraction. As
for the example above, the 5th CSV line would be printed leaving out the first four lines unprinted. If you use
Sub Areas, make sure you nest your action under the correct placeholder.

2.1. Configuring Structured Text Filter

2.1.1. Structured Text Filter

To learn more about filters in general, see section Understanding Filters.

Use this filter whenever you receive a structured text file. These are the text files in which the fields are
identified by one of the following methods:

• Fields are delimited by a character: Usual delimiter characters are comma or semicolon. CSV
(comma separated values) is a typical example of a delimited file.

• Fields contain fixed number of characters: In other words, fields are defined by fixed-width columns.

For examples of structured text data, see section Text Database.

25

Defining Structure
To define the structure of a text file, you have the following options:

• Importing structure using the Text File Wizard: In this case, click the Import Data Structure button in
the ribbon and follow the on-screen instructions. After you finish the wizard, the type of text database
and all fields are defined. If the first line of data contains field names, the Wizard can import them.
This is the recommended method, if the trigger always receives data whose structure does not
change.

• Manually defining the fields: In this case, you have to manually define the type of data (delimited
fields or fixed-width fields) and then define the field names. For more information, see section
Defining Fields.

• Dynamically read the fields: In this case, the trigger might receive data that is structured in a different
way. An example for this are new field names – dynamic structure eliminates the need to update the
filter for each structural change. Support for dynamic structure automatically reads all data fields, no
matter if new fields exist or if some of the old fields are missing. It maps them automatically with the
variables using the same names. For more information, see section Enabling Dynamic Structure.

Data Preview section simplifies the configuration. In the preview pane, the result of a defined filter rule
highlights the area along with every configuration change. Data Preview enables you to check what data is
extracted with each rule.

2.1.2. Defining Fields

For structured text files, the definition of fields is very straightforward. There are two options:

• Delimiter defines the fields: In this case, you have a delimiting character, such as comma or
semicolon separating the fields. You just have to define the field names in the same order as they
appear in the data received by a trigger.

• Fixed-width fields: In this case, define the field names in the same order as they appear in the
data received by a trigger, and define the number of characters the field would occupy. That many
characters are going to be read from the data for this field.

26

Data Preview
This section provides preview of the field definition. If the defined item is selected, the preview highlights its
placement in the preview data.

• Preview file name: Specifies the file that contains sample data that is going to be parsed by the filter.
The preview file is copied from filter definition. If you change the preview file name, the new file name
is saved.

• Open: Selects another file upon which you want to execute the filter rules.

• Refresh: Re-runs the filter rules upon the contents of the preview file name. Automation updates the
Data Preview section with the result.

27

Formatting Options
This section defines string manipulation functions that apply on the selected variables or fields. You can
select one or several functions. These functions are applied in the same order as selected in the user
interface – from top to bottom.

• Delete spaces at the beginning: Deletes all space characters (decimal ASCII code 32) from the
beginning of a string.

• Delete spaces at the end: Deletes all space characters (decimal ASCII value 32) from the end of a
string.

• Delete opening and closing character: Deletes the first occurrence of the selected opening, and
closing characters that are found in a string.

Example

If you use "{" for the opening character and "}" for the closing character, the input string
{{selection}} converts to {selection}.

• Search and replace: Executes standard search and replace function upon the provided values for find
what and replace with. You can also use regular expressions.

NOTE
There are several implementations of the regular expressions in use. uses the .NET
Framework syntax for the regular expressions. For more information, see the
Knowledge Base article.

• Replace non printable characters with spaces: Replaces all control characters in the string with
space character (decimal ASCII code 32). The non printable characters are characters with decimal
ASCII values between 0–31 and 127–159.

• Delete non printable characters: Deletes all control characters in the string. The non printable
characters are characters with decimal ASCII values between 0–31 and 127–159.

• Decode special characters: Special characters (or control codes) are characters that are not available
on the keyboard, such as Carriage Return or Line Feed. uses a notation to encode such characters in
human-readable form, such as <CR> for Carriage Return and <LF> for Line Feed. For more information,
see section Entering Special Characters (Control Codes).
This option converts special characters from syntax into actual binary characters.

Example

When you receive the data sequence "<CR><LF>", uses it as a as plain string of 8 characters. Enable
this option to interpret and use the received data as two binary characters CR (Carriage Return - ASCII
code 13) and LF (Line Feed - ASCII code 10).

• Search and delete everything before: Finds the provided string and deletes all characters from the
beginning of the data until the string. The found string itself can also be deleted.

28

https://help.nicelabel.com/hc/articles/4405121485713--NET-Framework-Syntax-for-Regular-Expressions
https://help.nicelabel.com/hc/articles/4405121485713--NET-Framework-Syntax-for-Regular-Expressions

• Search and delete everything after: Finds the provided string and deletes all characters from the
string until the end of the data. The found string itself can also be deleted.

• Change case: Changes all characters in your strings to uppercase or lowercase.

2.1.3. Enabling Dynamic Structure

Structured Text filter has the ability to automatically identify fields and their values within the received data.
This eliminates the need for manual variable-to-field mapping.

Dynamic structure functionality is helpful if the trigger receives data with changing structure. In such
cases, main data structure remains unchanged (e.g., fields are delimited by a comma), or retains the same
structure, but the order and/or the number of fields changes. There might be new fields, or some of the
old fields could no longer be available. Because of enabled Dynamic structure, filter automatically identifies
structure of the received file. At the same time, filter reads field names and values (name:value pairs)
from the data. This eliminates the need for manual mapping of fields to variables.

Use Data Filter action does not offer any mapping possibilities, because it performs the mapping
dynamically. You don't even have to define label variables in the trigger configuration. The action assigns
field values to the label variables of the same name without requiring the variables to be imported from
the label. However, this rule applies to the Print Label action alone. If you want to use the field values in
any other action, you have to define variables in the trigger, while still keeping the automatic variable-to-field
mapping.

NOTE
There is no error if the field available in the input data doesn't have a matching label
variable. NiceLabel Automation silently ignores the missing variables.

29

Configuring the dynamic structure
To configure the dynamic structure, enable the Dynamic structure option in Structured Text filter properties.

• The first line of data must contain field names.

• The line that you select for Start import at line must be the line with the field names (usually the first
line in data).

• Data structure must be delimited.

• You can format the data, if necessary.

Formatting Options
This section defines string manipulation functions that apply on the selected variables or fields. You can
select one or several functions. These functions are applied in the same order as selected in the user
interface – from top to bottom.

• Delete spaces at the beginning: Deletes all space characters (decimal ASCII code 32) from the
beginning of a string.

• Delete spaces at the end: Deletes all space characters (decimal ASCII value 32) from the end of a
string.

• Delete opening and closing character: Deletes the first occurrence of the selected opening, and
closing characters that are found in a string.

Example

If you use "{" for the opening character and "}" for the closing character, the input string
{{selection}} converts to {selection}.

30

• Search and replace: Executes standard search and replace function upon the provided values for find
what and replace with. You can also use regular expressions.

NOTE
There are several implementations of the regular expressions in use. uses the .NET
Framework syntax for the regular expressions. For more information, see the
Knowledge Base article.

• Replace non printable characters with spaces: Replaces all control characters in the string with
space character (decimal ASCII code 32). The non printable characters are characters with decimal
ASCII values between 0–31 and 127–159.

• Delete non printable characters: Deletes all control characters in the string. The non printable
characters are characters with decimal ASCII values between 0–31 and 127–159.

• Decode special characters: Special characters (or control codes) are characters that are not available
on the keyboard, such as Carriage Return or Line Feed. uses a notation to encode such characters in
human-readable form, such as <CR> for Carriage Return and <LF> for Line Feed. For more information,
see section Entering Special Characters (Control Codes).
This option converts special characters from syntax into actual binary characters.

Example

When you receive the data sequence "<CR><LF>", uses it as a as plain string of 8 characters. Enable
this option to interpret and use the received data as two binary characters CR (Carriage Return - ASCII
code 13) and LF (Line Feed - ASCII code 10).

• Search and delete everything before: Finds the provided string and deletes all characters from the
beginning of the data until the string. The found string itself can also be deleted.

• Search and delete everything after: Finds the provided string and deletes all characters from the
string until the end of the data. The found string itself can also be deleted.

• Change case: Changes all characters in your strings to uppercase or lowercase.

2.2. Configuring Unstructured Data Filter

2.2.1. Unstructured Data Filter

To learn more about filters in general, see section Understanding Filters.

31

https://help.nicelabel.com/hc/articles/4405121485713--NET-Framework-Syntax-for-Regular-Expressions
https://help.nicelabel.com/hc/articles/4405121485713--NET-Framework-Syntax-for-Regular-Expressions

Use this filter whenever a trigger receives non-structured data, such as documents and reports exported
from legacy system, intercepted communication between devices, and captured print stream. The filter
allows you to extract individual fields, fields in repeatable sub areas, and even name-value pairs.

For examples of the structured text data, see sections Legacy Data, Compound CSV and Binary Files.

32

Defining Structure
The items you can use to configure the filter:

• Field: Specifies the location of field data between field-start and field-end locations. There are various
options to define the field location, from hard-coding the position to enabling relative placements.
You must map the defined fields to respective variables in the Use Data Filter action. For more
information, see section Defining Fields.

• Sub area: Specifies the location of repeatable data. Each sub area defines at least one data block,
which in turn contains data for labels. There can be sub areas defined within sub areas, which allows
you to define complex structures. You can define fields within each data block. You must map the
defined fields to respective variables in the action. For each sub area, Automation defines a new level
of placeholder within the Use Data Filter action, so you can map variables to fields of that level. For
more information, see section Defining Sub Areas.

• Assignment area: Specifies the location of repeatable data containing the name-value pairs.
Automation reads field names and their values simultaneously. Automation also automatically
performs mapping to variables. Use this feature to accommodate filter to the changing input data,
eliminating the maintenance time. You can define the assignment area at the root level of the
document, or inside the sub area. For more information, see section Defining Assignment Areas.

Data Preview section simplifies the configuration. The result of a defined filter rule gets highlighted in the
preview area along with every configuration change. You can observe which data items would be extracted
with each rule.

The fields can be defined at the root level as document fields. The fields can be defined inside a data block.
The name-value pairs can be defined inside assignment area.

33

General
This section defines general properties of the unstructured data filter.

• Name: Specifies the filter name. Use a descriptive name that identifies the role of the filter in a
configuration. You can change it anytime.

• Description: Allows you to describe the purpose of this filter. You can use it to write a short
explanation about what does the filter do.

• Encoding: Specifies the encoding of the data this filter works with.

• Ignore empty lines in data blocks: Specifies not to raise errors if the filter extracts empty field values
from the data blocks.

2.2.2. Defining Fields

After you define a field, you have to define its name and rules for extracting field values from the data. When
the filter executes, the extraction rules apply to the input data and assign result to the field.

Field Properties

• Name: Specifies the unique name of the field.

• Field has binary data: Specifies that the field contains binary data. Don't enable this option unless you
really expect to receive binary data.

34

Field Start

• Position in document: Hard-coded position in the data determines the start/end point. The coordinate
origin is upper left corner. The character in the defined position is included in the extracted data.

• End of document: The start/end point is at the end of the document. You can also define an offset
from the end for a specified number of lines and/or characters.

• Find string from start of document: Position of searched-for string defines the start/end point.
After Automation finds the required string, the next character determines the start/end point. The
searched-for string is not included in the extracted data. The default search is case sensitive.

• Start search from absolute position: You can fine-tune searching by changing the start position
from data-start (position 1,1) to an offset. Use this feature to skip searching at the beginning of
data.

• Occurrence: Specifies which occurrence of the search string should be matched. Use this option
if you don't wait to set start/stop position after the first found string.

• Offset from string: Specifies the positive or negative offset after the searched-for string.

Example

You would define the offset to include the searched-for string in the extracted data.

35

Field End

• Position in document: Hard-coded position in the data determines the start/end point. The coordinate
origin is upper left corner. The character in the defined position is included in the extracted data.

• End of document: The start/end point is at the end of the document. You can also define an offset
from the end for a specified number of lines and/or characters.

• Find string from start of document: Position of searched-for string defines the start/end point.
After Automation finds the required string, the next character determines the start/end point. The
searched-for string is not included in the extracted data. The default search is case sensitive.

• Start search from absolute position: You can fine-tune searching by changing the start position
from data-start (position 1,1) to an offset. Use this feature to skip searching at the beginning of
data.

• Occurrence: Specifies which occurrence of the search string should be matched. Use this option
if you don't wait to set start/stop position after the first found string.

• Offset from string: Specifies the positive or negative offset after the searched-for string.

Example

You would define the offset to include the searched-for string in the extracted data.

• Find string after field start: The start/stop end point is defined by the position of the searched-for-
string as in the option Find string from start of document, but the search starts after the start position
of the field/area, not at the beginning of the data.

• Length: Specifies the length of the data in lines and/or characters. The specified number of lines
and/or characters will be extracted from the start position.

• End of the line: Sets the configuration to extract the data from the start position until the end of the
same line. You can define a negative offset from the end of the line.

36

Formatting Options
This section defines string manipulation functions that apply on the selected variables or fields. You can
select one or several functions. These functions are applied in the same order as selected in the user
interface – from top to bottom.

• Delete spaces at the beginning: Deletes all space characters (decimal ASCII code 32) from the
beginning of a string.

• Delete spaces at the end: Deletes all space characters (decimal ASCII value 32) from the end of a
string.

• Delete opening and closing character: Deletes the first occurrence of the selected opening, and
closing characters that are found in a string.

Example

If you use "{" for the opening character and "}" for the closing character, the input string
{{selection}} converts to {selection}.

• Search and replace: Executes standard search and replace function upon the provided values for find
what and replace with. You can also use regular expressions.

NOTE
There are several implementations of the regular expressions in use. uses the .NET
Framework syntax for the regular expressions. For more information, see the
Knowledge Base article.

• Replace non printable characters with spaces: Replaces all control characters in the string with
space character (decimal ASCII code 32). The non printable characters are characters with decimal
ASCII values between 0–31 and 127–159.

• Delete non printable characters: Deletes all control characters in the string. The non printable
characters are characters with decimal ASCII values between 0–31 and 127–159.

• Decode special characters: Special characters (or control codes) are characters that are not available
on the keyboard, such as Carriage Return or Line Feed. uses a notation to encode such characters in
human-readable form, such as <CR> for Carriage Return and <LF> for Line Feed. For more information,
see section Entering Special Characters (Control Codes).
This option converts special characters from syntax into actual binary characters.

Example

When you receive the data sequence "<CR><LF>", uses it as a as plain string of 8 characters. Enable
this option to interpret and use the received data as two binary characters CR (Carriage Return - ASCII
code 13) and LF (Line Feed - ASCII code 10).

• Search and delete everything before: Finds the provided string and deletes all characters from the
beginning of the data until the string. The found string itself can also be deleted.

37

https://help.nicelabel.com/hc/articles/4405121485713--NET-Framework-Syntax-for-Regular-Expressions
https://help.nicelabel.com/hc/articles/4405121485713--NET-Framework-Syntax-for-Regular-Expressions

• Search and delete everything after: Finds the provided string and deletes all characters from the
string until the end of the data. The found string itself can also be deleted.

• Change case: Changes all characters in your strings to uppercase or lowercase.

2.2.3. Defining Sub Areas

Sub area is a section of data that includes several blocks of data identified by the same extraction rule.
Each data block provides data for a single label.

All data blocks must be identified by the same configuration rule. Each data block can contain another sub
area. You can define an unlimited number of nested sub areas within parent sub areas.

If the filter contains definition of a sub area, the Use Data Filter action displays sub areas with nested
placeholders. All actions nested below such placeholder execute only for data blocks at this level. You can
print different labels with data from different sub areas.

38

Configuring Sub Area
The sub area is defined with similar rules as individual fields. Each sub area is defined by the following
parameters.

• Sub Area Name: Specifies the name of the sub area.

• Data Blocks: Specifies how to identify data blocks within the sub area. Each sub area contains at least
one data block. Each data block provides data for a single label.

• Each block contains fixed number of lines: Specifies that each data block in a sub area contains
the provided fixed number of lines. Use this option if you know that each data block contains
exactly the same number of lines.

• Blocks start with a string: Specifies that data blocks begin with the provided string. All content
between the two provided strings belongs to a separate data block. The content between last
string and the end of the data identifies the last data block.

• Blocks end with a string: Specifies that data blocks end with the provided string. All content
between the two provided strings belongs to a separate data block. The content between the
beginning of data and the first string identifies the first data block.

• Blocks are separated by a string: Specifies that data blocks are separated with the selected
string of characters. All content between the two selected strings belongs to a separate data
block.

• Beginning of First Data Block: Specifies the starting position of the first data block. At the same time,
it defines the starting position of the sub area. Usually, the starting position is also the beginning
of the received data. The configuration parameters are the same as for defining fields. For more
information, see section Defining Fields.

• End of Last Data Block: Specifies the ending position of the last data block. At the same time, it
defines the ending position of the sub area. Usually, ending position is at the end of the received data.
The configuration parameters are the same as for defining fields. For more information, see section
Defining Fields.

Configuring Fields Inside Sub Area
Fields inside the sub area are configured using the same parameters as fields defined at root level. For
more information, see section Defining Fields.

NOTE
The field lines numbers refer to the position within data block, not position within the input
data.

39

Data Preview
This section provides preview of the field definition. If the defined item is selected, the preview highlights its
placement in the preview data.

• Preview file name: Specifies the file that contains sample data that is going to be parsed by the filter.
The preview file is copied from filter definition. If you change the preview file name, the new file name
is saved.

• Open: Selects another file upon which you want to execute the filter rules.

• Refresh: Re-runs the filter rules upon the contents of the preview file name. Automation updates the
Data Preview section with the result.

2.2.4. Defining Assignment Areas

Unstructured Data filter automatically identifies fields and their values in the received data. This makes
manual variable to field mapping unnecessary.

Dynamic structure functionality is helpful if the trigger receives data with changing structure. In such
cases, main data structure remains unchanged (e.g., fields are delimited by a comma), or retains the same
structure, but the order and/or the number of fields changes. There might be new fields, or some of the
old fields could no longer be available. Because of enabled Dynamic structure, filter automatically identifies
structure of the received file. At the same time, filter reads field names and values (name:value pairs)
from the data. This eliminates the need for manual mapping of fields to variables.

Use Data Filter action does not offer any mapping possibilities, because it performs the mapping
dynamically. You don't even have to define label variables in the trigger configuration. The action assigns
field values to the label variables of the same name without requiring the variables to be imported from
the label. However, this rule applies to the Print Label action alone. If you want to use the field values in
any other action, you have to define variables in the trigger, while still keeping the automatic variable-to-field
mapping.

NOTE
There is no error if the field available in the input data doesn't have a matching label
variable. NiceLabel Automation silently ignores the missing variables.

40

Configuring Assignment Area
The assignment area is configured using the same procedure as sub area. For more information, see
section Defining Sub Areas. The assignment area can be defined on the root data level, appearing just once.
Or it can be configured inside a sub area, so it executes for each data block in the sub area.

Configuring Fields in Assignment Area
When you create an assignment area, the filter automatically defines two placeholders. These two
placeholders define the name:value pair.

• Variable name: Specifies the field whose content is taken as variable name (name component in a
pair). Configure the field using the same procedure as for document fields. For more information, see
section Defining Fields.

• Variable value: Specifies the field whose contents is taken as variable value (value component in a
pair). Configure the field using the same procedure as for document fields. For more information, see
section Defining Fields.

41

Example
The area between ^XA and ^XZ is assignment area. Every line in assignment area provides a name:value
pair. Name is defined as the value between 6th character in the line and equal character. Value is defined as
the value between "equals" character and end of the line with negative offset of three characters.

^XA

^FD01DonationHR=G095605 3412625^FS

^FD02DonationBC=DG0956053412625^FS

^FD03HospitalNoHR=HN060241^FS

^FD04HospitalNoBC=060241^FS

^FD05Surname=Hawley^FS

^FD07Forename=Annie^FS

^FD09Product=Blood^FS

^FD10PatientBlGp=O Rh +ve^FS

^FD11DoB=27 June 1947^FS

^FD12DateReqd=25 Dec 2012^FS

^XZ

2.3. Configuring XML filter

2.3.1. XML Filter

To learn more about filters in general, see section Understanding Filters.

Use this filter whenever a trigger receives XML-encoded data. The filter allows you to extract individual
fields, fields in repeatable sub areas, and even name-value pairs. XML structure defines elements and sub
elements, attributes and their values, and textual values (element values).

While you can define the structure of the XML file by yourself, NiceLabel recommends you to import
the structure from the existing sample XML file. Click Import Data Structure button on the ribbon. After
you import the XML structure, the Data Preview section displays the XML contents. It also highlights the
elements and attributes that you define as output fields.

For XML data examples, see section XML Data.

42

Defining Structure
To use the XML items, configure them as:

• Variable value: Specifies that you want to use the selected item as a field and that you will map its
value to respective variables in Use Data Filter action. For more information, see section Defining XML
Fields.

• Optional element: Specifies that the element is not mandatory. This corresponds with XML
schema (XSD file) attribute minOccurs=0. The variable mapped to such field will have an
empty value if the element does not appear in the XML.

• Data block: Specifies that the selected element occurs multiple times and provides data for a single
label. Data block can be defined as repeatable area, assignment area, or both.

• Repeatable area: Specifies that you want to extract values from all repeatable data blocks, not
just from the first one. You can define fields within each data block. Map the defined fields
to respective variables in Use Data Filter action. For more information, see section Defining
Repeatable Elements.

• Assignment area: Specifies that the data block contains name-value pairs. Field names and
their values are read simultaneously. Mapping to variables is done automatically. Use this
feature to accommodate the filter to changing input data, eliminating the maintenance time. For
more information, see section Defining XML Assignment Area.

The Data Preview section simplifies the configuration. The result of a defined filter rule is highlighted in the
preview area.

To change the previewed XML data, click Open and browse for a new sample XML file.

2.3.2. Defining XML Fields

If you define XML fields, you make values of selected items automatically available. Filter definition makes
such fields available for mapping to variables in actions. This allows you to extract values of elements or
attributes.

To define an item value as field, do the following:

1. Select the element or attribute in the structure list.

2. For Usage, select Variable value.

3. The item is displayed on the structure list with bold letters, indicating that it is in use.

43

4. The element or attribute name is used as output field name.

5. The Data Preview section highlights the value of the selected item.

44

Formatting Options
This section defines string manipulation functions that apply on the selected variables or fields. You can
select one or several functions. These functions are applied in the same order as selected in the user
interface – from top to bottom.

• Delete spaces at the beginning: Deletes all space characters (decimal ASCII code 32) from the
beginning of a string.

• Delete spaces at the end: Deletes all space characters (decimal ASCII value 32) from the end of a
string.

• Delete opening and closing character: Deletes the first occurrence of the selected opening, and
closing characters that are found in a string.

Example

If you use "{" for the opening character and "}" for the closing character, the input string
{{selection}} converts to {selection}.

• Search and replace: Executes standard search and replace function upon the provided values for find
what and replace with. You can also use regular expressions.

NOTE
There are several implementations of the regular expressions in use. uses the .NET
Framework syntax for the regular expressions. For more information, see the
Knowledge Base article.

• Replace non printable characters with spaces: Replaces all control characters in the string with
space character (decimal ASCII code 32). The non printable characters are characters with decimal
ASCII values between 0–31 and 127–159.

• Delete non printable characters: Deletes all control characters in the string. The non printable
characters are characters with decimal ASCII values between 0–31 and 127–159.

• Decode special characters: Special characters (or control codes) are characters that are not available
on the keyboard, such as Carriage Return or Line Feed. uses a notation to encode such characters in
human-readable form, such as <CR> for Carriage Return and <LF> for Line Feed. For more information,
see section Entering Special Characters (Control Codes).
This option converts special characters from syntax into actual binary characters.

Example

When you receive the data sequence "<CR><LF>", uses it as a as plain string of 8 characters. Enable
this option to interpret and use the received data as two binary characters CR (Carriage Return - ASCII
code 13) and LF (Line Feed - ASCII code 10).

• Search and delete everything before: Finds the provided string and deletes all characters from the
beginning of the data until the string. The found string itself can also be deleted.

45

https://help.nicelabel.com/hc/articles/4405121485713--NET-Framework-Syntax-for-Regular-Expressions
https://help.nicelabel.com/hc/articles/4405121485713--NET-Framework-Syntax-for-Regular-Expressions

• Search and delete everything after: Finds the provided string and deletes all characters from the
string until the end of the data. The found string itself can also be deleted.

• Change case: Changes all characters in your strings to uppercase or lowercase.

Data Preview
This section provides preview of the field definition. If the defined item is selected, the preview highlights its
placement in the preview data.

• Preview file name: Specifies the file that contains sample data that is going to be parsed by the filter.
The preview file is copied from filter definition. If you change the preview file name, the new file name
is saved.

• Open: Selects another file upon which you want to execute the filter rules.

• Refresh: Re-runs the filter rules upon the contents of the preview file name. Automation updates the
Data Preview section with the result.

2.3.3. Defining Repeatable Elements in XML Filter

If an XML element occurs in XML data for multiple times, it is a repeatable element. Usually, a repeatable
element contains data for a single label. To indicate that you want to use data from all repeatable elements,
and not just from the first one, define the element as a Data block and enable the Repeatable element
option. If the filter contains definition of elements defined as data block / repeatable element, the Use
Data Filter action displays repeatable elements with nested placeholders. All actions nested below such a
placeholder execute only for data blocks at this level.

46

Example
The <item> element is defined as Data block and Repeatable element. This instructs the filter to extract
all occurrences of the <item> element, not just the first one. In this case, the <item> should be defined
as the sub-level in Use Data Filter action. You must nest the actions Open Label and Print Label under this
sub-level placeholder, so they are going to be looped for as many times as there are occurrences of the
<item> element. As shown in the example below, for three times.

<?xml ver sion="1.0" encoding="utf-8"?>

<asx:abap xmlns:asx="http://www.sap.com/abapxml" ver sion="1.0">

 <asx:values>

 <NICELABEL_JOB>

 <T IMEST AMP>20130221100527.788134</T IMEST AMP>

 <USER>PGRI</USER>

 <IT _LABEL_DAT A>

 <item>

 <LBL_NAME>goods_r eceipt.nlbl</LBL_NAME>

 <LBL_PRINT ER>Pr oduction01</LBL_PRINT ER>

 <LBL_QUANT IT Y>1</LBL_QUANT IT Y>

 <MAKT X>MASS ONE</MAKT X>

 <MAT NR>28345</MAT NR>

 <MEINS>KG</MEINS>

 <WDAT U>19.01.2012</WDAT U>

 <QUANT IT Y>1</QUANT IT Y>

 <EXIDV>012345678901234560</EXIDV>

 </item>

 <item>

 <LBL_NAME>goods_r eceipt.nlbl</LBL_NAME>

 <LBL_PRINT ER>Pr oduction01</LBL_PRINT ER>

 <LBL_QUANT IT Y>1</LBL_QUANT IT Y>

 <MAKT X>MASS T WO</MAKT X>

 <MAT NR>28346</MAT NR>

 <MEINS>KG</MEINS>

 <WDAT U>11.01.2011</WDAT U>

 <QUANT IT Y>1</QUANT IT Y>

 <EXIDV>012345678901234577</EXIDV>

 </item>

 <item>

 <LBL_NAME>goods_r eceipt.nlbl</LBL_NAME>

 <LBL_PRINT ER>Pr oduction01</LBL_PRINT ER>

 <LBL_QUANT IT Y>1</LBL_QUANT IT Y>

 <MAKT X>MASS T HREE</MAKT X>

 <MAT NR>27844</MAT NR>

 <MEINS>KG</MEINS>

 <WDAT U>07.03.2009</WDAT U>

47

 <QUANT IT Y>1</QUANT IT Y>

 <EXIDV>012345678901234584</EXIDV>

 </item>

 </IT _LABEL_DAT A>

 </NICELABEL_JOB>

 </asx:values>

</asx:abap>

WARNING
XML data filter with nested data block duplicates values from previous assignment area
if a variable is defined in the first block but not in the second. For example, you print two
labels. In the first assignment area, you defined a variable <manufacturer_serial>. In
the second assignment area, this variable is not present.

<?xml ver sion="1.0" encoding="utf-8"?>

<asx:abap xmlns:asx="http://www.sap.com/abapxml" ver sion="1.0">

 <jobs>

 <element>

 <data>

 <item>

 <manufacturer_serial>706583012001</

manufacturer_serial>

 <package_code>AA792CY</package_code>

 </item>

 </data>

 <label_filename>serial_number_label.nlbl</label_filename>

 <print_quantity>1</print_quantity>

 <printer_name>Warehouse_printer_09</printer_name>

 </element>

 <element>

 <data>

 <item>

 <package_code>BE273XS</package_code>

 </item>

 </data>

 <label_filename>serial_number_label.nlbl</label_filename>

 <print_quantity>1</print_quantity>

 <printer_name>Warehouse_09</printer_name>

 </element>

 </jobs>

</asx:abap>

The expected result would be the second label without <manufacturer_serial> data.
But in the actual print, the second label would contain <manufacturer_serial> value
from the first label, which is 706583012001.

48

There are four possible solutions:

• Avoid nested data blocks.

• Define variable values as empty values if variables are not used in nested data blocks.

 <item>

 <manufacturer_serial></manufacturer_serial>

 <package_code>AA792CY</package_code>

 </item>

• Use conditions on actions to set variables.

• Use string manipulations when detected missing variables.

2.3.4. Defining XML Assignment Area

XML filter automatically identifies fields and their values in the received data. This eliminates the need for
manual variable-to-field mapping.

Dynamic structure functionality is helpful if the trigger receives data with changing structure. In such
cases, main data structure remains unchanged (e.g., fields are delimited by a comma), or retains the same
structure, but the order and/or the number of fields changes. There might be new fields, or some of the
old fields could no longer be available. Because of enabled Dynamic structure, filter automatically identifies
structure of the received file. At the same time, filter reads field names and values (name:value pairs)
from the data. This eliminates the need for manual mapping of fields to variables.

Use Data Filter action does not offer any mapping possibilities, because it performs the mapping
dynamically. You don't even have to define label variables in the trigger configuration. The action assigns
field values to the label variables of the same name without requiring the variables to be imported from
the label. However, this rule applies to the Print Label action alone. If you want to use the field values in
any other action, you have to define variables in the trigger, while still keeping the automatic variable-to-field
mapping.

NOTE
There is no error if the field available in the input data doesn't have a matching label
variable. NiceLabel Automation silently ignores the missing variables.

49

Configuring XML Assignment Area
When you configure the Data Block as assignment area, two placeholders appear under this element's
definition. You have to define how the field name and value are defined, so the filter can extract the
name-value pair.

• Variable name: Specifies the item that contains field name. The name can be defined by element
name, selected attribute value, or element value. To enable automatic mapping, label variable must
have the same name.

• Variable value: Specifies the item that contains field value. The name can be defined by the element
name, selected attribute value, or element value.

WARNING
The XML element containing name:value pairs cannot be set as a root element – this
element must be set as at least a second level element. As shown in the XML example
below, the element <label> is the second level element and can contain the name:value
pairs.

50

Formatting Options
This section defines string manipulation functions that apply on the selected variables or fields. You can
select one or several functions. These functions are applied in the same order as selected in the user
interface – from top to bottom.

• Delete spaces at the beginning: Deletes all space characters (decimal ASCII code 32) from the
beginning of a string.

• Delete spaces at the end: Deletes all space characters (decimal ASCII value 32) from the end of a
string.

• Delete opening and closing character: Deletes the first occurrence of the selected opening, and
closing characters that are found in a string.

Example

If you use "{" for the opening character and "}" for the closing character, the input string
{{selection}} converts to {selection}.

• Search and replace: Executes standard search and replace function upon the provided values for find
what and replace with. You can also use regular expressions.

NOTE
There are several implementations of the regular expressions in use. uses the .NET
Framework syntax for the regular expressions. For more information, see the
Knowledge Base article.

• Replace non printable characters with spaces: Replaces all control characters in the string with
space character (decimal ASCII code 32). The non printable characters are characters with decimal
ASCII values between 0–31 and 127–159.

• Delete non printable characters: Deletes all control characters in the string. The non printable
characters are characters with decimal ASCII values between 0–31 and 127–159.

• Decode special characters: Special characters (or control codes) are characters that are not available
on the keyboard, such as Carriage Return or Line Feed. uses a notation to encode such characters in
human-readable form, such as <CR> for Carriage Return and <LF> for Line Feed. For more information,
see section Entering Special Characters (Control Codes).
This option converts special characters from syntax into actual binary characters.

Example

When you receive the data sequence "<CR><LF>", uses it as a as plain string of 8 characters. Enable
this option to interpret and use the received data as two binary characters CR (Carriage Return - ASCII
code 13) and LF (Line Feed - ASCII code 10).

• Search and delete everything before: Finds the provided string and deletes all characters from the
beginning of the data until the string. The found string itself can also be deleted.

51

https://help.nicelabel.com/hc/articles/4405121485713--NET-Framework-Syntax-for-Regular-Expressions
https://help.nicelabel.com/hc/articles/4405121485713--NET-Framework-Syntax-for-Regular-Expressions

• Search and delete everything after: Finds the provided string and deletes all characters from the
string until the end of the data. The found string itself can also be deleted.

• Change case: Changes all characters in your strings to uppercase or lowercase.

Example
The <label> element is defined as data block and assignment area. The variable name is defined by value
of the attribute name, the variable value is defined by element text.

<?xml version="1.0" standalone="no"?>

<labels _FORMAT="case.nlbl" _PRINTERNAME="Production01" _QUANTITY="1">

 <label>

 <variable name="CASEID">0000000123</variable>

 <variable name="CARTONTYPE"/>

 <variable name="ORDERKEY">0000000534</variable>

 <variable name="BUYERPO"/>

 <variable name="ROUTE"> </variable>

 <variable name="CONTAINERDETAILID">0000004212</variable>

 <variable name="SERIALREFERENCE">0</variable>

 <variable name="FILTERVALUE">0</variable>

 <variable name="INDICATORDIGIT">0</variable>

 <variable name="DATE">11/19/2012 10:59:03</variable>

 </label>

</labels>

2.4. Configuring JSON filter

2.4.1. JSON Filter

To learn more about filters in general, see section Understanding Filters.

Use the JSON filter if your trigger receives JSON-encoded data. JSON filter allows you to use variables and
values from your JSON file. The filter supports data extraction from JSON arrays.

NOTE
Automation allows you to use all JSON data types. Read more about the available JSON
data types here.

52

https://www.w3schools.com/js/js_json_datatypes.asp

While you can define the JSON file structure manually, NiceLabel recommends you to import the structure
from the received JSON files.

To import the JSON file structure:

1. Go to Data Filters and Edit your JSON filter.

2. Click Structure > Import Data Structure. Navigate to your JSON file and click Open.
After you import JSON files, the Data Preview section displays the JSON contents. The Data
Preview also highlights the elements that you define as output fields.

For JSON data examples, see section JSON Data.

Defining Structure
To use the JSON items, configure them as:

• Variable value: Specifies that you want to use the selected item as a field. When building the
configuration, you manually map values with respective variables in the Use Data Filter action. For
more information, see section Defining JSON Fields.

• Optional element: Specifies that the element is not mandatory. The variable mapped to such
field will have an empty value if the element does not appear in the JSON file.

• Data block: Specifies that the included sub-items occur multiple times and provide data for your
labels. Data block can be defined as repeatable area, assignment area, or both. In terms of JSON, the
Data block works as an array.

• Repeatable area: Specifies that you want to extract values from all repeatable data blocks, not
just from the first one. You can define fields within each data block. Manually map the defined
fields to the respective variables in the Use Data Filter action. For more information, see section
Defining Repeatable Elements in JSON Filter.

• Assignment area: Automatically creates the variables and assigns them relevant values. Field
names and their values are read simultaneously. Mapping to variables is done automatically.
Use this feature to accommodate the filter to changing input data, eliminating the maintenance
time. For more information, see section Defining JSON Assignment Area.

The Data Preview section simplifies the configuration. The result of a defined filter rule is highlighted in the
preview area.

To change the previewed JSON data, click Open and browse for a new sample JSON file.

2.4.2. Defining JSON Fields

53

If you define JSON fields, you make values of the selected items automatically available. Your filter
definition makes such fields available for mapping to variables in actions. This allows you to extract the
element values.

To define JSON fields:

1. Select your element and set its Usage to Variable value.

2. The element is displayed on the structure list with bold letters, indicating that it is in use.

3. The element is used as output field name.

4. The Data Preview section highlights the values of the selected element.

54

Formatting Options
This section defines string manipulation functions that apply on the selected variables or fields. You can
select one or several functions. These functions are applied in the same order as selected in the user
interface – from top to bottom.

• Delete spaces at the beginning: Deletes all space characters (decimal ASCII code 32) from the
beginning of a string.

• Delete spaces at the end: Deletes all space characters (decimal ASCII value 32) from the end of a
string.

• Delete opening and closing character: Deletes the first occurrence of the selected opening, and
closing characters that are found in a string.

Example

If you use "{" for the opening character and "}" for the closing character, the input string
{{selection}} converts to {selection}.

• Search and replace: Executes standard search and replace function upon the provided values for find
what and replace with. You can also use regular expressions.

NOTE
There are several implementations of the regular expressions in use. uses the .NET
Framework syntax for the regular expressions. For more information, see the
Knowledge Base article.

• Replace non printable characters with spaces: Replaces all control characters in the string with
space character (decimal ASCII code 32). The non printable characters are characters with decimal
ASCII values between 0–31 and 127–159.

• Delete non printable characters: Deletes all control characters in the string. The non printable
characters are characters with decimal ASCII values between 0–31 and 127–159.

• Decode special characters: Special characters (or control codes) are characters that are not available
on the keyboard, such as Carriage Return or Line Feed. uses a notation to encode such characters in
human-readable form, such as <CR> for Carriage Return and <LF> for Line Feed. For more information,
see section Entering Special Characters (Control Codes).
This option converts special characters from syntax into actual binary characters.

Example

When you receive the data sequence "<CR><LF>", uses it as a as plain string of 8 characters. Enable
this option to interpret and use the received data as two binary characters CR (Carriage Return - ASCII
code 13) and LF (Line Feed - ASCII code 10).

• Search and delete everything before: Finds the provided string and deletes all characters from the
beginning of the data until the string. The found string itself can also be deleted.

55

https://help.nicelabel.com/hc/articles/4405121485713--NET-Framework-Syntax-for-Regular-Expressions
https://help.nicelabel.com/hc/articles/4405121485713--NET-Framework-Syntax-for-Regular-Expressions

• Search and delete everything after: Finds the provided string and deletes all characters from the
string until the end of the data. The found string itself can also be deleted.

• Change case: Changes all characters in your strings to uppercase or lowercase.

Data Preview
This section provides preview of the field definition. If the defined item is selected, the preview highlights its
placement in the preview data.

• Preview file name: Specifies the file that contains sample data that is going to be parsed by the filter.
The preview file is copied from filter definition. If you change the preview file name, the new file name
is saved.

• Open: Selects another file upon which you want to execute the filter rules.

• Refresh: Re-runs the filter rules upon the contents of the preview file name. Automation updates the
Data Preview section with the result.

2.4.3. Defining Repeatable Elements in JSON Filter

If a JSON element occurs in your JSON data multiple times, it is a repeatable element. Usually, a repeatable
element contains data for a single label template. Repeatable items produce multiple labels populated with
relevant data.

To indicate that you want to use data from all repeatable elements, and not just from the first one:

1. Select the element and define it as a Data block.

2. Enable the Repeatable element option.

56

If the filter contains definition of elements defined as data block / repeatable element, the Use Data Filter
action displays repeatable elements with nested placeholders. All actions nested below such a placeholder
execute only for data blocks at this level.

57

Example
The "item" element is defined as both – Data block and Repeatable element. This instructs the filter to
extract all occurrences of the array, not just the first one. In this case, the "item" should be defined as
the sub-level in Use Data Filter action. You must nest the actions Open Label and Print Label under this
sub-level placeholder, so they are going to be looped for as many times as there are occurrences of the
"item" element. As shown in the example below, for three times.

{

 "NICELABEL_JOB": {

 "TIMESTAMP": "20130221100527.788134",

 "USER": "PGRI",

 "IT_LABEL_DATA": {

 "item": [

 {

 "LBL_NAME": "goods_receipt.nlbl",

 "LBL_PRINTER": "Production01",

 "LBL_QUANTITY": "1",

 "MAKTX": "MASS ONE",

 "MATNR": "28345",

 "MEINS": "KG",

 "WDATU": "19.01.2012",

 "QUANTITY": "1",

 "EXIDV": "012345678901234560"

 },

 {

 "LBL_NAME": "goods_receipt.nlbl",

 "LBL_PRINTER": "Production01",

 "LBL_QUANTITY": "1",

 "MAKTX": "MASS TWO",

 "MATNR": "28346",

 "MEINS": "KG",

 "WDATU": "11.01.2011",

 "QUANTITY": "1",

 "EXIDV": "012345678901234577"

 },

 {

 "LBL_NAME": "goods_receipt.nlbl",

 "LBL_PRINTER": "Production01",

 "LBL_QUANTITY": "1",

 "MAKTX": "MASS THREE",

 "MATNR": "27844",

 "MEINS": "KG",

 "WDATU": "07.03.2009",

 "QUANTITY": "1",

 "EXIDV": "012345678901234584"

 }

58

]

 }

 }

}

59

WARNING
JSON data filter with nested data block duplicates values from previous assignment area
if a variable is defined in the first block but not in the second. For example, you print two
labels. In the first assignment area, you defined a variable "manufacturer_serial". In
the second assignment area, this variable is not present.

{

 "jobs": [

 {

 "data": [

 {

 "manufacturer_serial": "706583012001",

 "package_code": "AA792CY"

 }

],

 "label_filename": "serial_number_label.nlbl",

 "print_quantity": 1,

 "printer_name": "Warehouse_printer_09"

 },

 {

 "data": [

 {

 "package_code": "BE273XS"

 }

],

 "label_filename": "serial_number_label.nlbl",

 "print_quantity": 1,

 "printer_name": "Warehouse_09"

 }

]

}

The expected result would be the second label without "manufacturer_serial" data.
But in the actual print, the second label would contain "manufacturer_serial" value
from the first label, which is 706583012001.

There are three possible solutions:

• Avoid nested data blocks.

• Define variable values as empty values ("") if variables are not used in nested data
blocks.

 "data": [

 {

 "manufacturer_serial": "",

 "package_code": "AA792CY"

 }

60

• Use conditions on actions to set variables.

• Use string manipulations when detected missing variables.

2.4.4. Defining JSON Assignment Area

JSON filter automatically identifies fields and their values in the received data. This eliminates the need for
manual variable-to-field mapping.

Dynamic structure functionality is helpful if the trigger receives data with changing structure. In such
cases, main data structure remains unchanged (e.g., fields are delimited by a comma), or retains the same
structure, but the order and/or the number of fields changes. There might be new fields, or some of the
old fields could no longer be available. Because of enabled Dynamic structure, filter automatically identifies
structure of the received file. At the same time, filter reads field names and values (name:value pairs)
from the data. This eliminates the need for manual mapping of fields to variables.

Use Data Filter action does not offer any mapping possibilities, because it performs the mapping
dynamically. You don't even have to define label variables in the trigger configuration. The action assigns
field values to the label variables of the same name without requiring the variables to be imported from
the label. However, this rule applies to the Print Label action alone. If you want to use the field values in
any other action, you have to define variables in the trigger, while still keeping the automatic variable-to-field
mapping.

NOTE
There is no error if the field available in the input data doesn't have a matching label
variable. NiceLabel Automation silently ignores the missing variables.

61

NOTE
Because there are no optional attributes in JSON, Automation defines Variable names and
Variable values automatically.

62

Formatting Options
This section defines string manipulation functions that apply on the selected variables or fields. You can
select one or several functions. These functions are applied in the same order as selected in the user
interface – from top to bottom.

• Delete spaces at the beginning: Deletes all space characters (decimal ASCII code 32) from the
beginning of a string.

• Delete spaces at the end: Deletes all space characters (decimal ASCII value 32) from the end of a
string.

• Delete opening and closing character: Deletes the first occurrence of the selected opening, and
closing characters that are found in a string.

Example

If you use "{" for the opening character and "}" for the closing character, the input string
{{selection}} converts to {selection}.

• Search and replace: Executes standard search and replace function upon the provided values for find
what and replace with. You can also use regular expressions.

NOTE
There are several implementations of the regular expressions in use. uses the .NET
Framework syntax for the regular expressions. For more information, see the
Knowledge Base article.

• Replace non printable characters with spaces: Replaces all control characters in the string with
space character (decimal ASCII code 32). The non printable characters are characters with decimal
ASCII values between 0–31 and 127–159.

• Delete non printable characters: Deletes all control characters in the string. The non printable
characters are characters with decimal ASCII values between 0–31 and 127–159.

• Decode special characters: Special characters (or control codes) are characters that are not available
on the keyboard, such as Carriage Return or Line Feed. uses a notation to encode such characters in
human-readable form, such as <CR> for Carriage Return and <LF> for Line Feed. For more information,
see section Entering Special Characters (Control Codes).
This option converts special characters from syntax into actual binary characters.

Example

When you receive the data sequence "<CR><LF>", uses it as a as plain string of 8 characters. Enable
this option to interpret and use the received data as two binary characters CR (Carriage Return - ASCII
code 13) and LF (Line Feed - ASCII code 10).

• Search and delete everything before: Finds the provided string and deletes all characters from the
beginning of the data until the string. The found string itself can also be deleted.

63

https://help.nicelabel.com/hc/articles/4405121485713--NET-Framework-Syntax-for-Regular-Expressions
https://help.nicelabel.com/hc/articles/4405121485713--NET-Framework-Syntax-for-Regular-Expressions

• Search and delete everything after: Finds the provided string and deletes all characters from the
string until the end of the data. The found string itself can also be deleted.

• Change case: Changes all characters in your strings to uppercase or lowercase.

Example
The "LIST_ITEM" element is defined as data block and assignment area.

{

 "DELIVERYNOTE": {

 "LIST_CUSTOMER_INFO": {

 "CUSTOMER_INFO": {

 "CUSTOMER_NAME": "Customer A",

 "CUSTOMER_STREET_ADDRESS": "Test St",

 "CUSTOMER_POST_ADDRESS": "1234, Test City",

 "CUSTOMER_NUMBER": "1234",

 "CURRENCY": "EUR",

 "DELIVERY_METHOD": "Express delivery",

 "EDI_INFORMATION": "EDI",

 "ORDER_TYPE": "CSO",

 "ORDER_NUMBER": "123",

 }

 }

 }

}

2.5. Setting Label and Printer Names from Input Data
Typically, filters extract values from the received data and send them to label variables for printing. In such
cases, label or printer names are hard-coded into the actions. For example, Open Label action hard-codes
the label name, and Set Printer action hard-codes the printer name. However, the input data can also
provide meta-data. These are the values used inside the NiceLabel Automation processing, but not printed
on the label, such as label name, printer name, label quantity, etc.

To use the values of meta-data fields in the print process, do the following.

1. Filter reconfiguration: Define new fields for the input data to extract the meta-data fields as well.

2. Variable definition: Manually define the variables to store the meta-data since they don't exist on
the label and cannot be imported. Use intuitive names, such as LabelName, PrinterName, and
Quantity. You are free to use any variable name.

3. Mapping reconfiguration: Manually configure the Use Data Filter action to map meta-fields to new
variables.

64

4. Action reconfiguration: Reconfigure Open Label action to open the label specified by variable
LabelName, and Set Printer action to use the printer as specified by the PrinterName variable.

Example
The CSV file contains label data, but also provides meta-data, such as label name, printer name and quantity
of labels. The Structured Text filter extracts all fields, sends label-related values to the label variables and
uses meta-data to configure actions Open Label, Set Printer and Print Label.

label_name;label_count;printer_name;art_code;art_name;ean13;weight

label1.nlbl;1;CAB A3 203DPI;00265012;SAC.PESTO 250G;383860026501;1,1 kg

label2.nlbl;1;Zebra R-402;00126502;TAGLIOLINI 250G;383860026002;3,0 kg

65

3. Understanding Triggers

PRODUCT LEVEL INFO
This functionality is not entirely available with every NiceLabel Automation product level.

NiceLabel Automation is an event-based application that triggers the execution of actions upon changes in
monitored events. You can use any of the available triggers to monitor changes in events, such as file drop
into a certain folder, acquired data on a specific TCP/IP socket, HTTP message, and others. Main purpose
of a trigger is to detect changes in events, retrieve the data provided by the event, and to execute actions.

The majority of triggers passively listens for the monitored event to occur. There are two exceptions.
Database trigger is an active trigger that periodically checks for changes in the monitored database. Serial
port trigger can wait for incoming connection, or can actively poll for data in specified time intervals.

Processing Triggers
In most cases, the trigger receives data that must be printed on labels. Once the trigger receives the data,
the actions are executed in the defined order from top to bottom. The received data can contain values
for label objects. However, before you can use these values, you must extract them from the received data
and save them in variables. The filters define extraction rules. When executed, filters save the extracted
data to the mapped variables. Once you have the data stored in variables, you can run actions that use the
variables, such as Print Label.

After an event occurs, the provided input data is saved in a temporary file located in the service user's
%temp% folder. The internal variable DataFileName refers to the temporary file location. The file is deleted
when the trigger completes its execution.

Trigger Properties
To configure a trigger, define how to accept the data and the actions that you want to run. Optionally, you
can also use variables. There are three sections that form the trigger configuration.

• Settings: Defines main parameters of the selected trigger. Select the event that the trigger will
monitor for changes, or define the inbound communication channel. Settings tab allows you to select
the script programming engine and security options. The available options depend on the trigger type.
For more information, see section Trigger Types below.

• Variables: This tab defines the variables you need inside the trigger. Usually, you import variables
from the label templates, so you can map them with the fields extracted from the inbound data. You
can also define variables to be used internally in various actions and won't be sent to the label. For
more information, see section Variables.

• Actions: This tab defines the actions to be executed whenever the trigger detects a change in the
monitored event. Actions execute in order from top to bottom. For more information, see section
Actions.

66

Trigger Types

• File Trigger: Monitors the change in the file or in a set of files in the folder. Contents of the file can be
parsed in filters and used in actions.

• Serial Port Trigger: Monitors inbound communication on the serial RS232 port. Contents of the input
stream are parsed by filters and used in actions. The data can be also polled from the external device
in defined time intervals.

• Database Trigger: Monitors record changes in SQL database tables. Contents of the returned data set
can be parsed and used in actions. The database is monitored in defined time intervals. The trigger
can also update the database after the actions execute using INSERT, UPDATE and INSERT SQL
statements.

• Scheduler Trigger: Executes your trigger in scheduled time intervals.

• TCP/IP Server Trigger: Monitors the inbound raw data stream arriving on the defined socket.
Contents of the input stream is parsed by filters and used in actions. TCP/IP server trigger can be
bidirectional and used to provide feedback.

• TCP/IP Client Trigger: Turns your Automation into a listening client that connects to TCP/IP servers.

• HTTP Server Trigger: Monitors the inbound HTTP-formatted data stream arriving on the defined
socket. Contents of the input stream is parsed by filters and used in actions. User authentication can
be enabled. Is bidirectional, providing feedback.

• Web Service Trigger: Monitors the inbound data stream arriving on the defined Web Service method.
Contents of the input stream are parsed by filters and used in actions. Is bidirectional, providing
feedback.

• Cloud Trigger: Captures data from Loftware Cloud.

67

Error Handling in Triggers

• Configuration errors: The trigger is in error state if it is configured improperly or incompletely. For
example, you have configured the file trigger, but failed to specify the file name to check for changes.
Or, you defined the action to print labels, but you haven't specified the label name. You can save
triggers that contain configuration errors, but you cannot run them in Automation Manager until you
resolve the issue. The error reported in the lower level of the configuration propagates itself all the
way to the higher level, so it is easy to find the error location.

Example

If you have one action in error state, all upper-level actions indicate the error state. The error icon is
displayed in Actions tab and in trigger name.

• Overlapping configurations: While it is perfectly acceptable for the configuration to include triggers
monitoring the same event, such as the same file name, or listening on the same TCP/IP port, such
triggers cannot run simultaneously. When you start the trigger in Automation Manager, it starts only if
no other trigger from the same or other configuration monitors the same event.

Print Job Status Feedback
See section Print Job Status Feedback.

3.1. File Trigger
To learn more about triggers in general, see section Understanding Triggers.

File trigger event occurs if:

• monitored file changes

• set of files in the monitored folder changes

• a new file appears in the monitored folder

Depending on the trigger configuration, Windows operating system alerts the trigger about the changed
files, or the trigger itself keeps a list of the file's last-write time stamp and fires after the file receives a
newer time-stamp.

68

NOTE
Typical usage: business system executes a transaction, which in effect generates trigger
file in a shared folder. Data content might be structured in CSV, XML and other formats, or
it can be structured in a legacy format. In either way, NiceLabel Automation reads the data,
parses values using filters and prints them on labels. For more information on how to parse
and extract data, see section Understanding Filters.

General
This section allows you to configure the most important file trigger settings.

• Name: Specifies the unique name of the trigger. The names helps you distinguish between different
triggers when you configure them in Automation Builder, and later when you run them in Automation
Manager.

• Description: Allows you to describe the role of this trigger. Help the users with a short explanation
about what the trigger does.

• Detect the specified file: Specifies path and name of the file that you monitor for changes.

• Detect a set of files in the specified folder: Specifies path to the folder, which you monitor for file
changes, and the file names. You can use standard Windows wild cards "*" and "?". Some file types
are predefined in the drop-down box, but you can also enter your own types.

NOTE
When monitoring a network folder, make sure you use the UNC notation of \
\server\share\file. For more information, see section Access to Network Shared
Resources.

• Automatically detect changes: NiceLabel Automation responds to file changes as soon as the file is
created or changed. In this case, Windows operating system informs NiceLabel Automation Service
about the change. You can use it when the monitored folder is located on the local drive and also in
some network environments.

• Check for changes in folder in intervals: NiceLabel Automation scans the folder for file changes in
the defined time intervals. In this case, NiceLabel Automation monitors folder for file changes by
itself. This polling method tends to be slower than automatic detection. Use it as a fallback, when
automatic detection cannot be used in your environment.

Execution
Options in the File Access section specify how the application accesses the trigger file.

• Open file exclusively: Opens the trigger file in exclusive mode. No other application can access the
file at the same time. This is the default selection option.

• Open file with read only permissions: Opens the trigger file in read-only mode.

69

• Open file with read and write permissions: Opens the trigger file in read-write mode.

• File open retry period: Specifies the time period after which NiceLabel Automation tries to open the
trigger file. If the file access is still not possible after this time period, NiceLabel Automation reports
an error.

Options in the Monitoring Options section specify the file detection possibilities.

• Check file size: Enables detection of changes not only for file time-stamp, but also for file length. The
changes in file time-stamp might not be detected in some cases. Therefore, Automation also checks
for changed file size and triggers the actions.

• Ignore empty trigger files: If the trigger file has no contents, it is ignored. The actions do not execute.

• Delete the trigger file: After the change in the trigger file has been detected, and the trigger fires,
Automation deletes the file. Enabling this option keeps the folder clean of processed files.

NOTE
NiceLabel Automation always creates a backup of the received trigger data. The contents
of trigger file is saved using a unique file name. This is important, if you need the contents
of the trigger file in some of the actions, such as Run Command File. The location of the
backup trigger data is referred to by the internal variable DataFileName.

• Empty file contents: After the actions execute, the trigger file is emptied. This is useful if the third
party applications append data to the trigger file. You want to keep the file, so appending can be done,
but you don't want to print the old data.

• Track changes while trigger is inactive: Fires trigger upon files that change while the trigger is
inactive. If your NiceLabel Automation is not deployed in a high-availability environment with backup
servers, the incoming trigger files might become lost if the server is down. After the NiceLabel
Automation is back online, the existent trigger files are processed.

• Number of concurrent action executions: Specify the number of your concurrent action executions.
You don't have to wait for the execution to finish in order for the next one to start. Your processing
action order stays the same while simultaneously the same action from another thread can start
executing.
The maximum number of your concurrent action executions also depends on your hardware
performance. Learn more about Section 7.1, “Parallel Processing”.

Other
Options in the Feedback from the Print Engine section specify communication parameters that allow you to
receive print engine feedback.

70

• Supervised printing: Activates synchronous printing mode. Use it whenever you want to send the print
job status back to the third party application. For more information, see section Synchronous Print
Mode.

Options in the Data Processing section specify if you want to trim the data so that it fits into a variable, or
ignore the missing label variables. By default, reports errors and breaks the printing process if you try to
save values that are too long in label variables, or try to set values for non-existing label variables.

• Ignore excessive variable contents: truncates data values that exceed the length of the variable as
defined in the label designer to make them fit. This option is in effect if you are setting variable values
in filters, from command files, and when you are setting values of trigger variables to label variables of
the same name.

Example

Label variable accepts 5 characters at maximum. With this option enabled, any value longer than 5
characters is truncated to the first 5 characters. If the value is 1234567 ignores digits 6 and 7.

• Ignore missing label variables: When printing with command files (such as JOB file), the printing
process ignores all variables that are:

• specified in the command file (using the SET command)

• not defined on the label

Similar happens if you define assignment area in a filter to extract all name-value pairs, but your label
contains fewer variables.
When setting values of non-existing label variables, reports an error. If this option is enabled, the
printing continues.

Options in Scripting section specify scripting possibilities.

• Scripting language: Selects scripting language for the trigger. All Execute script actions that you use
within a single trigger use the selected scripting language.

Options in the Save Received Data section specify the available commands for data that the trigger
receives.

• Save data received by the trigger to file: Enable this option to save the data received by the trigger.
The option Variable enables variable file name. Select a variable that contains path and file name.

NOTE
NiceLabel Automation saves the received data into a temporary file. This temporary
file is deleted right after the trigger execution completes. The internal variable
DataFileName points to that file name. For more information, see Internal Variables.

• On error save data received by the trigger to file: Enable this option to save the data into the trigger
only if an error occurs during the action execution. You might want to enable this option to keep the
data that caused the issue ready for troubleshooting.

71

NOTE
Make sure you enable the Supervised printing support. If not, cannot detect errors
during the execution. For more information, see section Synchronous Print Mode.

Security

• Lock and encrypt trigger: Enables trigger protection. If you enable it, the trigger becomes locked and
you cannot edit it any longer. This encrypts the actions. Only users with password can unlock the
trigger and modify it.

3.2. Serial Port Trigger
To learn more about triggers in general, see section Understanding Triggers.

Serial port trigger event occurs when data is received on the monitored RS232 serial port.

Typical usage: (1) Printer replacement. You are retiring the existing serial port-connected label printer. In its
place NiceLabel Automation will accept the data, extract the values for label objects from the received print
stream, and create a print job for the new printer model. (2) Weight scales. Weight scales provides data
about the weighted object. NiceLabel Automation extracts the required data from the received data stream,
and prints a label. For more information on how to parse and extract data, see section Understanding
Filters.

General
This section allows you to configure the most important file trigger settings.

• Name: Specifies the unique name of the trigger. The names helps you distinguish between different
triggers when you configure them in Automation Builder, and later when you run them in Automation
Manager.

• Description: Allows you to describe the role of this trigger. Help the users with a short explanation
about what the trigger does.

• Port: Specifies the serial port (COM) number on which the incoming data is received. Use a port that
is not in use by any other application or device, such as printer driver. If the selected port is in use, you
won't be able to start the trigger in Automation Manager.

The options in the Port Settings section specify communication parameters that must match the serial port
device parameters.

• Disable port initialization: Port initialization is not executed after you start the trigger in Automation
Manager. This option is sometimes required for virtual COM ports.

Execution

• Use initialization data: Specifies that you want to send the initialization string to the serial device each
time the trigger is started. Some serial devices require to be awaken or put into standby mode before

72

they can provide the data. For more information about the initialization string and if you need it at all,
see your device's user guide. You can include binary characters. For more information, see section
Entering Special Characters.

• Use data polling: Specifies that the trigger actively asks the device for data. Within the specified time
intervals, the trigger sends the commands provided in the Contents field. This field can include binary
characters. For more information, see section Entering Special Characters.

Other
Options in the Feedback from the Print Engine section specify communication parameters that allow you to
receive print engine feedback.

• Supervised printing: Activates synchronous printing mode. Use it whenever you want to send the print
job status back to the third party application. For more information, see section Synchronous Print
Mode.

Options in the Data Processing section specify if you want to trim the data so that it fits into a variable, or
ignore the missing label variables. By default, reports errors and breaks the printing process if you try to
save values that are too long in label variables, or try to set values for non-existing label variables.

• Ignore excessive variable contents: truncates data values that exceed the length of the variable as
defined in the label designer to make them fit. This option is in effect if you are setting variable values
in filters, from command files, and when you are setting values of trigger variables to label variables of
the same name.

Example

Label variable accepts 5 characters at maximum. With this option enabled, any value longer than 5
characters is truncated to the first 5 characters. If the value is 1234567 ignores digits 6 and 7.

• Ignore missing label variables: When printing with command files (such as JOB file), the printing
process ignores all variables that are:

• specified in the command file (using the SET command)

• not defined on the label

Similar happens if you define assignment area in a filter to extract all name-value pairs, but your label
contains fewer variables.
When setting values of non-existing label variables, reports an error. If this option is enabled, the
printing continues.

Options in Scripting section specify scripting possibilities.

73

• Scripting language: Selects scripting language for the trigger. All Execute script actions that you use
within a single trigger use the selected scripting language.

Options in the Save Received Data section specify the available commands for data that the trigger
receives.

• Save data received by the trigger to file: Enable this option to save the data received by the trigger.
The option Variable enables variable file name. Select a variable that contains path and file name.

• On error save data received by the trigger to file: Enable this option to save the data into the trigger
only if an error occurs during the action execution. You might want to enable this option to keep the
data that caused the issue ready for troubleshooting.

NOTE
Make sure you enable the Supervised printing support. If not, cannot detect errors
during the execution. For more information, see section Synchronous Print Mode.

NOTE
NiceLabel Automation saves the received data into a temporary file. This temporary
file is deleted right after the trigger execution completes. The internal variable
DataFileName points to that file name. For more information, see Internal Variables.

Security

• Lock and encrypt trigger: Enables trigger protection. If you enable it, the trigger becomes locked and
you cannot edit it any longer. This encrypts the actions. Only users with password can unlock the
trigger and modify it.

3.3. Database Trigger
To learn more about triggers in general, see section Understanding Triggers.

Database trigger event occurs when a change in the monitored database table is detected. There might
be new records, or existing records that have been updated. Database trigger doesn't wait for any event
change, such as data delivery. Instead, it pulls data from the database in defined time intervals.

Typical usage: An existing business system executes a transaction, which in effect updates data in a
database table. NiceLabel Automation detects the updated and new records, and prints their contents on
labels.

General
This section allows you to configure the most important file trigger settings.

• Name: Specifies the unique name of the trigger. The names helps you distinguish between different
triggers when you configure them in Automation Builder, and later when you run them in Automation
Manager.

74

• Description: Allows you to describe the role of this trigger. Help the users with a short explanation
about what the trigger does.

• Database connection: Specifies connection string to the database. Click Define to open the Database
dialog box. Use it to configure the database connection, including database type, table name, and user
credentials. You have to connect to a database that supports access with SQL commands. For this
reason, you cannot use the database trigger to automatically detect data changes in CSV text files or
Microsoft Excel spreadsheets.

NOTE
Configuration details depend on the type of selected database. The options in the
dialog box depend on the database driver that you use. For configuration details,
see user guide for your database driver. For more information about database
connectivity, see section Accessing Databases.

• Check database in the time intervals: Specifies the time interval in which the database is polled for
changes in records.

• Detection Options and Advanced: These options allow you to fine-tune the record detection
mechanism. After the records are acquired from the database, Actions tab automatically displays
the For Each Record action, using which you map table fields to label variables.

Get records based on unique incremental field value
With this option enabled, the trigger monitors the specified auto-incremental numeric field in the table.
NiceLabel Automation remembers the field's value for the last processed record. At the next polling
interval, only records with values greater than the remembered value are acquired.

To configure this option, select the table name in which the records reside (table name), the
auto-incremental field (key field) and the starting value for the field (key field default
value). Internally, the variable KeyField is used to refer to the last remembered value of key field.

NOTE
The last value of the key field is remembered internally, but is not updated back into
configuration, so the value for key field default value does not change in
this dialog box. You can safely reload configuration and/or stop/start this trigger in
the Automation Manager and still keep the last remembered value. However, if you
remove the configuration from Automation Manager and add it back, the value of last
remembered key field is reset to what you have defined in key field default
value.

75

Get records and delete them
With this option selected, all records are acquired from the table and deleted. To configure this option,
select the table name in which the records reside (table name) and specify the primary key in the
table (key fields). While Automation allows you to have a table without a primary key, it is strongly
recommended that you define the primary key. If the primary key exists, the records are deleted one
by one if a particular record is processed in the actions.

WARNING
If the primary key does not exist, all records obtained by the current trigger are deleted
at once. That's fine if no error occurs during record processing. However, if there is
a processing error with some record, Automation stops processing further records.
Because all records captured in this polling interval have already been deleted without
being processed, you can lose data. Therefore, having a primary key in a table is
advisable.

SQL Code Examples

NOTE
These SQL statements are read-only and provided for reference only. To provide
custom SQL statements, select the Get and manage records with custom SQL
detection method.

Example table:

ID ProductID CodeEAN ProductDesc AlreadyPrinted

1 CAS0006 8021228110014 CASONCELLI ALLA CARNE 250G Y

2 PAS501 8021228310001 BIGOLI 250G

3 PAS502GI 8021228310018 TAGLIATELLE 250G

Example of Update SQL statement in case the table contains primary index:

DELETE FROM [Table]

WHERE [ID] = :ID

ID field in the table is defined as primary index. The :ID construct in WHERE clause contains value
of field ID in each iteration. For the first record, the value of ID is 1, for the second record 2, etc.
Specifying the colon in front of the field name in SQL statement specifies how the variable is used.

Example of Update SQL statement in case the table does has no primary index defined:

DELETE FROM [Table]

If no primary index is defined in the table, all records are deleted from the table after the first record
gets processed.

76

Get records and update them
In this case, all records are acquired from the table and updated. You can write a custom value
into field in the table as indication 'this records has already been printed'. To configure this option,
you have to select the table name, in which the records reside (table name), select the field that
you want to update (update field), and enter the value that will be stored in the field (update
value). Internally, the variable UpdateValue is used in the SQL statement to refer to the current
value of field (update value).

While Automation allows you to have a table without a primary key, it is strongly recommended that
you define a primary key. If the primary key exists, the records will be updated one by one , when the
particular record is processed in the actions.

WARNING
If the primary key does not exists, all records obtained in the trigger are updated at
once. That's fine if there is no error processing the records. But if there is an error
processing some record, the Automation stops processing further records. Because
all records captured in this polling interval have already been updated without being
processed in actions, you can lose data. Therefore, having a primary key in a table is a
good idea.

SQL Code Examples

NOTE
These SQL statements are read-only and provided as a reference only. To provide
custom SQL statements, select the Get and manage records with custom SQL
detection method.

Example table:

ID ProductID CodeEAN ProductDesc AlreadyPrinted

1 CAS0006 8021228110014 CASONCELLI ALLA CARNE 250G Y

2 PAS501 8021228310001 BIGOLI 250G

3 PAS502GI 8021228310018 TAGLIATELLE 250G

Example of Update SQL statement, if table contains primary index:

UPDATE [Table]

SET [AlreadyPrinted] = :UpdateValue

WHERE [ID] = :ID

ID field in the table is defined as primary index. The construct :ID in the WHERE clause contains
the value of field ID in each iteration. For first record, the value of ID is 1, for second record 2, etc.
Adding a colon in front of the field name in SQL statement specifies usage of a variable. The field
UpdateValue is defined in the trigger configuration using the Update value edit field.

77

Example of Update SQL statement, when table does not have primary index defined:

UPDATE [Table]

SET [AlreadyPrinted] = :UpdateValue

If no primary index is defined in the table, all records from the table are updated, after the first record
gets processed.

78

Get and manage records with custom SQL
In this case, the creation of SQL statements for record extraction and field updates is entirely up
to you. To configure this option, you have to provide a custom SQL statement to acquire records
(search SQL statement) and a custom SQL statement to update the records after processing
(update SQL statement). Click the Test button to test-execute your SQL statements and see the
result on-screen.

You can use table field values or values of trigger variables as parameters in the WHERE clause in
the SQL statement. You would precede the field or variable name using the colon character (:). This
instructs NiceLabel Automation to use the current value of that field or variable.

SQL Code Examples
Example table:

ID ProductID CodeEAN ProductDesc AlreadyPrinted

1 CAS0006 8021228110014 CASONCELLI ALLA CARNE 250G Y

2 PAS501 8021228310001 BIGOLI 250G

3 PAS502GI 8021228310018 TAGLIATELLE 250G

Example of Search SQL statement:

To get the records that haven't already been printed, do the following. The field AlreadyPrinted
neither must contain value Y, nor have blank or NULL value.

SELECT * FROM Table

WHERE AlreadyPrinted <> 'Y' or AlreadyPrinted is NULL

From the sample table above, two records with ID values 2 and 3 will be extracted. The first record
has already been printed and will be ignored.

Example of Update SQL statement:

To mark the already printed records with value Y in the AlreadyPrinted field, do the following:

UPDATE [Table]

SET [AlreadyPrinted] = 'Y'

WHERE [ID] = :ID

Put colon (:) in front of the variable name in your SQL statement to identify it as a variable. You can
use any field from the table for parameters in the WHERE clause. In the example, we are updating the
AlreadyPrinted field only for the currently processed record (value of field ID must be the same
as the value from the current record). In the similar way, you would refer to other fields in the record
as :ProductID or :CodeEAN, or even refer to variables defined inside this database trigger.

To delete the current record from the table, do the following:

DELETE FROM [Table]

WHERE [ID] = :ID

79

Show SQL statement: Expand this section to see the generated SQL statement and to write your own
statement if you have selected the option Get and manage records with custom SQL.

Previewing SQL Execution
To test the execution of SQL sentences and to see what their effect is, click Test in the toolbar of the SQL
edit area. The Data Preview section opens in the right-hand pane. Click the Execute button to start the SQL
code. If you use values of table field in the SQL statement (with colon (:) in front of the field name), you
have to provide test values for them.

NOTE
If you have Data Preview open and you have just added some variables to the script, click
Test button twice. This closes and opens Data Preview section and updates the list of
variables in the preview.

• Simulate execution: Specifies that all changes made to the database are ignored. The database
transaction is reverted so no updates are written to the database.

Execution
The options in Execution specify when does the database updating take place. The update type depends on
the Detection Options for the trigger.

• Before processing actions: Specifies that records are updated before the actions defined for this
trigger have started to execute.

• After processing actions: Specifies that records are updated after the actions defined for this trigger
have been executed. Usually you want to update the records after they have been successfully
processed.

NOTE
If necessary, you can update the records while the actions are still executing. For more
information, see section Execute SQL Statement.

Other
Options in the Feedback from the Print Engine section specify communication parameters that allow you to
receive print engine feedback.

• Supervised printing: Activates synchronous printing mode. Use it whenever you want to send the print
job status back to the third party application. For more information, see section Synchronous Print
Mode.

80

Options in the Data Processing section specify if you want to trim the data so that it fits into a variable, or
ignore the missing label variables. By default, reports errors and breaks the printing process if you try to
save values that are too long in label variables, or try to set values for non-existing label variables.

• Ignore excessive variable contents: truncates data values that exceed the length of the variable as
defined in the label designer to make them fit. This option is in effect if you are setting variable values
in filters, from command files, and when you are setting values of trigger variables to label variables of
the same name.

Example

Label variable accepts 5 characters at maximum. With this option enabled, any value longer than 5
characters is truncated to the first 5 characters. If the value is 1234567 ignores digits 6 and 7.

• Ignore missing label variables: When printing with command files (such as JOB file), the printing
process ignores all variables that are:

• specified in the command file (using the SET command)

• not defined on the label

Similar happens if you define assignment area in a filter to extract all name-value pairs, but your label
contains fewer variables.
When setting values of non-existing label variables, reports an error. If this option is enabled, the
printing continues.

Options in Scripting section specify scripting possibilities.

• Scripting language: Selects scripting language for the trigger. All Execute script actions that you use
within a single trigger use the selected scripting language.

Options in the Save Received Data section specify the available commands for data that the trigger
receives.

• Save data received by the trigger to file: Enable this option to save the data received by the trigger.
The option Variable enables variable file name. Select a variable that contains path and file name.

• On error save data received by the trigger to file: Enable this option to save the data into the trigger
only if an error occurs during the action execution. You might want to enable this option to keep the
data that caused the issue ready for troubleshooting.

NOTE
Make sure you enable the Supervised printing support. If not, cannot detect errors
during the execution. For more information, see section Synchronous Print Mode.

81

NOTE
saves the received data into a temporary file. This temporary file is deleted right after
the trigger execution completes. The internal variable DataFileName points to that
file name. For more information, see Internal Variables.

Security

• Lock and encrypt trigger: Enables trigger protection. If you enable it, the trigger becomes locked and
you cannot edit it any longer. This encrypts the actions. Only users with password can unlock the
trigger and modify it.

3.4. TCP/IP Server Trigger

To learn more about triggers in general, see section Understanding Triggers.

TCP/IP server trigger event occurs after the monitored socket (IP address and port number) receives data.

Typical usage: An existing business system executes a transaction, which in effect sends the data to
NiceLabel Automation server on a specific socket. Data content might be structured using CSV, XML and
other formats, or it might use a legacy format. In either way, NiceLabel Automation reads the data, parses
values using filters and prints them on labels. For more information on how to parse and extract the data,
see section Understanding Filters.

General

NOTE
This trigger supports Internet Protocol version 6 (IPv6).

This section allows you to configure the most important file trigger settings.

• Name: Specifies the unique name of the trigger. The names helps you distinguish between different
triggers when you configure them in Automation Builder, and later when you run them in Automation
Manager.

• Description: Allows you to describe the role of this trigger. Help the users with a short explanation
about what the trigger does.

• Port: Specifies the port number where incoming data will be accepted on. Use the port number that is
not in use by any other application. If the selected port is in use, you won't be able to start the trigger
in Automation Manager. For more information about security concerns, see section Securing Access
to your Triggers.

82

NOTE
If your server has multi-homing enabled (more IP addresses on one or more network cards),
NiceLabel Automation responds on the defined port on all IP addresses.

• Maximum number of concurrent connections: Specifies the maximum number of accepted
connections. That many concurrent clients can send data to the trigger simultaneously.

The options in the Execution Event section specify when the trigger should fire and start executing actions.

• On client disconnect: Specifies that the trigger fires after the client sends data and closes the
connection. This is a default setting.

NOTE
If you want to send the print job status back to the third party application as a feedback,
don't use this option. If the connection is left open, you can send feedback using the action
Send data to TCP/IP port with the parameter Reply to sender.

• On number of characters received: Specifies that trigger fires when the required number of
characters is received. In this case, the third party application can keep a connection open and
continuously sends data. Each chunk of data must be of the same size.

• On sequence of characters received: Specifies that the trigger fires each time the required sequence
of characters is received. You would use this option if you know that the 'end of data' is always
identified by a unique set of characters. You can insert special (binary) characters using the button
next to the edit field.

• Include in trigger data: The sequence of characters that determines the trigger event is not
stripped of the data, but is included along with the data. The trigger receives the complete
received data stream.

• When nothing is received after the specified time interval: Specifies that the trigger fires after a
required time interval passes since the last character is received.

Execution

• Allow connections from the following hosts: Specifies the list of IP addresses or host names of the
computers that are allowed to connect to the trigger. Place each entry in a new line.

• Deny connections from the following hosts: Specifies the list of IP addresses or host names of the
computers that are not allowed to connect to the trigger. Place each entry in a new line.

• Welcome message: Specifies a text message that returns to the client each time it connects to the
TCP/IP trigger.

• Answer message: Specifies the text message that returns to the client each time the actions execute.
Use this option when the client doesn't disconnect upon data send and expects the answer about
when the action execution ends. The answer message is hard-coded and thus always the same.

83

• Message encoding: Specifies the data encoding scheme, so the special characters can be correctly
processed. NiceLabel Automation can automatically detect the data encoding, based on BOM header
(text files), or encoding attribute (XML files).

Other
Options in the Feedback from the Print Engine section specify communication parameters that allow you to
receive print engine feedback.

• Supervised printing: Activates synchronous printing mode. Use it whenever you want to send the print
job status back to the third party application. For more information, see section Synchronous Print
Mode.

Options in the Data Processing section specify if you want to trim the data so that it fits into a variable, or
ignore the missing label variables. By default, reports errors and breaks the printing process if you try to
save values that are too long in label variables, or try to set values for non-existing label variables.

• Ignore excessive variable contents: truncates data values that exceed the length of the variable as
defined in the label designer to make them fit. This option is in effect if you are setting variable values
in filters, from command files, and when you are setting values of trigger variables to label variables of
the same name.

Example

Label variable accepts 5 characters at maximum. With this option enabled, any value longer than 5
characters is truncated to the first 5 characters. If the value is 1234567 ignores digits 6 and 7.

• Ignore missing label variables: When printing with command files (such as JOB file), the printing
process ignores all variables that are:

• specified in the command file (using the SET command)

• not defined on the label

Similar happens if you define assignment area in a filter to extract all name-value pairs, but your label
contains fewer variables.
When setting values of non-existing label variables, reports an error. If this option is enabled, the
printing continues.

Options in Scripting section specify scripting possibilities.

• Scripting language: Selects scripting language for the trigger. All Execute script actions that you use
within a single trigger use the selected scripting language.

Options in the Save Received Data section specify the available commands for data that the trigger
receives.

84

• Save data received by the trigger to file: Enable this option to save the data received by the trigger.
The option Variable enables variable file name. Select a variable that contains path and file name.

• On error save data received by the trigger to file: Enable this option to save the data into the trigger
only if an error occurs during the action execution. You might want to enable this option to keep the
data that caused the issue ready for troubleshooting.

NOTE
Make sure you enable the Supervised printing support. If not, Automation cannot
detect errors during the execution. For more information, see section Synchronous
Print Mode.

NOTE
Automation saves the received data into a temporary file. This temporary file
is deleted right after the trigger execution completes. The internal variable
DataFileName points to that file name. For more information, see Internal Variables.

Security

• Lock and encrypt trigger: Enables trigger protection. If you enable it, the trigger becomes locked and
you cannot edit it any longer. This encrypts the actions. Only users with password can unlock the
trigger and modify it.

Sending keepalive signals
Your network routing system can silently drop your connection when there is no TCP/IP traffic for a few
minutes. To avoid being disconnected, you can choose to periodically send keepalive signals in NiceLabel
Automation.

Enable sending keepalive signals in your product.config file:

1. Navigate to the System folder.
%PROGRAMDATA%\NiceLabel\NiceLabel 10

2. Make a backup copy of the product.config file.

3. Open product.config in a text editor. The file has an XML structure.

4. Add the following lines:

<configuration>

 <IntegrationService>

 <KeepAliveTime>60000</KeepAliveTime>

 <KeepAliveInterval>10000</KeepAliveInterval>

 </IntegrationService>

</configuration>

85

NOTE
KeepAliveTime (in milliseconds): Specifies how long the TCP socket connection
must be inactive before Automation sends a keepalive signal and waits for the
acknowledge packets to be returned.

KeepAliveInterval (in milliseconds): Specifies at what intervals to send
anotherkeepalive packet when the host is not returning any acknowledge packets.

When the TCP/IP trigger receives the keep alive packet and returns the
acknowledge packet, the KeepAliveTime timer starts again.

Both values (KeepAliveTime and KeepAliveInterval) are mandatory to
enable sending keepalive signals and must have values larger than 0.

5. Save the product.config file.

6. Restart your Automation service.

Enabled keepalive signals now keep your connection active.

3.5. TCP/IP Client Trigger

To learn more about triggers in general, see section Understanding Triggers.

The TCP/IP client trigger turns your Automation into a listening client that connects to TCP/IP servers.
There are multiple devices and systems that take the role of a TCP/IP server: vision inspection systems,
printers, PLCs, scanners, weighing scales, etc. Automation can connect to them and wait for the incoming
data. After receiving a certain number of characters, a character sequence, or a timeout, the TCP/IP
client trigger fires, and starts executing your actions. If the connection fails, the trigger allows you to
automatically reconnect.

Typical use: You are automatically printing multiple types of packaging labels using a network printer. It is
crucial for you to know when your printer is done printing one label type before you start printing the second
label type. The TCP/IP client trigger allows you to set permanent automated checking of printer availability.
While printing the first label type, the TCP/IP client trigger checks for the printing status, and when the
printer is done, it sends a message to Automation to send the second label type for printing.

General

• Name: Specifies the unique name of the trigger. The names helps you distinguish between different
triggers when you configure them in Automation Builder, and later when you run them in Automation
Manager.

86

• Description: Allows you to describe the role of this trigger. Help the users with a short explanation
about what the trigger does.

• Destination server: Type the location (IP address or hostname) of the TCP/IP server you wish to
connect to.

• Port: Specifies the host port number from which you are going to receive the incoming data. Make
sure firewall ports are open on the server side.

• Reconnect to server interval: Define the time in milliseconds after which Automation tries to
reconnect to your TCP/IP server.

• On number of characters received: Specifies that the trigger fires when the required number of
characters is received. In this case, server can keep a connection open and continuously sends data.
Each chunk of data must be of the same size.

• On sequence of characters received: Specifies that the trigger fires each time the required sequence
of characters is received. You would use this option if you know that the 'end of data' is always
identified by a unique set of characters. You can insert special (binary) characters using the button
next to the edit field.

• Include in trigger data: The sequence of characters that determines the trigger event is not
stripped of the data, but is included along with the data. The trigger receives the complete
received data stream.

• If nothing is received after the specified time interval: Specifies that the trigger fires after a required
time interval passes since the last character is received.

Execution

• Initialization message: Text message that goes to the server each time Automation establishes
connection.

• Answer message: Specifies the text message that returns to the server upon firing the trigger (before
the actions start to execute).

• Message encoding: Specifies the data encoding scheme, so the special characters can be correctly
processed. NiceLabel Automation can automatically detect the data encoding, based on BOM header
(text files), or encoding attribute (XML files).

Other
Options in the Feedback from the Print Engine section specify communication parameters that allow you to
receive print engine feedback.

• Supervised printing: Activates synchronous printing mode. Use it whenever you want to send the print
job status back to the third party application. For more information, see section Synchronous Print
Mode.

87

Options in the Data Processing section specify if you want to trim the data so that it fits into a variable, or
ignore the missing label variables. By default, reports errors and breaks the printing process if you try to
save values that are too long in label variables, or try to set values for non-existing label variables.

• Ignore excessive variable contents: truncates data values that exceed the length of the variable as
defined in the label designer to make them fit. This option is in effect if you are setting variable values
in filters, from command files, and when you are setting values of trigger variables to label variables of
the same name.

Example

Label variable accepts 5 characters at maximum. With this option enabled, any value longer than 5
characters is truncated to the first 5 characters. If the value is 1234567 ignores digits 6 and 7.

• Ignore missing label variables: When printing with command files (such as JOB file), the printing
process ignores all variables that are:

• specified in the command file (using the SET command)

• not defined on the label

Similar happens if you define assignment area in a filter to extract all name-value pairs, but your label
contains fewer variables.
When setting values of non-existing label variables, reports an error. If this option is enabled, the
printing continues.

Options in Scripting section specify scripting possibilities.

• Scripting language: Selects scripting language for the trigger. All Execute script actions that you use
within a single trigger use the selected scripting language.

Options in the Save Received Data section specify the available commands for data that the trigger
receives.

• Save data received by the trigger to file: Enable this option to save the data received by the trigger.
The option Variable enables variable file name. Select a variable that contains path and file name.

• On error save data received by the trigger to file: Enable this option to save the data into the trigger
only if an error occurs during the action execution. You might want to enable this option to keep the
data that caused the issue ready for troubleshooting.

NOTE
Make sure you enable the Supervised printing support. If not, cannot detect errors
during the execution. For more information, see section Synchronous Print Mode.

88

NOTE
saves the received data into a temporary file. This temporary file is deleted right after
the trigger execution completes. The internal variable DataFileName points to that
file name. For more information, see Internal Variables.

Security

• Lock and encrypt trigger: Enables trigger protection. If you enable it, the trigger becomes locked and
you cannot edit it any longer. This encrypts the actions. Only users with password can unlock the
trigger and modify it.

Sending keepalive signals
Your network routing system can silently drop your connection when there is no TCP/IP traffic for a few
minutes. To avoid being disconnected, you can choose to periodically send keepalive signals in NiceLabel
Automation.

Enable sending keepalive signals in your product.config file:

1. Navigate to the System folder.
%PROGRAMDATA%\NiceLabel\NiceLabel 10

2. Make a backup copy of the product.config file.

3. Open product.config in a text editor. The file has an XML structure.

4. Add the following lines:

<configuration>

 <IntegrationService>

 <KeepAliveTime>60000</KeepAliveTime>

 <KeepAliveInterval>10000</KeepAliveInterval>

 </IntegrationService>

</configuration>

NOTE
KeepAliveTime (in milliseconds): Specifies how long the TCP socket connection
must be inactive before Automation sends a keepalive signal and waits for the
acknowledge packets to be returned.

KeepAliveInterval (in milliseconds): Specifies at what intervals to send
anotherkeepalive packet when the host is not returning any acknowledge packets.

When the TCP/IP trigger receives the keep alive packet and returns the
acknowledge packet, the KeepAliveTime timer starts again.

Both values (KeepAliveTime and KeepAliveInterval) are mandatory to
enable sending keepalive signals and must have values larger than 0.

89

5. Save the product.config file.

6. Restart your Automation service.

Enabled keepalive signals now keep your connection active.

3.6. HTTP Server Trigger

To learn more about triggers in general, see section Understanding Triggers.

HTTP server trigger fires if data is received on the monitored socket (IP address and port number).

Contrary to TCP/IP trigger, the received data is not a raw data stream, but includes standard HTTP header.
Third party applications must use POST or GET request methods. They must provide data in message
body or in query string. You can use both Internet media types in the message body – MIME Type, or
Content-Type. NiceLabel Automation receives the message and extracts relevant data from the message
content using a filter.

Typical use: Existing business system executes a transaction which sends data to NiceLabel Automation
server formatted as HTTP POST message to a specific socket. The sent data might be structured in CSV,
XML and other formats, or it can be structured using a proprietary legacy format. Either way, NiceLabel
Automation reads the data, parses values using filters and prints the extracted data on labels. For more
information on how to parse and extract data, see section Understanding Filters.

Providing data
Provide the HTTP trigger data using any of the following methods. You can also combine the methods if
needed, and use both in the same HTTP request.

90

Data in the query string
Query string is a part of the uniform resource locator (URL) that contains data to be passed to the HTTP
trigger.

Example of a typical URL that contains query string:

http://server/path/?query_string

Question mark is used as a separator and is not part of the query string.

Query string is usually composed of a series of name:value pairs. Within each pair, field name and value
are separated by equals sign (=). Series of pairs are separated by ampersand (&). A typical query string
provide values for fields (variables) in the following format:

field1=value1&field2=value2&field3=value3

HTTP trigger offers built-in support for extracting values from all fields, and for storing them in variables
that carry the same name. As a result, you don't have to define any filters to extract values from the query
string.

• You don't have to define variables inside a trigger to populate them with values from the query string.
NiceLabel Automation extracts all variables in the query string and sends their values to the currently
active label. If variables of the same name exist in the label, Automation populates them with values.
If the variables do not exist in the label, Automation ignores their values without reporting any errors.

• If an action requires variable values, define matching variables in the trigger. To get and store all
values from the query string, create matching variables using the same names as fields in the query
string. For the example above, define trigger variables with names field1, field2 and field3.

You would usually use GET HTTP request method to provide the query string.

Data in body of HTTP request
Use POST request method to provide message in the body of an HTTP request.

You are free to send any type of data or use any data structure that you want in the body. You only need to
ensure that you can handle the data using NiceLabel Automation filters. The content can be formatted as
XML, CSV, or plain text. Sent content can even be binary data (Base64-encoded). Bare in mind that you have
to parse the data with filters.

If you can affect the structure of the incoming message, use standardized structures, such as XML or CSV
to simplify the filter configuration.

Use POST HTTP request method to provide the data in message body.

General
This section allows you to configure the most important file trigger settings.

91

• Name: Specifies the unique name of the trigger. The names helps you distinguish between different
triggers when you configure them in Automation Builder, and later when you run them in Automation
Manager.

• Description: Allows you to describe the role of this trigger. Help the users with a short explanation
about what the trigger does.

Communication

NOTE
This trigger supports Internet Protocol version 6 (IPv6).

This section allows you to configure the mandatory port number and optional feedback options. You
can use standard HTTP Response Codes to indicate a successfully executed action. For more advanced
purposes, you can also send the custom content back to the data-providing application. Such content may
be a simple feedback string, or binary data, such as label preview or print stream.

Typical URL to connect to an HTTP trigger is as follows:

http://server:port/path/?query_string

• Server: This is the FQDN or IP address of the machine where NiceLabel Automation is installed.

• Port: Number of the port on which incoming data is received. Use a port number that is not in
use by any other application. If the selected port is in use, you won't be able to start the trigger in
Automation Manager. For more information about security concerns, see section Securing Access to
your Triggers.

NOTE
If multi-homing is enabled on your server (multiple IP addresses on one or more
network cards), NiceLabel Automation responds on the defined port on all IP
addresses.

• Path: Specifies optional path in the URL. This functionality enables NiceLabel Automation to expose
multiple HTTP triggers on the same port. The client uses the triggers through a single port in a REST
like syntax causing different triggers to be fired by different URLs. If you are not sure what to use,
leave the default path (\).

• Secure connection (HTTPS): Enables secure transport layer for your HTTP messages and prevents
eavesdropping. For more information on how to set it up, see section Using Secure Transport Layer
(HTTPS).

• Query string: Specifies name-value pairs in the URL. This an optional parameter. The data is usually
provided in the body of the HTTP request.

92

https://help.nicelabel.com/hc/articles/360020970577-Using-Secure-Transport-Layer-HTTPS
https://help.nicelabel.com/hc/articles/360020970577-Using-Secure-Transport-Layer-HTTPS

• Wait for trigger execution to finish: HTTP protocol requires a receiver (in this case NiceLabel
Automation) to send a numeric response back to the sender indicating the status of the received
message. By default, NiceLabel Automation responds with code 200. This indicates that Automation
successfully received the data, but gives no information about the success of trigger actions.
This option specifies that a trigger doesn't send a response immediately after receiving the data, but
waits until all actions are executed. After that, it sends the response code indicating a successful
action execution. With this option enabled, you can send back a custom response type and data (e.g.
the response to a HTTP request is label preview in PDF format).
The available built-in HTTP response codes are:

HTTP Response Code Description

200 All actions executed successfully.

401 Unauthorized, wrong user name and password were specified.

500 There were errors during action execution.

NOTE
To send feedback about the print process, enable the synchronous print mode. For
more information, see Synchronous Print Mode.

• Maximum number of concurrent requests: Specifies the maximum number of concurrent inbound
connections. That many concurrent clients can send data to the trigger simultaneously. This number
also depends on the hardware performance of your server.
Learn more about Section 7.1, “Parallel Processing”.

• Response type: Specifies the type of your response message. Frequently used Internet media types
(also known as MIME types, or Content-types) are predefined in the drop down box. If your media
type is not available in the list, enter it by yourself. Automation sends the response data outbound
as feedback, formatted in the defined media type. Variable enables variable media type. If enabled,
select or create a variable that contains media type.

NOTE
If you don't specify the Content-Type, NiceLabel Automation uses application/
octet-stream as the default one.

• Response data: Defines content of the response message. Examples of what you can send back
as an HTTP response are custom error messages, label preview, generated PDF files, print stream
(spool) file, XML file with details from the print engine plus the label preview (encoded as Base64
string). The possibilities are countless.
If your output will consist of binary-only content (such as label preview or print stream), make sure
you select a proper media type, e.g. image/jpeg or application/octet-stream.

• Additional headers: Allow you to define custom MIME headers for the HTTP response message.
Response header syntax and example are available in the HTTP Request action section.

93

TIP
With Response data and Additional headers, you can use fixed content, mix of fixed
and variable content, or variable content alone. To insert variable content, click the
button with arrow to the right of data area and insert variable from the list (or create
a new one) that contains the data you want to use. For more information, see section
Using Compound Values.

Authentication

• None: No authentication method is in use.

• User: Specifies that incoming messages include user name and password. When in use, the trigger
only accepts HTTP messages with matching credentials. For more information about security
concerns, see section Securing Access to your Triggers.

• Application Group (defined in NiceLabel Control Center): As in case with User authentication type,
this option also specifies that the incoming messages include user name and password. When in
use, the trigger only accepts HTTP messages with adequate credentials for NiceLabel Control Center
users who belong to a specific application group.

• Group: Multiple application groups can be defined on the NiceLabel Control Center. To select
which group should be allowed to access the HTTP Server Trigger, use the Group drop-down
list. The selected group and its users must be set as active when the trigger is running.

NOTE
Group with a specified name must exist on NiceLabel Control Center when the
trigger is running. While working on the configuration in Automation Builder,
you can use any group name. Make sure you eventually define a final name on
NiceLabel Control Center and match it in the configuration before deploying it.

TIP
The users authenticate themselves using their credentials as defined in
NiceLabel Control Center , Users tab. Refer to NiceLabel Control Center User
Guide for details on user management (section Users and Groups).

Other
Options in the Feedback from the Print Engine section specify communication parameters that allow you to
receive print engine feedback.

94

• Supervised printing: Activates synchronous printing mode. Use it whenever you want to send the print
job status back to the third party application. For more information, see section Synchronous Print
Mode.

Options in the Data Processing section specify if you want to trim the data so that it fits into a variable, or
ignore the missing label variables. By default, reports errors and breaks the printing process if you try to
save values that are too long in label variables, or try to set values for non-existing label variables.

• Ignore excessive variable contents: truncates data values that exceed the length of the variable as
defined in the label designer to make them fit. This option is in effect if you are setting variable values
in filters, from command files, and when you are setting values of trigger variables to label variables of
the same name.

Example

Label variable accepts 5 characters at maximum. With this option enabled, any value longer than 5
characters is truncated to the first 5 characters. If the value is 1234567 ignores digits 6 and 7.

• Ignore missing label variables: When printing with command files (such as JOB file), the printing
process ignores all variables that are:

• specified in the command file (using the SET command)

• not defined on the label

Similar happens if you define assignment area in a filter to extract all name-value pairs, but your label
contains fewer variables.
When setting values of non-existing label variables, reports an error. If this option is enabled, the
printing continues.

Options in Scripting section specify scripting possibilities.

• Scripting language: Selects scripting language for the trigger. All Execute script actions that you use
within a single trigger use the selected scripting language.

Options in the Save Received Data section specify the available commands for data that the trigger
receives.

• Save data received by the trigger to file: Enable this option to save the data received by the trigger.
The option Variable enables variable file name. Select a variable that contains path and file name.

• On error save data received by the trigger to file: Enable this option to save the data into the trigger
only if an error occurs during the action execution. You might want to enable this option to keep the
data that caused the issue ready for troubleshooting.

NOTE
Make sure you enable the Supervised printing support. If not, cannot detect errors
during the execution. For more information, see section Synchronous Print Mode.

95

NOTE
saves the received data into a temporary file. This temporary file is deleted right after
the trigger execution completes. The internal variable DataFileName points to that
file name. For more information, see Internal Variables.

Security

• Lock and encrypt trigger: Enables trigger protection. If you enable it, the trigger becomes locked and
you cannot edit it any longer. This encrypts the actions. Only users with password can unlock the
trigger and modify it.

3.7. Web Service Trigger

To learn more about triggers in general, see section Understanding Triggers.

Web Service trigger event occurs if a monitored socket (IP address and port number) receives data. The
data must follow SOAP notation – it encodes XML data into an HTTP message. The Web Service interface
is described with WSDL document. Such document is available with each defined Web Service trigger.

Web Service trigger provides feedback about print job status, but you have to enable the synchronous
processing mode. For more information, see section Print Job Status Feedback.

Typically, programmers use Web Service to integrate label printing into their own applications. An existing
business system executes a transaction, which sends the data to NiceLabel Automation server using a
specific socket. The sent data is formatted as a SOAP message. The data can be provided in CSV, XML and
other structured formats, or it can be provided using one of the legacy formats. In both cases, NiceLabel
Automation reads the data, parses values using filters and prints them on labels. For more information on
how to parse and extract data, see section Understanding Filters.

General
This section allows you to configure general file trigger settings.

• Name: Specifies the unique name of the trigger. The names helps you distinguish between different
triggers when you configure them in Automation Builder, and later when you run them in Automation
Manager.

• Description: Allows you to describe the role of this trigger. Help the users with a short explanation
about what the trigger does.

96

Communication

NOTE
This trigger supports Internet Protocol version 6 (IPv6).

This section allows you to configure mandatory port number and optional feedback settings.

• Port: Specifies number of the port that accepts incoming data. Use a port number that is not in
use by any other application. If the selected port is in use, you won't be able to start the trigger in
Automation Manager. For more information about security concerns, see section Securing Access to
your Triggers.

NOTE
If your server has multi-homing enabled (multiple IP addresses on one or more
network cards), NiceLabel Automation responds on the defined port on all IP
addresses.

• Secure connection (HTTPS): Enables secure transport layer for your HTTP message and prevents
eavesdropping. For more information on how to set up a secure conection, see section Using Secure
Transport Layer (HTTPS).

• Maximum number of concurrent calls: Specifies the maximum number of accepted connections.
That many concurrent clients can send data to the trigger simultaneously.

• Response data: Defines the custom response that can be used with
ExecuteTriggerWithResponse and ExecuteTriggerAndSetVariablesWithResponse
methods. The response data contains the content as provided in the text area. You can combine fixed
values, variable values and special characters. To insert (or create) variables and special characters,
click the arrow button to the right of the text area. The response can contain binary data, such as
image of label preview and print file (*.PRN).

Status Feedback
By design, Web Service trigger provides feedback about the status of the created print job. The trigger
accepts the provided data and uses it to execute the defined actions. You can supervise the execution
of actions – the trigger reports success status for every event that happens during execution. To enable
status reporting during the printing process, activate Synchronous Print Mode.

Web Service trigger exposes the following methods (functions):

• ExecuteTrigger: This method accepts data into processing and provides optional status feedback.
One of the input parameters enables or disables feedback. If you enable status reporting, feedback
contains error ID and detailed description of the error. If error ID equals 0, this makes no issue while
creating the print file. If error ID is greater than 0, some error occurred during the print process. Web
Service response in this method is not configurable – the response always contains error ID and error
description.

97

• ExecuteTriggerWithResponse: This method accepts data into processing and provides custom status
feedback. Web Service response is configurable. You can respond using any type of data organized in
any available structure. You can use binary data in the response.

• ExecuteTriggerAndSetVariables: Similar to the above described ExecuteTrigger, this web service
exposes an additional inbound parameter that accepts the formatted list of name-value pairs. The
trigger automatically parses the list, extracts values and stores values in variables of the same name,
so you don't have to create any data-extraction filter yourself.

• ExecuteTriggerAndSetVariablesWithResponse: Similar to the ExecuteTriggerWithResponse above,
this web service exposes an additional inbound parameter that accepts the formatted list of name-
value pairs. The trigger automatically parses the list, extracts values and stores the values in variables
of the same name, so you don't have to create any data-extraction filter by yourself.

For more information about the structure of messages that you can send using one of the above listed
methods, see section WSDL below.

WSDL
Web Service Description Language (WSDL) specifies style of SOAP messages. It can either be Remote
Procedure Call (RPC) style or Document style. Choose the style that your data providing application
supports.

WSDL document defines input and output parameters of the Web Service.

After you define the Web Service trigger on port 12345, deploy it in Automation Manager and start it. WSDL
becomes available at:

http://localhost:12345

WSDL exposes several methods that all provide data into the trigger. Choose the most appropriate method
for what you are trying to achieve.

• Methods that have WithResponse in their names allow you to send customized responses, such as
custom error messages, label previews, PDF files, print files (*.PRN), and similar. Methods without
WithResponse in their name also provide feedback, but you cannot customize the response. The
feedback contains default error messages.

• Methods that have SetVariables in their names allow you to provide a list of variables in two
predefined formats. Automation automatically extracts values and maps them to the appropriate
variables. This saves you time because you don't have to set up any filter to do the extraction
and mapping. For the methods without SetVariables in their names, you have to define the filter by
yourself.

Web Service interface defines the following methods:

Method ExecuteTrigger
Main part of the definition is:

<wsdl:message name="WebSrviTrg_ExecuteTrigger_InputMessage">

 <wsdl:part name="text" type="xsd:string"/>

98

 <wsdl:part name="wait" type="xsd:boolean"/>

</wsdl:message>

<wsdl:message name="WebSrviTrg_ExecuteTrigger_OutputMessage"

 <wsdl:part name="ExecuteTriggerResult" type="xsd:int"/

 <wsdl:part name="errorText" type="xsd:string"/>

</wsdl:message>

The definition includes two input variables (you provide their values):

• text: Filter in configuration parses this input string. Usually, the input string is structured as CSV or
XML file which makes it easy to parse. You can also use any other textual file format.

• wait: This is a Boolean field that specifies two things:

• If you wish to wait for the print job status response or not.

• If the Web Service should provide feedback or not.

In case of True, use 1. In case of False, use 0. Depending on the selected method type, there is either a
predefined response, or you can send a customized response.

These are the optional output variables (you receive their values, if you request them by setting wait to 1):

• ExecuteTriggerResult: The integer response contains value 0 in case of reported data processing
error(s). It contains an integer greater than 0 if there are errors. The application executing the Web
Service call to NiceLabel Automation can use the response as error indicator.

• errorText: This string value contains print job status response if an error occurs during trigger
processing.

NOTE
If there is an error during trigger processing, this element is included in the XML
response message and its value contains the error description. However, if there is no
error, this element is not included in the XML response.

Method ExecuteTriggerWithResponse
You would use this method if a trigger send a custom response after it completes the execution.

Some examples of what you can send back as custom response: custom error messages, label preview,
generated PDF files, print stream file (spool file), XML file with details from the print engine plus the label
preview (encoded as Base64 string), the possibilities are endless.

Main part of the definition is:

<wsdl:message name="WebSrviTrg_ExecuteTriggerWithResponse_InputMessage">

 <wsdl:part name="text" type="xsd:string"/>

 <wsdl:part name="wait" type="xsd:boolean"/>

</wsdl:message>

<wsdl:message name="WebSrviTrg_ExecuteTriggerWithResponse_OutputMessage">

 <wsdl:part name="ExecuteTriggerWithResponseResult" type="xsd:int"/>

99

 <wsdl:part name="responseData" type="xsd:base64Binary"/>

 <wsdl:part name="errorText" type="xsd:string"/>

</wsdl:message>

In the example above, there are two input variables (you provide their values):

• text: Filter in configuration parses this input string. Usually, the input string is structured as CSV or
XML file which makes it easy to parse. You can also use any other textual file format.

• wait: This is a Boolean field that specifies two things:

• If you wish to wait for the print job status response or not.

• If the Web Service should provide feedback or not.

In case of True, use 1. In case of False, use 0. Depending on the selected method type, there is either a
predefined response, or you can send a customized response.

Furthermore, the following optional output variables are included in the example above.

NOTE
You receive values of optional output variables if you request them by setting the wait field
value to 1.

• ExecuteTriggerWithResponseResult: Integer response contains value 0 if there are no issues during
data processing. The response contains an integer greater than 0, if there are errors. The application
that executes the Web Service call to NiceLabel Automation can use this response as error indicator.

• responseData: Custom response that you can define in the Web Service trigger configuration. The
response is base64-encoded data.

• errorText: If an error raises during trigger processing, this string contains the print job status
response value.

NOTE
If there is an error reported during trigger processing, the XML response message
includes the errorText element. Value of this element contains error description.
However, if there is no error, this element is not included in the XML response.

Method ExecuteTriggerAndSetVariables
Main part of the definition is:

<wsdl:message name="WebSrviTrg_ExecuteTriggerAndSetVariables_InputMessage">

 <wsdl:part name="text" type="xsd:string"/>

 <wsdl:part name="variableData" type="xsd:string"/>

 <wsdl:part name="wait" type="xsd:boolean"/>

</wsdl:message>

 <wsdl:message

100

name="WebSrviTrg_ExecuteTriggerAndSetVariables_OutputMessage">

 <wsdl:part name="ExecuteTriggerAndSetVariablesResult" type="xsd:int"/>

 <wsdl:part name="errorText" type="xsd:string"/>

</wsdl:message>

In the example above, there are three input variables (you provide their values):

• text: Filter in configuration parses this input string. Usually, the input string is structured as CSV or
XML file which makes it easy to parse. You can also use any other textual file format.

• wait: This is a Boolean field that specifies two things:

• If you wish to wait for the print job status response or not.

• If the Web Service should provide feedback or not.

In case of True, use 1. In case of False, use 0. Depending on the selected method type, there is either a
predefined response, or you can send a customized response.

• variableData: This is the string that contains name:value pairs. The trigger reads all pairs and assigns
provided values to the trigger variables of the same name. If the variable doesn't exist in the trigger,
the trigger discards that name:value pair. If you provide the list of variables and their values using this
method, you don't have to define any data extraction with filters. The trigger does all the parsing for
you.
There are two available structures for the variableData content.

XML structure
The trigger provides variables within the <Variables /> root element of the XML file. Variable
name includes attribute name, while the variable value includes element value.

<?xml version="1.0" encoding="utf-8"?>

<Variables>

 <variable name="Variable1">Value 1</variable>

 <variable name="Variable2">Value 2</variable>

 <variable name="Variable3">Value 3</variable>

</Variables>

NOTE
Embed your XML data inside the CDATA section. CDATA, meaning character data,
is a section of element content that is marked for the parser to help it interpret the
XML data as character-only data, and not as markup. As a result, the trigger handles
the entire content as character data. For example, <element>ABC</element> gets
interpreted as <element>ABC</element>. Each CDATA section
starts with <![CDATA[sequence and ends with the]]> sequence. To sum up,
simply insert your XML data inside these two sequences.

101

Name-value pairs
Trigger provides variables using a text stream. Every name:value pair comes in its own line. Variable
name is to the left of the equals character (=), variable value is to the right.

Variable1="Value 1"

Variable2="Value 2"

Variable3="Value 3"

These are the optional output variables:

NOTE
You receive values for optional variables if you request them by setting wait to 1:

• ExecuteTriggerAndSetVariablesResult: Integer response contains value 0 if there are no issues
during data processing. It contains an integer greater than 0, if data processing reports error(s).
The application that executes the Web Service call to NiceLabel Automation can use the response as
error indicator.

• errorText: This string value contains print job status response in case it reports a trigger processing
error.

NOTE
In case of trigger processing error, this element is included in the XML response
message. Its value contains error description. However, if there is no error, this
element is not included in the XML response.

Method ExecuteTriggerAndSetVariablesWithResponse
You would use this method if the trigger should send a custom response after it completes the execution.

Some examples of what you can send back as custom response: custom error messages, label preview,
generated PDF files, print stream file (spool file), XML file with details from the print engine plus the label
preview (encoded as Base64 string), the possibilities are endless.

Main part of the definition is:

<wsdl:message name="WebSrviTrg_ExecuteTriggerAndSetVariablesWithResponse_

InputMessage">

 <wsdl:part name="text" type="xsd:string"/>

 <wsdl:part name="variableData" type="xsd:string"/>

 <wsdl:part name="wait" type="xsd:boolean"/>

</wsdl:message>

<wsdl:message name="WebSrviTrg_ExecuteTriggerAndSetVariablesWithResponse_

OutputMessage">

 <wsdl:part name="ExecuteTriggerAndSetVariablesWithResponseResult"

type="xsd:int"/>

 <wsdl:part name="responseData" type="xsd:base64Binary"/>

102

 <wsdl:part name="errorText" type="xsd:string"/>

</wsdl:message>

There are three input variables (you provide their values):

• text: Filter in configuration parses this input string. Usually, the input string is structured as CSV or
XML file which makes it easy to parse. You can also use any other textual file format.

• wait: This is a Boolean field that specifies two things:

• If you wish to wait for the print job status response or not.

• If the Web Service should provide feedback or not.

In case of True, use 1. In case of False, use 0. Depending on the selected method type, there is either a
predefined response, or you can send a customized response.

• variableData: This is the string that contains name:value pairs. The trigger reads all pairs and assigns
provided values to the trigger variables of the same name. If the variable doesn't exist in the trigger,
the trigger discards that name:value pair. If you provide the list of variables and their values using this
method, you don't have to define any data extraction with filters. The trigger does all the parsing for
you.
There are two available structures for the variableData content.

XML structure
The trigger provides variables within the <Variables /> root element of the XML file. Variable
name includes attribute name, while the variable value includes element value.

<?xml version="1.0" encoding="utf-8"?>

<Variables>

 <variable name="Variable1">Value 1</variable>

 <variable name="Variable2">Value 2</variable>

 <variable name="Variable3">Value 3</variable>

</Variables>

NOTE
Embed your XML data inside the CDATA section. CDATA, meaning character data,
is a section of element content that is marked for the parser to help it interpret the
XML data as character-only data, and not as markup. As a result, the trigger handles
the entire content as character data. For example, <element>ABC</element> gets
interpreted as <element>ABC</element>. Each CDATA section
starts with <![CDATA[sequence and ends with the]]> sequence. To sum up,
simply insert your XML data inside these two sequences.

Name-value pairs
Trigger provides variables using a text stream. Every name:value pair comes in its own line. Variable
name is to the left of the equals character (=), variable value is to the right.

103

Variable1="Value 1"

Variable2="Value 2"

Variable3="Value 3"

These are the optional output variables:

NOTE
You receive their values, if you request them by setting wait to 1:

• ExecuteTriggerAndSetVariablesWithResponseResult: Integer response contains value 0 if there are
no problems during data processing. It contains an integer greater than 0 if the response reports
error(s). The application executing the Web Service call to NiceLabel Automation can use the
response as error indicator.

• responseData: Custom response that you can define in the Web Service trigger configuration. The
response is base64-encoded data.

• errorText: This string value contains print job status response in case it reports a trigger processing
error.

NOTE
In case of trigger processing error, this element is included in the XML response
message. Its value contains error description. However, if there is no error, this
element is not included in the XML response.

Other
Options in the Feedback from the Print Engine section specify communication parameters that allow you to
receive print engine feedback.

• Supervised printing: Activates synchronous printing mode. Use it whenever you want to send the print
job status back to the third party application. For more information, see section Synchronous Print
Mode.

Options in the Data Processing section specify if you want to trim the data so that it fits into a variable, or
ignore the missing label variables. By default, reports errors and breaks the printing process if you try to
save values that are too long in label variables, or try to set values for non-existing label variables.

• Ignore excessive variable contents: truncates data values that exceed the length of the variable as
defined in the label designer to make them fit. This option is in effect if you are setting variable values
in filters, from command files, and when you are setting values of trigger variables to label variables of
the same name.

104

Example

Label variable accepts 5 characters at maximum. With this option enabled, any value longer than 5
characters is truncated to the first 5 characters. If the value is 1234567 ignores digits 6 and 7.

• Ignore missing label variables: When printing with command files (such as JOB file), the printing
process ignores all variables that are:

• specified in the command file (using the SET command)

• not defined on the label

Similar happens if you define assignment area in a filter to extract all name-value pairs, but your label
contains fewer variables.
When setting values of non-existing label variables, reports an error. If this option is enabled, the
printing continues.

Options in Scripting section specify scripting possibilities.

• Scripting language: Selects scripting language for the trigger. All Execute script actions that you use
within a single trigger use the selected scripting language.

Options in the Save Received Data section specify the available commands for data that the trigger
receives.

• Save data received by the trigger to file: Enable this option to save the data received by the trigger.
The option Variable enables variable file name. Select a variable that contains path and file name.

• On error save data received by the trigger to file: Enable this option to save the data into the trigger
only if an error occurs during the action execution. You might want to enable this option to keep the
data that caused the issue ready for troubleshooting.

NOTE
Make sure you enable the Supervised printing support. If not, Automation cannot
detect errors during the execution. For more information, see section Synchronous
Print Mode.

NOTE
Automation saves the received data into a temporary file. This temporary file
is deleted right after the trigger execution completes. The internal variable
DataFileName points to that file name. For more information, see Internal Variables.

Security

• Lock and encrypt trigger: Enables trigger protection. If you enable it, the trigger becomes locked and
you cannot edit it any longer. This encrypts the actions. Only users with password can unlock the
trigger and modify it.

105

3.8. Scheduler Trigger

To learn more about triggers in general, see section Understanding Triggers.

Scheduler trigger works as a timer that starts the execution of actions in your configuration after a time
period. Use the scheduler trigger to set up repetitive automated execution of time-dependent actions.

Scheduler trigger is an active trigger. This means that it does not wait for an event change, but starts
executing the assigned actions as soon as the defined time interval ends.

Example

Typical usage: An ERP system produces 6000 packaging label files daily. Automation prints the labels, and
stores the used label files in a dedicated directory. Due to a large number used label files, the company
needs to set up automated purging of files that are older than 48 hours. Automation uses the scheduler
trigger to delete the obsolete label files.

Scheduler trigger automatically takes daylight saving time (DST) clock changes into account. The trigger
always takes current system time as a reference:

• On the DST starting date (summer), the trigger executes at the first hour that is past the hour of the
missing defined time.

Example

Scheduler trigger time is set for 2.30 h. Clock jumps from 2.00 h to 3.00 h. The trigger executes at
3.00 h summer time.

• On the DST ending date (winter), the trigger executes only at the first occurrence of the defined time.

Example

Scheduler trigger time is set for 2.30 h. Clock jumps from 3.00 h to 2.00 h. The trigger has already
executed. It does not activate the actions again when the clock is 2.30 h winter time.

3.8.1. General

This section allows you to configure the most important trigger settings.

106

• Name: Specifies the unique name of the trigger. The names helps you distinguish between different
triggers when you configure them in Automation Builder, and later when you run them in Automation
Manager.

• Description: Allows you to describe the role of this trigger. Help the users with a short explanation
about what the trigger does.

3.8.2. Recurrences

Use recurrences to define how often should the scheduler trigger event repeat.

• Execute trigger: sets the trigger repetition time interval.

• Every (X) seconds/minutes/hours sets the trigger event repetition time in the available time
units. Define the interval length under Seconds/Minutes/Hours (X).

• Daily repeats the trigger event every day at the selected time. Define the time of daily repetition
under Time:.

• On specific days repeats the trigger at the defined time of the selected day(s). Set the repetition
using Time: and days.

NOTE
Define the time values in 24-hour format.

Other
Options in the Feedback from the Print Engine section specify communication parameters that allow you to
receive print engine feedback.

• Supervised printing: Activates synchronous printing mode. Use it whenever you want to send the print
job status back to the third party application. For more information, see section Synchronous Print
Mode.

Options in the Data Processing section specify if you want to trim the data so that it fits into a variable, or
ignore the missing label variables. By default, reports errors and breaks the printing process if you try to
save values that are too long in label variables, or try to set values for non-existing label variables.

• Ignore excessive variable contents: truncates data values that exceed the length of the variable as
defined in the label designer to make them fit. This option is in effect if you are setting variable values
in filters, from command files, and when you are setting values of trigger variables to label variables of
the same name.

107

Example

Label variable accepts 5 characters at maximum. With this option enabled, any value longer than 5
characters is truncated to the first 5 characters. If the value is 1234567 ignores digits 6 and 7.

• Ignore missing label variables: When printing with command files (such as JOB file), the printing
process ignores all variables that are:

• specified in the command file (using the SET command)

• not defined on the label

Similar happens if you define assignment area in a filter to extract all name-value pairs, but your label
contains fewer variables.
When setting values of non-existing label variables, reports an error. If this option is enabled, the
printing continues.

Options in Scripting section specify scripting possibilities.

• Scripting language: Selects scripting language for the trigger. All Execute script actions that you use
within a single trigger use the selected scripting language.

Options in the Save Received Data section specify the available commands for data that the trigger
receives.

• Save data received by the trigger to file: Enable this option to save the data received by the trigger.
The option Variable enables variable file name. Select a variable that contains path and file name.

• On error save data received by the trigger to file: Enable this option to save the data into the trigger
only if an error occurs during the action execution. You might want to enable this option to keep the
data that caused the issue ready for troubleshooting.

NOTE
Make sure you enable the Supervised printing support. If not, cannot detect errors
during the execution. For more information, see section Synchronous Print Mode.

NOTE
NiceLabel Automation saves the received data into a temporary file. This temporary
file is deleted right after the trigger execution completes. The internal variable
DataFileName points to that file name. For more information, see Internal Variables.

Security

• Lock and encrypt trigger: Enables trigger protection. If you enable it, the trigger becomes locked and
you cannot edit it any longer. This encrypts the actions. Only users with password can unlock the
trigger and modify it.

108

3.9. LPS Trigger
NiceLabel Automation supports the TCP/IP socket interface of the Loftware Print Server (LPS) to deliver
the print request files. Loftware WatchDog (WD) protocol handles communication. Your applications will
deliver the payload the same way as with LPS, but Automation process data and print labels.

LPS trigger is already preconfigured with the Run command file action and needs no additional settings.
You just deploy the trigger.

3.10. Testing Triggers
After setting up the triggers, you are only halfway done with the configuration. Before deploying the trigger,
test it thoroughly for its intended operation upon incoming data and verify the execution of actions.

Automation Builder enables you to test the configuration while you are still working on it. Some actions
have built-in test capabilities so you can focus on the execution of individual action. You can also test every
triggers with Run Preview command. However, the final test should always be done in the real environment,
providing real data and using real triggers. This is how you monitor trigger execution using Automation
Manager.

Testing execution of individual actions
Some of the actions include preview option. This allows you to change input parameters and to see the
result of the action on-screen.

• Use Data Filter: The action provides live preview of the parsed data. The rules in the selected filter are
applied to the selected input data file. The result is shown in the table. If you use sub- or assignment
areas, you can see the preview for every level of filter definition.

• Execute SQL Statement: The action allows you to preview the execution of the defined SQL
statement. You can monitor the data set resulting from the SELECT statement, and number of rows
affected by the UPDATE, INSERT and DELETE statements. The preview execution is transaction-safe,
which means that you can roll-back all changes. You can change the input query parameters and see
how they affect the result.

• Web Service: The action allows you to preview the execution of a selected method (function) from
Web Service. You can change the input parameters and see how they affect the result.

• Execute script: The action checks for syntax errors in the provided script, and also executes it. You
can change the input parameters and see how they affect the script execution.

109

Testing trigger execution and displaying label preview on-screen
To test the trigger from the ground up, use the built-in Run Preview functionality. You can run preview for
every trigger, no matter its type. The trigger won't fire upon changes of the monitored event. Only a trigger
started in the Automation Manager can do it. Instead, the trigger is going to execute actions based on the
data saved in a file. Make sure you have a file that contains sample data that the trigger is going to accept
in real-time deployment.

The trigger executes all defined actions (including data filtering) and displays label preview(s) on-screen.
The preview simulates the printing process in every detail. The labels would print with the same
composition and contents as shown in the preview. This includes the number of labels and their contents.
You also learn about how many print jobs are produced, how many labels are in each job and see preview of
each label. You can navigate from one label to the next in the selected print job.

Log pane displays the same information as it would be displayed in the Automation Manager. Expand the
log entries to see full detail.

NOTE
After you run the preview, all actions defined for the selected trigger are run, not just the Run
Preview action. Be careful when using actions that modify the data, such as Execute SQL
Statement or Web service, because their execution is irreversible.

To preview the labels, do the following:

1. Open the trigger configuration.

2. Make sure the trigger configuration is saved.

3. Click the button Run Preview in Preview group in the ribbon.

4. Browse for the data file providing the typical contents that trigger will accept.

5. See the result in a Preview tab.

Testing deployment on pre-production server
It is advisable to deploy the configuration to Automation Manager on pre-production server before
deploying it on production server. Testing in pre-production environment might identify additional
configuration issues that have not been detected during trigger testing in Automation Builder alone.

Configuration performance can also be stress-tested by adding load to the trigger and monitoring how it
performs. The testing provides important information about the available throughput and identifies weak
points. Based on the conclusions, you can implement various system optimization techniques, such as
optimizing label design to produce smaller print streams, and optimizing the overall flow of data from the
existing application into NiceLabel Automation.

110

Important differences between real trigger testing and previewing in Automation Builder
While previewing the trigger on-screen in Automation Builder provides a quick method of trigger testing, you
must not rely on it alone. There can be execution differences between previewing and running the trigger
for real when you use 64-bit Windows.

Even if you have your configuration working in Automation Builder, make sure to run in for real using the
Service as well.

• When you run command Run Preview, the configuration executes in Automation Builder, which always
runs as 32-bit application. Previewing your trigger in Automation Builder only tests execution on a
32-bit platform.

• When you run triggers for real, the configuration executes in Service, which runs as 32-bit application
on 32-bit Windows, and runs as 64-bit application on 64-bit Windows. For more information see
section Running in Service Mode.

• Issues might arise if trigger processing is affected by platform differences (32-bit vs 64-bit):

• Database access: 64-bit applications require 64-bit database drivers, and 32-bit applications
require 32-bit drivers. To run configuration from Automation Builder and in the Service, you need
32-bit and 64-bit database drivers to access your database. For more information, see section
Accessing Databases.

• UNC syntax for network files: The service account cannot access network shared files with
mapped drive letter. You have to use UNC syntax for network files. For example, use \
\server\share\files\label.nlbl and not G:\files\label.nlbl, where G: is mapped
to\\server\share. For more information see section Access to Network Shared Resources.

• If your NiceLabel Automation Service runs under a different user account that you are using for
Automation Builder, the accounts might not have the same security privileges. If you can open the
label in Automation Builder, the user account for the Service might not be able to access it. To run
Automation Builder under the same user account as the Service, see Using the same user account to
configure and to run triggers.

3.11. Using Secure Transport Layer (HTTPS)

You can protect the inbound traffic to the HTTP Server Trigger and Web Service Trigger by enabling the
HTTPS support. HTTPS secures the transmission of the messages exchanged over the network. The
communication security uses X.509 certificates to encrypt the data flowing between the parties. Your
information remains confidential from prying eyes because just the client and the NiceLabel Automation
can decrypt the traffic. Even if some unauthorized user does eavesdrop on the communication he would fail
to understand the meaning of the messages, because the traffic appears as a stream of random bytes.

111

urn:resource:fork:50895

It makes a good security practice to encrypt the communication in cases, such as:

• You work with the sensitive and confidential data that must not be exposed to 3rd party users.

• The message must pass through networks that are outside of your control. For example, this happens
when you send data to Automation over the Internet, and not from the local network.

112

Enabling the secure transport layer (HTTPS)
To enable secure transport for your trigger, do the following.

In the Windows system:

1. Obtain the X.509 certificate from the issuer of the digital certificates (certificate authority - CA). You
need a certificate type for the 'server authentication'.

NOTE
If you will self-generate the certificate, make sure to import the CA certificate in the
Trusted Authority store, so the CA signature can be verified on the server certificate.

2. Install the X.509 certificate in the system, where NiceLabel Automation is installed. Make sure the
certificate is visible to the user account under which you run NiceLabel Automation service. It is
a good practice to install the certificate in the local computer store, not the current user store.
This allows NiceLabel Automation to use the certificate even if it is not running under your current
logged-in user account.

a. Open a Command Prompt window.

b. Type mmc and press the ENTER key (make sure you are running it with administrative
privileges).

c. On the File menu, click Add/Remove Snap In.

d. In the Add Standalone Snap-in dialog box, select Certificates.

e. Click Add.

f. In the Certificates snap-in dialog box, select Computer account and click Next.

g. In the Select Computer dialog box, click Finish.

h. On the Add/Remove Snap-in dialog box, click OK.

i. In the Console Root window, expand Certificates>Personal.

j. Right-click Certificates folder and select All Tasks>Import.

k. Follow the wizard to import the certificate.

3. Retrieve the thumbprint of a certificate you have just imported.

a. While still in the MMC double-click the certificate.

b. In the Certificate dialog box, click the Details tab.

c. Scroll through the list of fields and click Thumbprint.

d. Copy the hexadecimal characters from the box. Remove the spaces between the hexadecimal
numbers. For example, the thumbprint "a9 09 50 2d d8 2a e4 14 33 e6 f8 38 86 b0 0d 42 77 a3
2a 7b" should be specified as "a909502dd82ae41433e6f83886b00d4277a32a7b" in code. This
is certhash required in the next step.

113

4. Bind the certificate to the IP address and port where the trigger is running. This action enables
certificate on the selected port number.
Open the Command Prompt (make sure you are running it with the administrative privileges) and
run the following command:

netsh http add sslcert

ipport=0.0.0.0:56000 certhash=7866c25377554ca0cb53bcdfd5ee23ce895bdfa2

appid={A6BF8805-1D22-42C2-9D74-3366EA463245}

where:

• ipport is the IP address-port pair, where the trigger is running. Leave the IP address at
0.0.0.0 (local computer), but change the port number to match port number in the trigger
configuration.

• certhash is the thumbprint (SHA hash) of the certificate. This hash is 20 bytes long and is
specified as a hex string.

• appid is GUID of the owning application. You can use any GUID here, even the one from the
sample above.

In the trigger configuration:

1. In your HTTP or Web Service trigger enable the option Secure connection (HTTPS).

2. Reload the configuration in the Automation Manager.

Disabling the secure transport layer (HTTPS)
In the Windows system:

• Unbind the certificate from the IP address-port pair. Run the following command in the Command
Prompt (make sure you are running it with the administrative privileges):

netsh http delete sslcert ipport=0.0.0.0:56000

where:

• ipport is the IP address-port pair, where the trigger is running and where you bound the
certificate to.

In the trigger configuration:

1. In your HTTP or Web Service trigger disable the option Secure connection (HTTPS).

2. Reload the configuration in the Automation Manager.

114

3.12. Protecting Trigger Configuration from Editing

The trigger configuration can be protected using two methods.

• Locking trigger. Using this method you lock the trigger configuration file and protect it with a
password. Without the password nobody can edit the trigger. Enable the option Lock and encrypt
trigger in trigger Settings -> Security.

• Setting access permissions. Using this method you rely on the user permissions as are defined in
the NiceLabel Automation Options. You can enable user groups and assign different roles to each
group. If the group is assigned with the edit privileges, all members of the group can edit triggers. This
method requires that you enable user login. You can use Windows users from local groups or active
directory, or you can define NiceLabel Automation users. See User rights and access in Configuration.

3.13. Configuring Firewall for Network Triggers

Network trigger is a trigger that runs using the TCP/IP protocol. In Automation, such triggers are TCP/IP
trigger, HTTP trigger and Web Service trigger. These provide network services and are bound to the network
interface card, its IP address, and the configured port number. After you deploy and start network triggers in
Automation Manager, they start listening to the inbound traffic port.

Firewalls protect computers form unauthorized attempts of incoming connections. NiceLabel installer
makes sure that inbound communication streams established to all ports owned by the Automation Service
are allowed in Windows Firewall.

WARNING
Automation Service owns ports configured for TCP/IP triggers, but not ports defined for
HTTP trigger and Web Service trigger. These ports are bound to ID 4 (SYSTEM) process and
not to the Automation Service process.

Configure the firewall to allow communication on ports configured for HTTP and Web Service triggers. To
create an inbound rule, do the following:

1. On the computer that is running NiceLabel Automation, in Start menu, select Control Panel, select
System and Security, and select Windows Firewall.

2. In the navigation pane, select Advanced settings.

3. In the Windows Firewall with Advanced Security window, in the navigation pane, select Inbound
Rules, and then in the Actions pane, select New Rule.

4. On the Rule Type page, select Port, and click Next.

5. On the Protocol and Ports page, select Specific local ports, and enter the port number on which
your HTTP or Web Service trigger runs.

115

6. Click Next.

7. On the Actions page, select Allow the connection, and click Next.

8. On the Profile page, select the profiles, and click Next.

9. On the Name page, enter a name for the rule, and click Finish.

Similar steps must be taken with other firewall software.

116

4. Variables
Variables are used as containers for data values. You need variables to transfer values to the label in Print
Label action, or to use values in other data-manipulation actions. Typically, a filter extracts values from data
streams received by trigger and sends values to variables. For more information, see section Understanding
Filters.

Usually, you send values of variables to the label template, and print the label. The mechanism that sends
values of variables to labels uses the automated name mapping. The value of the variable defined in the
trigger is sent to the variable defined in the label that carries the same name. You can define variables using
one of the three available methods:

• Import variables from label file: As for the above explained automatic mapping, it makes a good
practice to import your variables from the label every time. This action saves you time and ensures
that the variable names match. The imported variable doesn't inherit just the variable name, but also
supported variable properties, such as length and default value.

• Manually define variables: When manually defining variables, be extra careful to use the same names
as with variables on the label. Manually define the variables that don't exist in the label, but you need
them inside the trigger.

NOTE
An example would be variables, such as LabelName, PrinterName, Quantity and
similar variables that you need to remember the label name, printer name, quantity or
other meta-values assigned by the filter.

• Enabling internal variables: Values for internal variables are assigned by NiceLabel Automation and
are available as read-only values. For more information, see section Internal Variables.

TIP
If you enable the assignment area (in Unstructured Text and XML filters) and dynamic
structure (in Structured Text filter), NiceLabel Automation extracts name:value pairs from
the trigger data and automatically sends values to the variables of the same name that are
defined in the label. No manual variable mapping is necessary.

117

Properties

• Name: Specifies the unique variable name. Names are not case sensitive. Although you can use
spaces in variable names, it's a better practice not to. Even more so if you use variables in scripts or in
conditions on actions, because you will have to enclose them in square brackets.

• Allowed characters: Specifies the list of characters a value can occupy. You can select between
All (all characters are accepted), Numeric (only digits are accepted), and Binary (all characters and
control codes are accepted).

• Limit variable length: Specifies the maximum number of characters a variable can occupy.

• Fixed length: Specifies that a value must occupy exactly as many characters as defined by its length.

NOTE
It is necessary to limit variable length for certain label objects. An example is EAN-13
barcode, which accepts 13 digits.

• Value required: Specifies that the variable must contain a value.

• Default value: Specifies a default value. If the variable does not have any value assigned to it, the
default value is always used.

4.1. Using Compound Values
Some objects in trigger configuration accept compound values. Such content can be a mixture of fixed
values, variables and special characters (control codes). The objects accepting compound values are
identified by a small arrow button to the right side of the object. Click the arrow button to insert either a
variable or a special character.

• Using fixed values: Manually enter a fixed value for the variable.

This is fixed value.

• Using fixed values and data from variables: You can define a compound value, combined of variable
and fixed values. The variable names must be enclosed in square brackets []. You can enter
variables manually, or insert them by clicking the arrow button to the right. At processing time,
the values of variables are merged together with fixed data and used as the content. For more
information, see section Tips and Tricks for Using Variables in Actions.
In this case, the content merges three variables and manually entered fixed data.

[variable1] // This is fixed value [variable2][variable3]

• Using special characters: You can add special characters to the mix. Enter the special characters
manually or insert them. For more information, see section Entering Special Characters.
In this case, the value of variable1 is merged with fixed data and form-feed binary character.

118

[variable1] Form feed will follow this fixed text <FF>

4.2. Internal Variables
Internal variables are predefined by NiceLabel Automation. Their values are assigned automatically and are
available in read-only mode. The icon with lock symbol in front of the variable name distinguishes internal
variables from user-defined variables. You can use internal variables in your actions in the same way as
you would use the user-defined variables. The trigger related internal variables work as internal variables for
each trigger.

Internal variable Available in
trigger

Description

ActionLastErrorDesc All Provides the description of the last occurred
error. Use this value as feedback to host
system to identify the fault cause.

ActionLastErrorID All Provides the last error ID. This is integer
value. When value is 0, there was no
error. You can use this value in conditions,
evaluating if there was some error or not.

BytesOfReceivedData TCP/IP Provides the number of bytes received by the
trigger.

ComputerName All Provides the name of the computer where the
configuration runs.

ConfigurationFileName All Provides the path and file name of the current
configuration (.MISX file).

ConfigurationFilePath All Provides the path of the current
configuration file. Also see description for
ConfigurationFileName.

DataFileName All Provides the path and file name of the
working copy of received data. Each time the
trigger accepts the data, it makes a backup
copy of it to the unique file name identified by
this variable.

Database Database Provides the database type as configured in
the trigger.

Date All Provides the current date in the format
as specified by system locale, such as
26.2.2018.

DateDay All Provides the current number of the day in a
month, such as 26.

DateMonth All Provides the current number of the month in
the year, such as 2.

119

DateYear All Provides the current number of the year, such
as 2018.

DefaultPrinterName All Provides the name of printer driver, which is
defined as default.

DriverType Database Provides the name of the driver used to
connect to the selected database.

Hostname TCP/IP Provides the host name of device/computer
connecting to the trigger.

HttpMethodName HTTP Provides the method name the user has
provided in the HTTP request, such as GET
or POST.

HttpPath HTTP Provides the path defined in the HTTP trigger.

HttpQuery HTTP Provides the contents of the query string as
received by the HTTP trigger.

NumberOfRowsReturned Database Provides the number of rows that the trigger
gets from a database.

LocalIP TCP/IP Provides the local IP address at which the
trigger responds to. This is useful if you have
a multi-homing machine with several network
interface cards (NIC), and want to determine
to which IP address the client connected
to. This is useful for printer replacement
scenarios.

PathDataFileName All Provides the path in the DataFileName
variable, without the file name. Also see
description for DataFileName.

PathTriggerFileName File Provides the path in the TriggerFileName
variable, without the file name. Also see
description for TriggerFileName.

Port TCP/IP, HTTP,
Web Service

Provides the port number as defined in the
trigger.

RemoteHttpIp HTTP Provides the host name of device/computer
connecting to the trigger.

RemoteIp Web Service Provides the host name of device/computer
connecting to the trigger.

ShortConfigurationFileName All Provides the file name of the configuration
file, without a path, Also see description for
ConfigurationFileName.

ShortDataFileName All Provides the file name to the DataFileName
variable, without the path. Also see
description for DataFileName.

120

ShortTriggerFileName File Provides the file name to the TriggerFileName
variable, without the path. Also see
description for TriggerFileName.

SystemUserName All Provides the Windows name of the logged-in
user.

TableName Database Provides the name of the table as used in the
trigger.

Time All Provides the current time in the format as
specified by system locale, such as 15:18.

TimeHour All Provides the current hour value, such as 15.

TimeMinute All Provides the current minute value, such as
18.

TimeSecond All Provides the current second value, such as
25.

TriggerFileName File Provides the file name that triggered actions.
This is useful when you monitor a set of files
in the folder, so you can identify which file
exactly triggered actions.

TriggerName All Provides the name of the trigger as defined
by the user.

Username All Provides the NiceLabel Automation user
name of the currently logged in user. The
variable has contents only if the user login is
enabled.

4.3. Global Variables
Global variables are a type of variables that can be used on different labels. Global variables are defined
outside the label file and remember the last-used values.

Global variables are typically defined as global counters. Such global variables provide a unique value for
every label that requests a new value. File locking takes place ensuring uniqueness of each value.

Global variables are defined in label designer, the NiceLabel Automation only uses it. The source for global
variables is configurable in the Options dialog (File > Options > Global Variables).

By default, NiceLabel Automation is configured to use global variables from local computer. Their default
location is:

%PROGRAMDATA%\NiceLabel\Global Variables

Global variables are defined in files GLOBAL.TDB and GLOBALS.TDB.SCH.

In multi-user environments, make sure you configure all clients to use the same network-shared source for
global variables, or Control Center-based global variables.

121

NOTE
Definition and current value for global variables can be stored in a file or in Control Center
(for LMS Enterprise and LMS Pro products).

122

5. Actions
The Actions section specifies the list of actions that execute every time a trigger fires.

5.1. Defining actions
To define an action, click the action icon in the Insert Action ribbon group. The main ribbon contains
commonly used actions. To see all available actions, click All Actions button. To see available commands
over the selected action, right-click it and select command from the list.

5.2. Nested actions
Some actions cannot be used on their own. Their specific functionality requires them to be nested below
some other action. Use buttons in Action Order ribbon group to change action placement. Each action is
identified with the ID number that shows its position in the list, including nesting. This ID number will be
displayed in the error message so you can find the problematic action easier.

123

NOTE
The Print Label action is a good example of such action. You have to position it under the
Open Label action, so it references the exact label to print.

5.3. Action execution
The actions in the list execute once per trigger. Listed actions are executed from top to bottom, so the
listing order of actions is important.

There are two exceptions. The actions For Loop and Use Data Filter execute nested actions for multiple
times. For loop action executes for as many times as defined in its properties, and the Use Data Filter for as
many times as there are records in a data set returned from the associated filter.

NiceLabel 10 runs as service under a specified Windows user account and inherits security permissions
from the account. For more details, see the section Running in Service Mode in NiceLabel Automation User
Guide.

5.4. Conditional actions
Each action can be set as a conditional action. Conditional action only runs if the provided condition allows
it to be run. Condition is a single line script (VBScript or Python). To define the condition, click the Show
execution and error handling options in action properties to expand the possibilities.

In this case, the action executes only if the previous action has completed successfully, so the internal
variable ActionLastErrorID has value 0. To use such condition with internal variables, you must first
enable the internal variable.

124

5.5. Identifying actions in configuration error state
If an action is not completely configured, it is marked with a red exclamation icon. Such actions cannot
execute. You can include such action in the Action list, but you will have to complete the configuration,
before you can start the trigger. If one of the nested actions is in error state, all parent expansion arrows (to
the left of the action name) are also colored red as an indicator of sub-action error.

In this case, the Open Label action reports configuration error. There is no parameter specified for the label
name. The red exclamation icon pops up next to the erroneous parameter in the action itself, in the action
list, in the Actions tab, in the trigger tab, and in the Configuration Items tab. This makes the issue easy to
identify.

5.6. Disabling actions
By default, every newly created action is enabled and executes if a trigger fires. You can disable the actions
that you don't need, but still want to keep the configuration. A shortcut to action enabling & disabling is a
check box on the right hand side of the action name in the list of defined actions.

In this case, the Print Label action is still defined in the actions list, but has been disabled. Currently, it is not
needed and will be ignored during the processing, but you can easily re-enable it at any time.

5.7. Copying actions
You can copy an action and paste it back into the same or any other trigger. You can use standard Windows
keyboard shortcuts, or right-click the action.

Right-clicking the action displays the available contextual commands available for the currently selected
object.

Automation Builder also enables you to make a selection of multiple actions, and to perform copy, paste
and delete operations with them. To make a selection, Use Ctrl/Shift + Click on the required actions.

125

NOTE
Multiple actions can only be selected under the same parent action, i.e. all selected actions
must be on the same level.

5.8. Navigating the action list
Use your mouse to select the defined action and click the respective arrow button in Action Order group in
the ribbon. You can also use keyboard. Cursor keys move the selection in the action list, Ctrl + cursors keys
move the action position up and down, and also left and right for nesting.

5.9. Describing the actions
About group allows you to describe all NiceLabel 10 actions.

• Name: by default, action name is defined by its type and is therefore not unique. Define a custom
name to make it instantly recognizable among other actions, in logs and in potential error messages.

• Description: user notes for the selected action. Description is displayed in actions explorer.

• Action Type: read-only field which displays the type of action.

5.10. General

5.10.1. Open Label

Open Label action specifies the label file that is going to be printed. When the action is executed, the label
template opens in memory cache. The label remains in the cache for as long as the triggers or events use
it.

There is no limit on the number of labels that can be opened concurrently. If the label is already loaded and
is requested again, NiceLabel Automation will first determine if a newer version is available and approved
for printing, then open it.

In this example, NiceLabel 10 loads the label label.nlbl from folder C:\ProjectA\Labels.

C:\ProjectA\Labels\label.nlbl

126

If the specified label cannot be found, NiceLabel 10 tries to find it in alternative locations. For more
information, see section Search Order for Requested Files in NiceLabel Designer user guide.

About group identifies the selected action.

• Name: allows you to define a custom action name. This makes actions easily recognizable on the
solution's list of actions. By default, the action name is taken from its type.

• Description: custom information about the action. Enter a description to explain the purpose and role
of action in a solution.

• Action type: read-only information about the selected action type.

Using Relative Paths

NiceLabel 10 supports the use of relative paths for referencing your label file. Root folder is always
the folder where the solution (or configuration in case the action is used in a NiceLabel Automation
configuration) is stored.

With the following syntax, the label loads relatively from the location of the configuration file. Automation
Builder searches for the label in folder ProjectA, which is two levels above the current folder, and then in
folder Labels.

..\..\ProjectA\Labels\label.nlbl

Settings group selects the label file.

• Label name: specifies the label name. It can be hard-coded, and the same label will print every time.
The option Data source enables the file name to be dynamically defined. Select or add a variable that
contains the path and/or file name if a trigger is executed or an event takes place.

TIP
Usually, the value to the variable is assigned by a filter.

NOTE
Use UNC syntax for network resources.

Action Execution and Error Handling

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

127

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

5.10.2. Print Label

This action executes label printing. It must always be nested within the Open Label action. Nesting allows it
to obtain the reference to the label that is going to be printed. This further allows you to keep multiple labels
open at the same time, and enables you to specify which label should be printed.

After issuing this action, the label gets printed using the printer driver that is defined in the label template.
If the defined printer driver is not found on the system, the label is printed using the system default printer
driver. You can override the printer driver selection via Set Printer action.

To achieve high performance label printing, NiceLabel 10 activates two settings by default:

• Parallel processing. Multiple print processes are all carried out simultaneously. The number of
background printing threads depends on the hardware; specifically on the processor type. Each
processor core can accommodate a single printing thread. This default can be changed. For more
information, see section Parallel Processing in NiceLabel Automation user guide.

• Asynchronous mode. As soon as the trigger pre-processing completes and the instructions for the
print engine are available, the printing thread takes it over in the background. The control is returned
to the trigger so it can accept the next incoming data stream as soon as possible. If synchronous
mode is enabled, the control is not returned to the trigger until the print process is finished. This can
take a while, but the trigger benefits from providing feedback back to data-providing application. For
more information, see the section Synchronous Mode in NiceLabel Automation user guide.

128

NOTE
Using Save error to variable option in Action Execution and Error Handling does not
yield any result in asynchronous mode, as the trigger does not receive feedback
from the print process. To capture the feedback from the print process, enable
synchronous mode first.

NOTE
If the Print Label action is nested under a For Loop action, Automation executes it in
session printing mode. This mode acts as a printing optimization mode that prints all labels
in a loop using a single print job file. For details, see Session Printing section in NiceLabel
Automation user guide.

About group identifies the selected action.

• Name: allows you to define a custom action name. This makes actions easily recognizable on the
solution's list of actions. By default, the action name is taken from its type.

• Description: custom information about the action. Enter a description to explain the purpose and role
of action in a solution.

• Action type: read-only information about the selected action type.

Quantity group defines the number of labels to be printed using the active form.

• Labels: sets the number of printed labels. Data source specifies or adds a variable that defines the
label print quantity dynamically.

NOTE
Variable value is usually assigned by the Use Data Filteraction and must be integer.

All (unlimited quantity): depending on the label template design, the labels are printed in various quantities.

Unlimited Quantity Printing Details

Typically, this option is used in two scenarios.

1. Command the printer to continuously print the same label until it is switched off, or after it receives
a command to clear its memory buffer.

WARNING
This scenario requires Loftware printer driver to be installed and used for label
printing.

129

If printing a fixed label, just a single print job is sent to the printer, with the quantity set to
"unlimited". Label printers have a print command parameter which indicates "unlimited" printing.
If the label is not fixed, but includes objects that change during the printing, such as counters,
the printed quantity is set to maximum quantity supported by the printer. Loftware printer driver is
aware of the printer quantity limit and print as many labels as possible.

Example

Maximum supported print quantity is 32,000. This is the amount of labels that are print after
selecting the All (unlimited quantity) option.

2. The trigger doesn't provide any data, but only acts as a signal for "event has happened". The logic to
acquire necessary data is included in the label. Usually, a connection to a database is configured on
the label, and at every trigger the label must connect to the database, and acquire all records from
the database. In this case, the All (unlimited quantity) option is understood as "print all records
from the database".

• Variable quantity (defined from label variable): specifies a label variable that defines the label
quantity to be printed.
The trigger doesn't receive the number of labels to be print, so it passes the decision to the label
template. The label might contain a connection to a database, which provide the label quantity, or
there is another source of quantity information. A single label variable must be defined as "variable
quantity".

Advanced group defines label printing details. Click Show advanced print options to define the Advanced
print options:

This section specifies non-frequently used label quantity related settings.

• Number of skipped labels: specifies the number of labels that are skipped on the first page of labels.
The sheet of labels might have been printed once already, but not entirely. You can re-use the same
sheet by offsetting the starting position. This option is applicable, if you print labels to sheets of
labels, not rolls of labels, so it's effective for office printers and not for label printers.

• Identical label copies: specifies the number of label copies to be printed for each unique label. For
fixed labels, this option produces the same result as the main Number of Labels option. For variable
labels, such as labels using counters, you can get the real label copies.

• Label sets: specifies how many times the entire label printing process should repeat.

Example

Trigger or event receive content with 3 lines of CSV-formatted data, so 3 labels are expected to be
printed (1, 2, 3). If you set this option to 3, the printout is done in the following order: 1, 2, 3, 1, 2, 3, 1, 2,
3.

• Metadata: with each print job writes your printing comments to Control Center. You can see your
Metadata in History > Printing > Print Metadata column. You can use Metadata for sorting, filtering,

130

and other functions in Control Center. Metadata does not affect your printing or print streams.
You use Metadata for logging your additional information about your print jobs in Control Center.
Metadata can include LOT number or other label variables, printer names, and user/system generated
values.

TIP
All Advanced group values can either be hard-coded, or dynamically provided by an existing
or a newly added variable.

Action Execution and Error Handling

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

131

5.10.3. Run Oracle XML Command File

This action executes printing with data obtained from an Oracle XML-formatted file.

NiceLabel Automation internally supports XML files with "Oracle XML" structure, which are defined by
Oracle Warehouse Management software.

Use this action as a shortcut. It helps you execute Oracle XML files directly and without the need to parse
them using XML filter and mapping the values to variables.

To be able to use this action, the XML file must conform to Oracle XML specifications. For more
information, see section Oracle XML Specifications in NiceLabel Automation user guide.

Use UNC syntax for network resources. For more information, see section Access to Network Shared
Resources in NiceLabel Automation user guide.

PRODUCT LEVEL INFO
Requires Automation Builder.

How to receive a command file in a trigger and execute it

After a trigger receives the command file and you wish to execute it, complete the following steps:

1. In Automation Builder module, on Variables tab, click the Internal Variable button in the ribbon.

2. In the drop down list, enable the internal variable named DataFileName. This internal variable
provides path and file name of the file that contains the data received by the trigger. In this case,
its contents is command file. For more information, see section Internal Variables in the NiceLabel
Automation user guide.

3. In Actions tab, add the action to execute the command file, such as Run Command File, Run Oracle
XML Command File, or Run SAP AII XML Command File.
For the action Run Command File, select the type of the command file in File type.

4. Enable the option Variable.

5. Select the variable named DataFileName from the list of available variables.

About group identifies the selected action.

• Name: allows you to define a custom action name. This makes actions easily recognizable on the
solution's list of actions. By default, the action name is taken from its type.

• Description: custom information about the action. Enter a description to explain the purpose and role
of action in a solution.

132

• Action type: read-only information about the selected action type.

File group defines the Oracle XML command file to be used.

• File name: selected Oracle XML command file. It can either be hard-coded or dynamically defined
using an existing or a newly created variable.

Action Execution and Error Handling

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

5.10.4. Run SAP AII XML Command File

133

This action executes printing with data from an SAP AII XML-formatted file.

NiceLabel Automation internally supports XML files with the "SAP AII XML" structure, which are defined by
SAP software.

Use this action as a shortcut. it helps you execute SAP AII XML files directly without any need to parse
them using XML filter and map values to variables. To be able to use this action, the XML file must conform
to SAP AII XML specifications. For more information, see section SAP AII XML Specifications in NiceLabel
Automation user guide.

Use UNC syntax for network resources. For more information, see section Access to Network Shared
Resources in NiceLabel Automation user guide.

PRODUCT LEVEL INFO
Requires Automation Builder.

How to receive a command file in a trigger and execute it

After a trigger receives the command file and you wish to execute it, complete the following steps:

1. In Automation Builder module, on Variables tab, click the Internal Variable button in the ribbon.

2. In the drop down list, enable the internal variable named DataFileName. This internal variable
provides path and file name of the file that contains the data received by the trigger. In this case,
its contents is command file. For more information, see section Internal Variables in the NiceLabel
Automation user guide.

3. In Actions tab, add the action to execute the command file, such as Run Command File, Run Oracle
XML Command File, or Run SAP AII XML Command File.
For the action Run Command File, select the type of the command file in File type.

4. Enable the option Variable.

5. Select the variable named DataFileName from the list of available variables.

About group identifies the selected action.

• Name: allows you to define a custom action name. This makes actions easily recognizable on the
solution's list of actions. By default, the action name is taken from its type.

• Description: custom information about the action. Enter a description to explain the purpose and role
of action in a solution.

• Action type: read-only information about the selected action type.

File group defines the SAP AII XML command file to be used.

• File name: selected SAP AII XML command file. It can either be hard-coded or dynamically defined
using an existing or a newly created variable.

Optional Parameters group allows defining the label name in case it is not included in the XML file.

134

• Label name: the selected label file that should be used in the command file. It can either be hard-
coded or dynamically defined using an existing or a newly created variable.

Action Execution and Error Handling

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

5.10.5. Run Command File

This action executes commands that are included in a selected command file. All File type options provide
commands that NiceLabel 10 executes in top-to-bottom order.

Command files usually provide data for a single label, but you can define files of any level of complexity. For
more information, see section Command File Types.

About group identifies the selected action.

135

• Name: allows you to define a custom action name. This makes actions easily recognizable on the
solution's list of actions. By default, the action name is taken from its type.

• Description: custom information about the action. Enter a description to explain the purpose and role
of action in a solution.

• Action type: read-only information about the selected action type.

File group defines the type and name of the command file that is going to be executed (JOB, XML or CSV).

• File type. Specifies the type of the command file to be executed.

• File name. Specifies the command file name.
File name can be hard-coded, and the same command file will execute every time. The option
Variable enables a variable file name. Select or create a variable that contains the path and/or file
name if a trigger is executed or an event takes place. Usually, the value to the variable is assigned by a
filter.
Use UNC syntax for network resources. For more information, see section Access to Network Shared
Resources in NiceLabel Automation user guide.

PRODUCT LEVEL INFO
Requires Automation Builder.

How to receive a command file in a trigger and execute it

After a trigger receives the command file and you wish to execute it, complete the following steps:

1. In Automation Builder module, on Variables tab, click the Internal Variable button in the ribbon.

2. In the drop down list, enable the internal variable named DataFileName. This internal variable
provides path and file name of the file that contains the data received by the trigger. In this case,
its contents is command file. For more information, see section Internal Variables in the NiceLabel
Automation user guide.

3. In Actions tab, add the action to execute the command file, such as Run Command File, Run Oracle
XML Command File, or Run SAP AII XML Command File.
For the action Run Command File, select the type of the command file in File type.

4. Enable the option Variable.

5. Select the variable named DataFileName from the list of available variables.

Action Execution and Error Handling

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

136

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

5.10.6. Send Custom Commands

This action executes the entered custom NiceLabel commands.

Always nest this action under the Open Label action. This enables referencing the label to which the
commands apply. For more information, see section Using Custom Commands in NiceLabel Automation
user guide.

NOTE
Majority of custom commands is available with individual actions, so in most cases,
custom commands are not required.

137

NOTE
Send Custom Commands action can be used to end the Session printing mode. This mode
acts as a printing optimization mode that prints all labels in a loop using a single print job
file. To end session printing, nest the Send Custom Commands action under the For Loop
action and use the SESSIONEND command. For details, see sections Session Printing and
Using Custom Commands in NiceLabel Automation user guide.

About group identifies the selected action.

• Name: allows you to define a custom action name. This makes actions easily recognizable on the
solution's list of actions. By default, the action name is taken from its type.

• Description: custom information about the action. Enter a description to explain the purpose and role
of action in a solution.

• Action type: read-only information about the selected action type.

Script editor offers the following features:

• Insert data source: inserts an existing or newly created variable into the script.

• Script editor: opens the editor which makes scripting easier and more efficient.

Action Execution and Error Handling

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

138

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

5.11. Printer

5.11.1. Set Printer

This action specifies the name of the printer to be used for printing the active label.

NOTE
This action overrides the printer selected in the label properties.

This action is useful when printing an identical label on multiple printers. Always nest this action under the
Open Label action to provide the label with the reference for the preferred printer.

This action reads the default settings (such as speed and darkness) from the selected printer driver and
applies them to the label. If you don't use the Set Printer action, the label gets printed using the printer
defined in the label template.

WARNING
Pay attention when switching the printers, e.g. from Zebra to SATO, or even from one printer
model to another model of the same brand. Printer settings might not be compatible and
the label printouts might not appear identical. Also, label design optimizations for original
printer, such as internal counters, and internal fonts, might not be available on the newly
selected printer.

About group identifies the selected action.

• Name: allows you to define a custom action name. This makes actions easily recognizable on the
solution's list of actions. By default, the action name is taken from its type.

• Description: custom information about the action. Enter a description to explain the purpose and role
of action in a solution.

• Action type: read-only information about the selected action type.

139

Printer group specifies the printer name to be used for the current print job.

• Printer name: select it from the list of locally installed printer drivers, or manually enter a printer
name. Select Data source to dynamically select the printer using a variable. If enabled, select or
create a variable that contains the printer name which is used if the action is run.

Action Execution and Error Handling

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

5.11.2. Set Print Job Name

This action specifies the name of the print job file as it appears in the Windows Spooler. A default print job
name is the name of the used label file. This action overrides it.

140

NOTE
Always nest the action under the Open Label action, so it applies to the adequate label file.

About group identifies the selected action.

• Name: allows you to define a custom action name. This makes actions easily recognizable on the
solution's list of actions. By default, the action name is taken from its type.

• Description: custom information about the action. Enter a description to explain the purpose and role
of action in a solution.

• Action type: read-only information about the selected action type.

Print Job group defines the print job name.

• Name: sets the print job name. It can be hard-coded, and the same name is used for each print action.
Variable enables a variable file name. Select or create a variable that contains the path and/or file
name if the event happens or a trigger fires.

NOTE
In Automation Builder module, the variable value is usually assigned by a filter.

Action Execution and Error Handling

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

141

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

5.11.3. Redirect Printing to File

This action diverts the print job to a file. Instead of sending the created print file to a printer port as defined
in the printer driver, the printout is redirected to a file. You can append data to an existing file, or overwrite it.

This action enables you to capture printer commands in a separate file.

The action instructs Automation Builder module to redirect printing – as a result, the labels are not going to
be printed. Make sure the action is followed by the Print Label action.

NOTE
NiceLabel Automation runs as service under defined Windows user account. Make sure
this user account has privileges accessing the specified folder with read/write permissions.
For more information, see section Access to Network Shared Resources in the NiceLabel
Automation user guide.

NOTE
Redirect Printing to File action is useful for printing several different labels (.NLBL files) to a
network printer while retaining the correct order of labels. If multiple .NLBL files are printed
from the same trigger, Automation Builder sends each label to the printer in a separate print
job, even if the target printer is the same for both labels. If a network printer is used, job of
another user can be inserted between two jobs the trigger must send together. Using this
action, you can append print data into the same file and send its contents to the printer
using the Send Data to Printer action.

About group identifies the selected action.

• Name: allows you to define a custom action name. This makes actions easily recognizable on the
solution's list of actions. By default, the action name is taken from its type.

• Description: custom information about the action. Enter a description to explain the purpose and role
of action in a solution.

• Action type: read-only information about the selected action type.

142

File group of settings defines how the file selection for redirecting is done.

• File name:specifies the file name. It can either be hard-coded or dynamically defined using an existing
or a newly created variable.
Use UNC syntax for network resources. For more information, see section Access to Network Shared
Resources in NiceLabel Automation user guide.

NOTE
When using this action, make sure your user account has sufficient privileges for accessing
the specified folder with read/write permissions.

File write mode group of settings selects how the file is treated in case of repeated redirects.

• Overwrite the file: if the specified file already exists on the disk, it is going to be overwritten.

• Append data to the file: the job file is added to the existing data in the provided file.

Persistence group controls the continuity of the redirect action. It defines the number of Print Label actions
that are affected by the Redirect Printing to File action.

• Apply to next print action: specifies for the print redirect to be applicable to the next Print Label action
only (single event).

• Apply to all subsequent print actions: specifies for the print redirect to be applicable to all Print Label
action defined after the current Redirect Printing to File action.

NOTE
The action only redirects printing. Make sure it is followed by the Print Label action.

Action Execution and Error Handling

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

143

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

5.11.4. Set Print Parameter

This action allows you to fine tune the parameters that relate to the printer driver. These include parameters
such as speed and darkness for label printers, or paper tray for laser printers.

Printer settings are applied to the current printout only and are not remembered during the upcoming event.

WARNING
Your parameters from Set Print Parameter action don't apply when you preview or reprint
labels from your Control Center.

You can avoid this by saving your print parameters (printer properties) in your label
template or your printer driver. Printer properties may differ from driver to driver and also
from printer to printer.

NOTE
If you use Set Printer action to change the printer name, make sure the Set Print Parameter
action is used right after. Before you can apply the DEVMODE structure to the printer driver,
first load the default driver settings. This is done by the Set Printer action. The DEVMODE is
only compatible with the DEVMODE of the same printer driver.

About group identifies the selected action.

144

• Name: allows you to define a custom action name. This makes actions easily recognizable on the
solution's list of actions. By default, the action name is taken from its type.

• Description: custom information about the action. Enter a description to explain the purpose and role
of action in a solution.

• Action type: read-only information about the selected action type.

Print Parameters group allows action fine tuning before printing.

• Paper bin: name of the paper bin that contains the label media. This option is usually used with laser
and ink jet printers with multiple paper bins. The provided name of the paper bin must match the
name of the bin in the printer driver. Check the printer driver properties for more details.

• Print speed: defines printing speed. This setting overrides the setting defined with label. The provided
value must be in the range of accepted values.

Example

The first printer model accepts a range of values from 0 to 30, while the second printer model accepts
values from -15 to 15. For more information, see printer driver properties

• Darkness: defines the darkness of the printed objects on the paper and overrides setting from the
label. The provided value must be in range of accepted values.

• Print offset X: applies horizontal offset. The label printout will be repositioned by the specified
number of dots in the horizontal direction. Negative offset can be defined.

• Print offset Y: applies vertical offset. The label printout will be repositioned by the specified number
of dots in the vertical direction. Negative offset can be defined.

TIP
All print parameters can either be hard-coded or dynamically defined using an existing or a
newly created variable.

Advanced group customizes the printer settings that are sent along with the print job.

145

Printer settings, such as printing speed, darkness, media type, offsets and similar, can be defined as
follows:

• Defined in a label

• Recalled from a printer driver

• Recalled from a printer at print time

The supported methods depend on the printer driver and its capabilities. Printing mode (recall settings from
label or driver or printer) is configurable in the label design. You might need to apply these printer settings
at print time – they can vary with each printout.

Example

A single label should be printed using a variety of printers, but each printer requires slightly different
parameters. The printers from various manufacturers don't use the same values to set the printing speed or
temperature. Additionally, some printers require vertical or horizontal offset to print the label to the correct
position. During the testing phase, you can determine the optimal settings for every printer you intend to
use and apply them to a single label template just before printing. This action will apply the corresponding
settings to each defined printer.

This action expects to receive the printer settings in a DEVMODE structure. This is a Windows standard
data structure with information about initialization and environment of a printer.

Printer settings option applies custom printer settings. The following inputs are available:

• Fixed-data Base64-encoded DEVMODE. In this case, provide the printer's DEVMODE encoded in
Base64-encoded string directly into the edit field. If executed, the action converts the Base64-encoded
data back into binary form.

• Variable-data Base64-encoded DEVMODE. In this case, the selected data source must contain the
Base64-encoded DEVMODE. Enable Data source and select the appropriate variable from the list. If
executed, the action converts the Base64-encoded data back into the binary form.

146

• Variable-data binary DEVMODE (available in Automation Builder). In this case, the selected variable
must contain the DEVMODE in its native binary form. Enable Data source and select the appropriate
variable from the list. If executed, the action uses the DEVMODE as-is, without any conversion.

NOTE
If the variable does not provide a binary DEVMODE, make sure that the selected
variable is defined as a binary variable in the configuration.

NOTE
Make sure the Set Printer action is defined in front of this action.

Label settings overrides label properties defined in Label Properties in Designer. Use this option when you
print your labels to a printer or media with different properties as defined in Label Properties in Designer.
With this option you can:

• Change your label dimensions (width and height).

• Add or change label margins.

• Disable cutter.

• Disable batch printing.

• Apply different stocks by changing Labels Across parameter (horizontal and vertical count, gaps,
processing order).

• Redefine Portrait or Landscape orientation.

• Rotate labels by 180° degrees.

Automation applies Label settings at print time. Label settings parameters are not saved in your label
templates. You can provide Label settings as an XML payload.

Sample Label settings XML

The sample below presents a structural view of the label settings and their attributes.

NOTE
Dimension units in XML correspond to your label design units (cm, in, mm, dot). You
can change units in Designer if you go to Label Properties > Label Dimensions > Unit of
measure.

<LabelSettings>

 <Width>100</Width>

 <Height>30</Height>

 <Margin>

147

 <Left>2</Left>

 <Right>3</Right>

 <Top>4</Top>

 <Bottom>5</Bottom>

 </Margin>

 <LabelsAcross>

 <Horizontal>

 <Count>2</Count>

 <Gap>4</Gap>

 </Horizontal>

 <Vertical>

 <Count>3</Count>

 <Gap>5</Gap>

 </Vertical>

 <ProcessingOrder>HorizontalTopRight</ProcessingOrder>

 </LabelsAcross>

 <Orientation>Landscape</Orientation>

 <Rotated>true</Rotated>

 <DisableCutter/>

 <DisableBatchPrinting/>

</LabelSettings>

Label settings XML specification

This section contains a description of the XML file structure to define Label settings parameters and
values.

<?xml version="1.0" encoding="utf-8"?>

<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:simpleType name="nonNegativeFloat">

 <xs:restriction base="xs:float">

 <xs:minInclusive value="0"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:element name="LabelSettings">

 <xs:complexType>

 <xs:all>

 <xs:element name="DisableCutter" minOccurs="0" maxOccurs="1">

 <xs:complexType>

 <xs:sequence/>

 </xs:complexType>

 </xs:element>

 <xs:element name="DisableBatchPrinting" minOccurs="0" maxOccurs="1">

 <xs:complexType>

 <xs:sequence/>

 </xs:complexType>

148

 </xs:element>

 <xs:element name="Width" type="nonNegativeFloat" minOccurs="0"

maxOccurs="1"/>

 <xs:element name="Height" type="nonNegativeFloat" minOccurs="0"

maxOccurs="1"/>

 <xs:element name="Margin" minOccurs="0" maxOccurs="1">

 <xs:complexType>

 <xs:all>

 <xs:element name="Left" type="nonNegativeFloat" minOccurs="0"

maxOccurs="1"/>

 <xs:element name="Right" type="nonNegativeFloat" minOccurs="0"

maxOccurs="1"/>

 <xs:element name="Top" type="nonNegativeFloat" minOccurs="0"

maxOccurs="1"/>

 <xs:element name="Bottom" type="nonNegativeFloat" minOccurs="0"

maxOccurs="1"/>

 </xs:all>

 </xs:complexType>

 </xs:element>

 <xs:element name="LabelsAcross" minOccurs="0" maxOccurs="1">

 <xs:complexType>

 <xs:all>

 <xs:element name="Horizontal" minOccurs="0" maxOccurs="1">

 <xs:complexType>

 <xs:all>

 <xs:element name="Count" type="xs:nonNegativeInteger"

minOccurs="0" maxOccurs="1" />

 <xs:element name="Gap" type="nonNegativeFloat"

minOccurs="0" maxOccurs="1"/>

 </xs:all>

 </xs:complexType>

 </xs:element>

 <xs:element name="Vertical" minOccurs="0" maxOccurs="1">

 <xs:complexType>

 <xs:all>

 <xs:element name="Count" type="xs:nonNegativeInteger"

minOccurs="0" maxOccurs="1" />

 <xs:element name="Gap" type="nonNegativeFloat"

minOccurs="0" maxOccurs="1"/>

 </xs:all>

 </xs:complexType>

 </xs:element>

 <xs:element name="ProcessingOrder" minOccurs="0" maxOccurs="1">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="HorizontalTopLeft"/>

149

 <xs:enumeration value="HorizontalTopRight"/>

 <xs:enumeration value="HorizontalBottomLeft"/>

 <xs:enumeration value="HorizontalBottomRight"/>

 <xs:enumeration value="VerticalTopLeft"/>

 <xs:enumeration value="VerticalTopRight"/>

 <xs:enumeration value="VerticalBottomLeft"/>

 <xs:enumeration value="VerticalBottomRight"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 </xs:all>

 </xs:complexType>

 </xs:element>

 <xs:element name="Orientation" minOccurs="0" maxOccurs="1">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="Portrait"/>

 <xs:enumeration value="Landscape"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="Rotated" type="xs:boolean" minOccurs="0"

maxOccurs="1"/>

 </xs:all>

 </xs:complexType>

 </xs:element>

</xs:schema>

Action Execution and Error Handling

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

150

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

5.11.5. Redirect Printing to PDF

This action diverts the print job to a PDF document. The created PDF document retains the exact label
dimensions as defined during the label design process. The rendering quality of graphics in the PDF
matches the resolution of the target printer and desired printout size.

Print stream data can be appended to an existing file, or it may overwrite it.

The action instructs NiceLabel 10 to redirect printing – as a result, the labels are not printed. Make sure the
action is followed by the Print Label action.

NOTE
NiceLabel Automation module runs as service under defined Windows user account.
Make sure this user account has privileges accessing the specified folder with read/write
permissions. For more information, see section Access to Network Shared Resources in
NiceLabel Automation user guide.

About group identifies the selected action.

• Name: allows you to define a custom action name. This makes actions easily recognizable on the
solution's list of actions. By default, the action name is taken from its type.

• Description: custom information about the action. Enter a description to explain the purpose and role
of action in a solution.

151

• Action type: read-only information about the selected action type.

File group defines the redirect file.

• File name: specifies the file name for diverting the print job to. If hard-coded, the printing is redirected
to the specified file every time. To define it dynamically, use an existing or create a new variable.

• Overwrite the file: if the specified file already exists on the disk, it is going to be overwritten (selected
by default).

• Append data to the file: the job file is appended to the existing data in the provided file (deselected by
default).

• Embed fonts in PDF: If you use some non-standard font, your solution might produce different PDF
output on computers without this font. With Embed fonts in PDF option enabled, you embed your
non-standard font into your solution and your solution creates the same PDF on all computers.
Embed fonts in PDF option creates PDF for Archiving (PDF/A) compliant document. The PDF/A
standard ensures your documents are reproduced exactly the same way, regardless of what software
you use. The information required for displaying the contents like images, fonts, and color information
is embedded in your PDF file.

NOTE
The output PDF file consumes more space when saved with this option enabled.

Persistence group allows controlling the persistence of the redirect action. Define the number of Print Label
actions that are affected by the Redirect Printing to File action.

• Apply to next print action: specifies for the print redirect to be applicable to the next Print Label action
only (single event).

• Apply to all subsequent print actions: specifies for the print redirect to be applicable to all Print Label
action defined after the current Redirect Printing to File action.

Action Execution and Error Handling

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

152

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

5.11.6. Printer Status

This action communicates with the printer to acquire its real-time state, and contacts the Windows Spooler
for additional information about the printer and its jobs.

As a result, the information about errors, spooler status, number of jobs in the spooler is collected. This
uncovers potential errors and makes them easy to identify.

NOTE
Possible use case scenarios. (1) Verifying the printer status before printing. If the printer
is in an error state, you print the label to a backup printer. (2) Counting the number of jobs
waiting in a spooler of the main printer. If there are too many, you will print the label to an
alternative printer. (3) You will verify the printer status before printing. If the printer is in an
error state, you will not print labels, but report the error back to the main system using any
of the outbound actions, such as Send Data to TCP/IP Port, Send Data to HTTP, Execute
SQL Statement, Web Service, or as the trigger response.

Live Printer Status Prerequisites

To make live printer status monitoring possible, follow these instructions:

153

• Use the Loftware Printer Driver to receive detailed status information. If using any other printer driver,
you can only monitor the parameters retrieved from the Windows Spooler.

• The printer must be capable of reporting its live status. For the printer models supporting bidirectional
communication see NiceLabel Download web page.

• Printer must be connected to an interface with support for bidirectional communication.

• Bidirectional support must be enabled in Control Panel > Hardware and Sound > Devices and Printers
> driver > Printer Properties > Ports tab > Enable bidirectional support.

• If using a network-connected label printer, make sure you are using Advanced TCP/IP Port, not
Standard TCP/IP Port. For more information, see the Knowledge Base article.

About group identifies the selected action.

• Name: allows you to define a custom action name. This makes actions easily recognizable on the
solution's list of actions. By default, the action name is taken from its type.

• Description: custom information about the action. Enter a description to explain the purpose and role
of action in a solution.

• Action type: read-only information about the selected action type.

Printer group selects the printer.

• Printer name: specifies the printer name to be used for the current print job.
You can select a printer from the list of locally installed printer drivers, or you can enter any printer
name. Data source enables variable printer name. When enabled, select or create a variable that
contains the printer name when a trigger is executed or an event takes place. Usually, the variable
value is assigned by a filter.

Data Mapping group sets the parameters that are returned as a result of the Printer Status action.

WARNING
Most of the following parameters are only supported with Loftware printer drivers. If you
are using any other printer driver, you can use only the spooler-related parameters.

• Printer status: specifies the printer live status formatted as a string.
If the printer reports multiple states, all states are merged into a single string, delimited by comma ",".
If there are no reported printer issues, this field is empty. Printer status might be set to Offline, Out of
labels or Ribbon near end. Since there is no standardized reporting protocol, each printer vendor uses
proprietary status messages.

• Printer error: boolean (true/false) value of the printer error status.

• Printer offline: boolean (true/false) value of the printer offline status.

• Driver paused: boolean (true/false) value of the driver pause status.

154

https://drivers.loftware.com/
https://help.nicelabel.com/hc/articles/4405121454737-Seeing-live-statuses-of-the-network-label-printer-using-Advanced-Port-Monitor

• Loftware Driver: specifies boolean (true/false) value of the printer driver status. Provides information
if the selected driver is a Loftware driver.

• Spooler status: specifies the spooler status in a string form – as reported by the Windows system.
The spooler can simultaneously report several statuses. In this case, the statuses are merged using
comma ",".

• Spooler status ID: specifies spooler status formatted as a number – as reported by the Windows
system. The spooler can simultaneously report several statuses. In this case, the returned status IDs
contains all IDs as flags. For example, value 5 represents status IDs 4 and 1, which translates to
"Printer is in error, Printer is paused". Refer to the table below.

TIP
The action returns a decimal value, the values in the table below are in hex format, so
you will have to do the conversion before parsing the response.

• Table of spooler status IDs and matching descriptions

Spooler status ID (in hex) Spooler status description

0 No status.

1 Printer is paused.

2 Printer is printing.

4 Printer is in error.

8 Printer is not available.

10 Printer is out of paper.

20 Manual feed required.

40 Printer has a problem with paper.

80 Printer is offline.

100 Active Input/Output state.

200 Printer is busy.

400 Paper jam.

800 Output bin is full.

2000 Printer is waiting.

4000 Printer is processing.

10000 Printer is warming up.

20000 Toner/Ink level is low.

40000 No toner left in the printer.

80000 Current page can not be printed.

100000 User intervention is required.

200000 Printer is out of memory.

400000 Door is open.

155

800000 Unknown error.

1000000 Printer is in power save mode.

• Number of jobs in the spooler: specifies the number of jobs that are in the spooler for the selected
printer.

• Loftware driver extended printer status: returns printer status and errors data in JSON format. Data
includes also printer parameters like firmware version, printhead distance, and ink level.

NOTE
You need the latest Loftware driver to get the Loftware driver extended printer status.

Example

NiceLabel Automation returns the following JSON content:

{

 "printerName":"Production_printer_09",

 "version":"1",

 "responseType":"status3",

 "overallStatus":"error",

 "operationState":"pause",

 "printerType":"Thermal Transfer Label Printer",

 "deviceStatus":

 [

 {

 "item": "fatalError",

 "type": "string",

 "internalId":"ERR_PAPER_OUT",

 "shortString":"Paper Out",

 "longString":"Printer is out of paper."

 },

 {

 "item": "error",

 "type": "string",

 "internalId": "ERR_RIBBON_OUT",

 "shortString": "Ribbon Out",

 "longString": "Printer is out of Ribbon."

 }

],

 "deviceParameters":

 [

 {

 "item":"state",

 "type":"float",

 "internalId":"INFO_PRINTHEAD_DISTANCE",

156

 "unit": "meter",

 "value": 789,

 "shortDescription":"Printhead distance",

 "longDescription":"Distance of printhead usage."

 },

 {

 "item": "state",

 "type": "string",

 "internalId": "INFO_FW",

 "unit": "",

 "value": "FW27.3.13",

 "shortDescription": "Firmware version",

 "longDescription": "The version of the Firmware loaded on the

printer."

 },

 {

 "item": "property",

 "type": "integer",

 "internalId": "INFO_PRINT_DISTANCE",

 "unit": "seconds",

 "value": 16004,

 "shortDescription": "Print Distance",

 "longDescription": "Print Distance that the printer printed

since odometer reset."

 }

]

}

Action Execution and Error Handling

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

157

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

5.11.7. Store Label to Printer

This action saves label template in the printer memory. The action is a vital part of Store/Recall printing
mode, using which you first store a label template into the printer's memory and later recall it. The non-
changeable parts of label design are already stored in the printer, so you only have to provide the data for
variable label objects at print time. For more information, see section Using Store/Recall Printing Mode in
NiceLabel Automation user guide.

NOTE
The required label data transfer time is greatly minimized as there is less information to be
sent. This action is commonly used for stand-alone printing scenarios, where the label is
stored to the printer or applicator in the production line and later recalled by some software
or hardware trigger, such as barcode scanner or photocell.

About group identifies the selected action.

• Name: allows you to define a custom action name. This makes actions easily recognizable on the
solution's list of actions. By default, the action name is taken from its type.

• Description: custom information about the action. Enter a description to explain the purpose and role
of action in a solution.

• Action type: read-only information about the selected action type.

158

Advanced options for storing label to printer group allows you select a label and the preferred storing
variant.

• Label name to be used on the printer: specifies the name to be used for storing the label template in
printer memory. Enter the name manually or enable Data source to define the name dynamically using
an existing or newly created variable.

WARNING
When storing the label to a printer, it is recommended to leave the label name under
the advanced options empty. This prevents label name conflicts during the recall label
process.

• Store variant: defines printer memory location for stored label templates. Enter the location manually
or enable Data source to define the name dynamically using an existing or newly created variable.

Action Execution and Error Handling

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

159

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

5.11.8. Print PDF Document

The Print PDF Document action prints static PDF documents that are not linked to the labels in your
PowerForms solutions or NiceLabel Automation configurations. Use this action to print any PDF document
directly from your solutions or configurations. The PDF documents can be stored on:

• Your computer

• NiceLabel Control Center

• Web server

• Shared network drives

TIP
The action is useful if you plan to equip your packages with printed PDF reports on included
items, or if you want to print the packaging documentation without opening the file browser.

NOTE
When in use, the Print PDF Document action takes one printer seat from your license quota.
Read the NiceLabel licensing document for more information on licensing.

About group identifies the selected action.

• Name: allows you to define a custom action name. This makes actions easily recognizable on the
solution's list of actions. By default, the action name is taken from its type.

• Description: custom information about the action. Enter a description to explain the purpose and role
of action in a solution.

• Action type: read-only information about the selected action type.

Printer group specifies the printer name to be used for the current print job.

• Printer name: select it from the list of locally installed printer drivers, or manually enter a printer
name. Select Data source to dynamically select the printer using a variable. If enabled, select or
create a variable that contains the printer name which is used if the action is run.

160

https://help.nicelabel.com/hc/categories/4405139809937-Licensing-and-Activating-NiceLabel-Products

File group defines the redirect file.

• File name: specifies which PDF to print.

NOTE
Use the UNC syntax for network resources. For more information, see section Access to
Network Shared Resources in NiceLabel Automation User Guide.

Action Execution and Error Handling

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

161

5.12. Variables

5.12.1. Set Variable

This action assigns a new value to the selected variable.

Variables usually obtain their values using Use Data Filter action (available in Automation Builder) which
extracts fields from the received data and maps them to variables. You might also need to set the variable
values by yourself, usually for troubleshooting purposes. In Automation Builder, the variable values are not
remembered between multiple triggers, but are kept while the same trigger is being processed.

About group identifies the selected action.

• Name: allows you to define a custom action name. This makes actions easily recognizable on the
solution's list of actions. By default, the action name is taken from its type.

• Description: custom information about the action. Enter a description to explain the purpose and role
of action in a solution.

• Action type: read-only information about the selected action type.

Variable group defines the variable name and its value.

• Name: name of variable that should store the value changed.

• Value: value to be set to a variable. It can either be manually or dynamically defined using an existing
or a newly created variable.

Action Execution and Error Handling

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

162

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

5.12.2. Save Variable Data

This action saves values of a single or multiple variables in an associated data file.

In NiceLabel Automation module, this action allows data exchange between triggers. To read the data back
into the trigger, use action Load Variable Data.

TIP
The values are saved in a CSV file with the first line containing variable names. If the
variables contain multi-line values, the newline characters (CR/LF) are encoded as \n\r.

About group identifies the selected action.

• Name: allows you to define a custom action name. This makes actions easily recognizable on the
solution's list of actions. By default, the action name is taken from its type.

• Description: custom information about the action. Enter a description to explain the purpose and role
of action in a solution.

• Action type: read-only information about the selected action type.

Settings group defines the file name.

• File name: data file to save the variable data to. If the name is hard-coded, values are saved into the
same data file each time.

163

Use UNC syntax for network resources. For more information, see section Access to Network Shared
Resources in NiceLabel Automation user guide.

If file exists group offers additional options to save the values.

• Overwrite the file: overwrites the existing data with new variable data. The old content is lost.

• Append data to the file: appends the variable values to the existing data files.

File Structure group defines the CSV variable data file parameters:

• Delimiter: specifies the delimiter type (tab, semicolon, comma or custom character). Delimiter is a
character that separates the stored variable values.

• Text qualifier: specifies the character that qualifies the stored content as text.

• File encoding: specifies character encoding type to be used in the data file. Auto defines the encoding
automatically. If required, the preferred encoding type can be selected from the drop-down list.

TIP
UTF-8 makes a good default selection.

• Add names of variable in the first row: places the variable name in the first row of the file.

Variables group defines the variables whose value should be read from the data file. Values of the existing
variables are overwritten with values from the file.

• All variables: variable data of all variables from the data file is read.

• Selected variables: variable data of listed variables is red from the data file.

Action Execution and Error Handling

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

164

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

5.12.3. Load Variable Data

This action loads values of a single or multiple variables from the associated data file as saved by the
action Save Variable Data. Use this action to exchange the data between triggers. You can load a particular
variable or all variables that are stored in the data file.

About group identifies the selected action.

• Name: allows you to define a custom action name. This makes actions easily recognizable on the
solution's list of actions. By default, the action name is taken from its type.

• Description: custom information about the action. Enter a description to explain the purpose and role
of action in a solution.

• Action type: read-only information about the selected action type.

Settings group defines the file name.

• File name: specifies the file for the variable data to be loaded from. If the name is hard-coded, the
values are loaded from the same file each time.
Use UNC syntax for network resources. For more information, see section Access to Network Shared
Resources in NiceLabel Automation user guide.

File Structure group settings must reflect the structure of the saved file from the Save Variable Data action.

• Delimiter: specifies delimiter type (tab, semicolon, comma or custom character). Delimiter is a
character that separates the values.

165

• Text qualifier: specifies the character that qualifies content as text.

• File encoding: specifies the character encoding type used in the data file. Auto defines the encoding
automatically. If needed, select the preferred encoding type from the drop-down list.

TIP
UTF-8 makes a good default selection.

Variables group defines the variables whose values should be loaded from the data file.

• All variables: specifies all defined variables in the data file to be read.

• Selected variables: specifies selection of individual variables to be read from the data file.

Action Execution and Error Handling

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

166

5.12.4. String Manipulation

This action defines how the values of selected variables should be formatted.

The most popular string manipulation actions are: delete leading and trailing spaces, search and replace
characters, and delete opening and closing quotes.

This feature is often required is a trigger receives an unstructured data file or legacy data. in such cases,
the data needs to be parsed using the Unstructured Data filter. String Manipulation action allows you to
fine-tune the data value.

NOTE
If this action doesn't provide enough string manipulation power for a particular case, use
Execute Script action instead to manipulate your data using Visual Basic Script or Python
scripts.

About group identifies the selected action.

• Name: allows you to define a custom action name. This makes actions easily recognizable on the
solution's list of actions. By default, the action name is taken from its type.

• Description: custom information about the action. Enter a description to explain the purpose and role
of action in a solution.

• Action type: read-only information about the selected action type.

Variables group defines the variables whose values need to be formatted.

• All variables: specifies all the defined variables in a data file to be formatted.

• Selected variables: specifies a selection of variables to be formatted from the data file.

Format Text group defines string manipulation functions that apply to the selected variables or fields.
Multiple functions can be used. The functions apply in the same order as seen in the editor – from top to
bottom.

167

• Delete spaces at the beginning: deletes all space characters (decimal ASCII code 32) from the
beginning of the string.

• Delete spaces at the end: deletes all space characters (decimal ASCII value 32) from the end of a
string.

• Delete opening closing characters: deletes the first occurrence of the selected opening and closing
characters that is found in the string.

Example

If using "{" as opening character and "}" as closing character, the input string {{selection}} is
converted to {selection}.

• Search and replace: executes standard search and replace function upon the provided values for find
what and replace with. Regular expressions are supported.

NOTE
Several implementations of regular expressions are present. NiceLabel 10 uses .NET
Framework syntax for the regular expressions. For more information, see the Knowledge
Base article.

• Replace non printable characters with space: replaces all control characters in the string with "space"
character (decimal ASCII code 32). Non printable characters are characters with decimal ASCII values
between 0–31 and 127–159.

• Delete non printable characters: deletes all control characters in the string. Non printable characters
are characters with decimal ASCII values between 0–31 and 127–159.

• Decode special characters: decodes the characters (or control codes) that are not available on
the keyboard, such as Carriage Return or Line Feed. NiceLabel 10 uses a notation to encode such
characters in human-readable form, such as <CR> for Carriage Return and <LF> for Line Feed. This
option converts special characters from NiceLabel syntax into actual binary characters.

Example

When you receive the data "<CR><LF>", Designer uses it as plain string of 8 characters. You will have
to enable this option to interpret and use the received data as two binary characters CR (Carriage
Return – ASCII code 13) and LF (Line Feed – ASCII code 10).

• Search and delete everything before: finds the provided string and deletes all characters in front of
the defined string. The string can also be deleted.

• Search and delete everything after: finds the provided string and deletes all characters behind the
defined string. The string can also be deleted.

168

https://help.nicelabel.com/hc/articles/4405121485713--NET-Framework-Syntax-for-Regular-Expressions
https://help.nicelabel.com/hc/articles/4405121485713--NET-Framework-Syntax-for-Regular-Expressions

• Change case: Changes all characters in your strings to uppercase or lowercase.

Action Execution and Error Handling

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

5.13. Batch Printing

5.13.1. For Loop

169

This action executes all of the subordinate (nested) actions multiple times. All nested actions are executed
in a loop for as many times as defined by the difference between start value and end value.

NOTE
For Loop action starts session printing mode – a printing optimization mode that prints
all labels in a loop using a single print job file. For details, see Session Printing section in
NiceLabel Automation user guide.

About group identifies the selected action.

• Name: allows you to define a custom action name. This makes actions easily recognizable on the
solution's list of actions. By default, the action name is taken from its type.

• Description: custom information about the action. Enter a description to explain the purpose and role
of action in a solution.

• Action type: read-only information about the selected action type.

Loop Settings group includes the following options:

• Start value: loop starting point reference. Select Data source to define the start value dynamically
using a variable value. Select or create a variable containing a numeric value for start.

• End value: ending point reference. Select Data source to define the start value dynamically using a
variable value. Select or create a variable containing a numeric value for start.

TIP
Negative values are permitted for Start value and End value.

• Save loop value to a variable: saves the current loop step value in an existing or a newly created
variable. The loop step value is allowed to contain any value between start and end value. Save the
value in order to reuse it in another action to identify the current iteration.

Action Execution and Error Handling

170

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

5.13.2. Use Data Filter

This action executes filter rules on the input data source. As a result, the action extracts fields from input
data and maps their values to the linked variables.

Use data filter action executes the selected filter and assigns the variables with respective values.

• Elements on lower level: The action can create sub-level elements, identified with "for each line" or
"for each data block in ...". When you see those, the filter will extract the data not on the document
level (with hard-coded field placement), but relatively from the sub areas that contain repeatable
sections. In this case make sure that you position your actions below such elements. You have to
nest the action under such elements.

• Mapping variables to fields: The mapping between trigger variables and filter fields is defined either
manually, or is automated, dependent on how the filter is configured. If you have manually defined
fields in the filter, you also have to manually map fields to the corresponding variable.

171

NOTE
It's a good practice to define fields using the same names as are names of the label
variables. In this case the button Auto map maps matching names automatically.

• Testing the execution of filter: When the mapping of variables to fields is done, you can test the
execution of the filter. The result will be shown on-screen in table. Number of lines in the table
represent the number times actions will execute in the selected level. The column names represent
the variable names. The cells contain values as assigned to the respective variable by the filter. The
default preview file name is inherited from the filter definition, you can execute filter on any other file.

• Collect records for reports collects your data so you use data filters to create reports. For more
information Section 9.7, “Automating Reports”.

Navigating your data filter interface.

1. Filter selection.

2. Data your filter uses to execute rules.

3. Report records collection.

4. Mapping your fields (from filter) to variables (from label/trigger).

5. Filter execution preview.

For more information, see sections Understanding Filters and section Examples in NiceLabel Automation
user guide.

Filter group allows you to select which filter should be used.

172

• Name: specifies the name of the filter you want to apply. It can either be hard-coded or dynamically
defined using an existing or a newly created variable. The list contains all filters defined in the current
configuration. You can use the bottom three items in the list to create a new filter.

NOTE
Selecting another filter removes all actions which are nested under this action. If you want
to keep the currently defined actions, move them outside of the Use Data Filter action. If
actions are accidentally lost, Undo your action and revert to the previous configuration.

Data Source group allows you to define the contents you want to send to the printer.

• Use data received by the trigger: selects the trigger-received data to be used in a filter. In this case,
the action uses the original data received by the trigger and execute the filter rules upon it.

Example

If you use a file trigger, the data represents content of the monitored file. If you use a database trigger,
the data is a data set returned from the database. If you use a TCP/IP trigger, the data is raw content
received via socket.

• File name: defines path and file name of the file which contains the data upon which the filter rules
will be executed. The content of the specified file is used in a filter. The option Data source enables
the variable file name. You must select or create a variable that contains the path and/or file name.

• Custom: defines custom content to be parsed by the filter. You may use fixed content, mix of fixed
and variable content, or variable content alone. To insert variable content, click the button with arrow
to the right of data area and insert a variable from the list. For more information, see section Using
Compound Values in NiceLabel Automation User Guide.

Data Preview field provides an overview of the filter execution process after the content of the previewed
file name is read and the selected filter is applied to it.

The rules in the filter extract fields. The table displays the result of the extraction. Each line in the table
represents data for a single label. Each column represents a variable.

To be able to observe result, configure the mapping of fields with matching variables. Depending on the
filter definition, you could map the variables to fields manually, or have it done automatically.

• Preview file name: specifies the file that contains the data that is going to be parsed through the filter.
The preview file is copied from the filter definition. If you change the preview file name, the new file
name is saved.

• Open: selects another file upon which you want to execute filter rules.

• Refresh: re-runs filter rules upon the contents of the preview file name. The Data Preview field gets
updated with the result.

173

Action Execution and Error Handling

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

5.13.3. For Every Record

This action executes subordinate nested actions multiple times. All of the nested actions are executed in a
loop as many times as there are records in the form table with a connected database.

About group identifies the selected action.

• Name: allows you to define a custom action name. This makes actions easily recognizable on the
solution's list of actions. By default, the action name is taken from its type.

• Description: custom information about the action. Enter a description to explain the purpose and role
of action in a solution.

174

• Action type: read-only information about the selected action type.

Settings group selects the records.

• Form table: form table that contains records for which an action should repeat.

• Use all records: repeats an action for all records in a defined table.

• Use selected record: repeats an action for the selected records only.

If you use the action Execute SQL Statement with enabled option Iterate for Every Record, NiceLabel
automatically inserts For every Record action. A note appears about the automatic mapping of your
variables.

Prompt variables on your label automatically connect to your database fields with the same names. See the
instructions on how to create your solutions:

IMPORTANT
When you create your solution with a database connection, use prompt variables on your
labels instead of database fields.

Use the same names for prompt variables as are defined for database fields, for example:

Database field: food_products_1c.ProdCode

Prompt variable on your label: ProdCode

NiceLabel then automatically maps corresponding variables with database fields.

Example

Your solution is connected to your database. Your configuration filters requested database records and you
want to print filtered records on your labels.

Use action For Every Record and nest actions to print your labels.

175

Action Execution and Error Handling

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

176

5.14. Data & connectivity

5.14.1. Open Document/Program

This action provides an interface with an external application and opens it using a command-line.

External applications can execute additional processing and provide results back to the NiceLabel 10. This
action allows NiceLabel Automation to bind with any 3rd party software that can execute some additional
data processing, or acquire data. External software can provide data response by saving it to a file, from
where you can read it into variables.

NOTE
NiceLabel Automation runs as a service application and it can't interact with desktop,
even if it runs with the privileges of the currently logged user. Microsoft prevented such
interaction for security reasons.

This means that the Open Document/Program action in NiceLabel Automation can open
only programs that run in the background.

You can feed the variable values to the program by listing them in the command line in square brackets.

C:\Applications\Processing.exe [variable1] [variable2]

NOTE
If you use this action in NiceLabel 10 solutions, it allows you to open web pages or create
email messages directly from your forms. See section Creating hyperlinks and sending
emails on form in NiceLabel 10 user guide.

About group identifies the selected action.

• Name: allows you to define a custom action name. This makes actions easily recognizable on the
solution's list of actions. By default, the action name is taken from its type.

• Description: custom information about the action. Enter a description to explain the purpose and role
of action in a solution.

177

• Action type: read-only information about the selected action type.

File group defines the file to be opened.

• File name: location and file name of the file or application to be opened.
The selected file name can be hard-coded, and the same file is going to be used every time. If only
a file name without path is defined, the folder with NiceLabel Automation configuration file (.MISX) is
used. You can use a relative reference to the file name, in which the folder with .MISX file is used as
the root folder.
Data source: enables variable file name. Select a variable that contains the path and/or file name
or combine several variables that create the file name. For more information see section Using
Compound Values in NiceLabel Automation User Guide.

NOTE
Use UNC syntax for network resources. For more information, see section Access to
Network Shared Resources in NiceLabel Automation User Guide.

Execution Options group sets program opening details.

• Wait for completion: specifies for action execution to wait for this action to be completed before
continuing with the next scheduled action.

TIP
Enable this option if the action that follows depends on the result of the external
application.

Action Execution and Error Handling

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

178

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

5.14.2. Save Data to File

This action saves variable value or other data streams (such as binary data) in a selected file. The
NiceLabel Automation service must have write access to the defined folder.

File group defines the file to be opened.

• File name: location of the file to be opened within this action.
Path and file name can be hard-coded, and the same file is going to be used every time. If only a file
name without path is defined, the folder with NiceLabel Automation configuration file (.MISX) is used.
You can use a relative reference to the file name, in which the folder with .MISX file is used as the root
folder.
Data source: enables variable file name. Select a variable that contains the path and/or file name
or combine several variables that create the file name. For more information, see section Using
Compound Values in NiceLabel Automation User Guide.

If file exists group handles options in case of an already existing file.

• Overwrite the file: overwrites existing data with new data. The old content is lost.

• Append data to the file: appends variable values to the existing data files.

Content group defines which data is going to be written in the specified file.

• Use data received by the trigger: original data as received by the trigger is going to be saved in the
file. Effectively, this option makes a copy of the incoming data.

179

• Custom: saves content as provided in the text area. Fixed values, variable values and special
characters are permitted. To enter variables and special characters, click the arrow button to the
right of the text area. For more information, see section Combining Values in an Object in NiceLabel
Automation User Guide.

• Encoding: encoding type for the sent data. Auto defines the encoding automatically. If needed, select
the preferred encoding type from the drop-down list.

Action Execution and Error Handling

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

5.14.3. Read Data from File

180

This action reads content of the provided file name and saves it in a variable. Content of any file type,
including binary data can be read.

Usually, Automation Builder module receives data for label printing using a trigger. E.g. if a file trigger is
used, the content of trigger file is automatically read and can be parsed by filters. However, you might want
to bypass filters to obtain some external data. Once you execute this action and have the data stored in a
variable, you can use any of the available actions to use the data.

This action is useful:

• If you must combine data received by the trigger with data stored in a file.

WARNING
If you load data from binary files (such as bitmap image or print file), make sure the variable
to store the read content is defined as a binary variable.

• When you want to exchange data between triggers. One triggers prepares data and saves it to file
(using the Save Data to File action), the other trigger reads the data.

File group defines the file to read the content from.

• File name: location of the file to be read within this action.
Path and file name can be hard-coded, and the same file is going to be used every time. If only a file
name without path is defined, the folder with NiceLabel Automation configuration file (.MISX) is used.
You can use a relative reference to the file name, in which the folder with .MISX file is used as the root
folder.
Data source: enables variable file name. Select a variable that contains the path and/or file name
or combine several variables that create the file name. For more information see section Using
Compound Values in NiceLabel Automation User Guide.

NOTE
Use UNC syntax for network resources. For more information, see section Access to
Network Shared Resources in NiceLabel Automation User Guide.

Content group sets file content related details.

• Variable: variable that stores the file content. At least one variable (existing or newly created) should
be defined.

• Encoding: encoding type for the sent data. Auto defines the encoding automatically. If needed, select
the preferred encoding type from the drop-down list.

NOTE
Encoding cannot be selected if the data is read from a binary variable. In this case, the
variable contains the data as-is.

181

Retry on Failure group defines how the action execution should continue if the specified file becomes
inaccessible.

TIP
Automation Builder module might become unable to access the file, because it is locked by
another application. If an application still writes data to the selected file and keeps it locked
in exclusive mode, no other application can open it at the same time, not even for reading.
Other possible causes for action retries are: file doesn't exist (yet), folder does not exist
(yet), or the service user doesn't have the privileges to access the file.

• Retry attempts: defines the number of retry attempts for accessing the file. If the value is set to 0, no
retries are made.

• Retry interval: time interval between individual retries in milliseconds.

Action Execution and Error Handling

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

182

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

5.14.4. Delete File

This action deletes a selected file from a drive.

NiceLabel Automation module runs as service under a defined Windows user account. Make sure that
account has the permissions to delete the file in a specified folder.

About group identifies the selected action.

• Name: allows you to define a custom action name. This makes actions easily recognizable on the
solution's list of actions. By default, the action name is taken from its type.

• Description: custom information about the action. Enter a description to explain the purpose and role
of action in a solution.

• Action type: read-only information about the selected action type.

File group sets the file related details.

• File name: the name of the file to be deleted. File name can be hard-coded. Data source dynamically
defines the File name using an existing or newly created variable.
Path and file name can be hard-coded, and the same file is going to be used every time. If only a file
name without path is defined, the folder with NiceLabel Automation configuration file (.MISX) is used.
You can use a relative reference to the file name, in which the folder with .MISX file is used as the root
folder.
Data source option enables variable file name. Select or create a variable that contains the path
and/or file name or combine several variables that create the file name. For more information see
section Using Compound Values in NiceLabel Automation User Guide.

NOTE
Use UNC syntax for network resources. For more information, see section Access to
Network Shared Resources in NiceLabel Automation User Guide.

Action Execution and Error Handling

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

183

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

5.14.5. Execute SQL Statement

This action sends SQL commands to a connected SQL server and collects results. Use commands SELECT,
INSERT, UPDATE, and DELETE.

Use Execute SQL Statement action to achieve these two goals:

• Obtain additional data from a database: In Automation Builder module, a trigger receives data for
label printing, but not all of the required values. For example, a trigger receives values for Product
ID and Description, but not for Price. We have to look up the value for Price in the SQL
database.
SQL code example:

SELECT Price FROM Products

WHERE ID = :(Product ID)

184

The ID is field in the database, Product ID is a variable defined in the trigger.

• Update or delete records in a database: After a label is printed, update the database record and send
a signal to the system that the particular record has already been processed.
SQL code example:
Set the table field AlreadyPrinted value to True for the currently processed record.

UPDATE Products

SET AlreadyPrinted = True

WHERE ID = :(Product ID)

Or delete the current record from a database, because it's not needed anymore.

DELETE FROM Products

WHERE ID = :(Product ID)

The ID is field in the database, Product ID is a variable defined in the trigger.

NOTE
To use values of variables inside SQL statements, insert colon (:) in front of variable names.
This signals that a variable name follows.

IMPORTANT
When you create your solution with a database connection, use prompt variables on your
labels instead of database fields.

Use the same names for prompt variables as are defined for database fields, for example:

Database field: food_products_1c.ProdCode

Prompt variable on your label: ProdCode

NiceLabel then automatically maps corresponding variables with database fields.

About group identifies the selected action.

• Name: allows you to define a custom action name. This makes actions easily recognizable on the
solution's list of actions. By default, the action name is taken from its type.

• Description: custom information about the action. Enter a description to explain the purpose and role
of action in a solution.

• Action type: read-only information about the selected action type.

Database Connection group defines the database connection that is used for the statement.

185

TIP
Before you can send an SQL sentence to a database, set up the database connection. Click
the Define button and follow the on-screen instructions. You can connect to a data source
that can be controlled using SQL commands, so you cannot use text (CSV) or Excel files.

SQL Statement group defines an SQL statement or query to be executed.

TIP
Statements from Data Manipulation Language (DML) are allowed to execute queries upon
existing database tables.

Use standard SQL statements, such as SELECT, INSERT, DELETE and UPDATE, including joins, function
and keywords. The statements in DDL language that are used to create databases and tables (CREATE
DATABASE, CREATE TABLE), or to delete them (DROP TABLE) are not permitted.

• Test: opens Data Preview section. Simulate execution (selected by default) tests the execution of
SQL statements. Click Execute to run the simulation.

TIP
Data Preview section allows you to test the execution of your SQL statement upon a
live set of data. To protect the data from accidental updates, make sure the option
Simulate execution is enabled. The statements INSERT, DELETE and UPDATE will
execute. This enables you to gain feedback on how many records will be affected,
then all of the transactions will be reversed.

If you use trigger variables in the SQL statement, you will be able to enter their values for the test
execution.

• Insert data source: inserts predefined or newly created variables into an SQL statement.

• Export/Import: enables exporting and importing SQL statements to/from an external file.

• Execution mode: specifies the explicit mode of SQL statement execution.

TIP
In cases of complex SQL queries, it becomes increasingly difficult to automatically
determine what is the supposed action. If the built-in logic has troubles identifying
your intent, manually select the main action.

• Automatic: determines the action automatically.

• Returns set of records (SELECT): receives the data set with records.

186

• Does not return set of records (INSERT, DELETE, UPDATE): use this option if executing a query
that does not return the records. Either insert new records, delete or update the existing records.
The result is a status response reporting the number of rows that were affected by your query.

• Execution timeout: allows you to define the time delay for sending your commands to the SQL server.
Use the execution timeout if you are sending multiple consecutive SQL commands that require longer
processing time.
Type the requested timeout duration in seconds. By default, the execution timeout duration is 60 s. If
you want your database provider to define the timeout, type in 0 s.

Result group allows you to set how the SQL statement result should be stored, and to define action
iteration.

• Save Data to Variable: selects or creates a variable to store the SQL statement result. This option
depends on the selected Execution mode.

• Result of SELECT statement. After you execute a SELECT statement, it results in a data set of
records. You receive a CSV-formatted text content. The first line contains field names returned
in a result. The next lines contain records.

NOTE
To extract the values from the returned data set and to use them in other
actions, define and execute the action Use Data Filter upon the contents of this
variable (this action is available in Automation Builder).

• Result of INSERT, DELETE and UPDATE statements. If you use INSERT, DELETE and UPDATE
statements, the result is a number indicating the number of records affected in the table.

• Iterate for Every Record. If enabled, NiceLabel automatically adds a new action For Every Record. See
more about this action in a dedicated topic.

NOTE
Automatic database field mapping is enabled. Prompt variables on your label
automatically connect to your database fields with the same names. For example:

Database field: food_products_1c.ProdCode

Prompt variable on your label: ProdCode

Retry on failure group allows you to configure the action to continually retry establishing the connection to
a database server in case the first attempt is unsuccessful. If the action fails to connect within the defined
number of attempts, an error is raised.

• Retry attempts: specifies the number of tries to connect to the database server.

• Retry interval: specifies the duration of time between individual retry attempts.

187

Example

You want to print labels with data from your food_products_1c database but only records with
predefined field value UseBy.

You define UseBy value with variable ProdUser. In this case, ProdUser value is "3".

After each label is printed, NiceLabel writes database values in a text file on your disc. Use the following
actions:

Only labels where UseBy value equals "3" are printed and values are written in a text file:

188

Action Execution and Error Handling

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

5.14.6. Send Data to TCP/IP Port

This action sends data to any external device which accepts TCP/IP connection on a predefined port
number.

Send Data to TCP/IP Port establishes connection with a device, sends the data and terminates the
connection. The connection and communication is governed by the client – server handshake that occurs
when initiating or terminating the TCP connection.

About group identifies the selected action.

• Name: allows you to define a custom action name. This makes actions easily recognizable on the
solution's list of actions. By default, the action name is taken from its type.

189

• Description: custom information about the action. Enter a description to explain the purpose and role
of action in a solution.

• Action type: read-only information about the selected action type.

Connection Settings group sets connection details.

• Reply to sender: Enables direct reply to the socket from which the trigger data originates. Use this
option to provide feedback about the printing process.

NOTE
This option is available in NiceLabel Automation.

Prerequisites for Reply to sender setting are:

• Remote party does not close the communication channel, once the message gets delivered.

• Send Data to TCP/IP Port action is used within the TCP/IP Server trigger.

• Do not configure the Execution Event in the TCP/IP Server trigger as On client disconnect.

• Destination (IP address:port): destination address and port of the TCP/IP server. Hard-code the
connection parameters and use fixed host name or IP address or use variable connection parameters
by clicking the right arrow and selecting a predefined variable. For more information, see section
Combining Values in an Object in NiceLabel Automation user guide.

Example

If the variable hostname provides the TCP/IP server name and the variable port provides the port
number, enter the following parameter for the destination:

[hostname]:[port]

• Disconnect delay: prolongs the connection with the target socket for the defined time intervals after
the data has been delivered. Certain devices require more time to process the data. Insert the delay
value manually or click the arrows to increase or decrease it.

• Save data reply in a variable: selects or creates a variable that stores the server reply. Any data
received from the TCP/IP server after passing the "disconnect delay" is stored in this variable.

190

NOTE
Send Data to TCP/IP Port action is executed on Web Printing Server and not on the Web
Printing Client.

If you use Send Data to TCP/IP Port action in NiceLabel Web Client and you want to
execute locally (bypassing the Web Printing Server), add the prefix "LOCAL_" to your action
name.

Content group defines the content to be sent to a TCP/IP server.

TIP
Use fixed content, mix of fixed and variable content, or variable content alone. To enter
variable content, click the button with arrow to the right of data area and insert a variable
from the list. For more information, see section Combining Values in an Object in NiceLabel
Automation user guide.

• Data: content to be sent outbound.

• Encoding: encoding type for the sent data. Auto defines the encoding automatically. If needed, select
the preferred encoding type from the drop-down list.

Action Execution and Error Handling

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

191

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

5.14.7. Send Data to Serial Port

This action sends data to a serial port. Use it to communicate with external serial-port devices.

TIP
Make sure the port settings match on both ends – in the configured action and on the
serial-port device. Serial port can be used by a single application in the machine. To
successfully use the port from this action, no other application may use the port at the
same time, not even any printer driver.

About group identifies the selected action.

• Name: allows you to define a custom action name. This makes actions easily recognizable on the
solution's list of actions. By default, the action name is taken from its type.

• Description: custom information about the action. Enter a description to explain the purpose and role
of action in a solution.

• Action type: read-only information about the selected action type.

Port group defines the serial port.

• Port name: name of the port to which the external device connects to. This can either be a hardware
COM port or a virtual COM port.

Port Settings group defines additional port connection settings.

• Bits per second: speed rate used by the external device to communicate with the PC. The usual alias
used with the setting is "baud rate". Select the value from the drop-down menu.

192

• Data bits: number of data bits in each character. 8 data bits are almost universally used in newer
devices. Select the value from the drop-down menu.

• Parity: method of detecting errors in a transmission. The most common parity setting, is "none",
with error detection handled by a communication protocol (flow control). Select the value from the
drop-down menu.

• Stop bits: halts the bits sent at the end of every character allowing the receiving signal hardware
to detect the end of a character and to resynchronize with the character stream. Electronic devices
usually use a single stop bit. Select the value from the drop-down menu.

• Flow control: serial port may use interface signals to pause and resume the data transmission.

Content group defines the content to be sent to serial port.

TIP
Fixed content, mix of fixed and variable content, or variable content alone are permitted.
To enter variable content, click the button with arrow to the right of data area and insert a
variable from the list. For more information, see section Combining Values in an Object in
NiceLabel Automation user guide.

• Data: content to be sent outbound.

Action Execution and Error Handling

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

193

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

5.14.8. Read Data from Serial Port

This action collects data received via serial port (RS-232) and saves it in a selected variable. Use this action
to communicate with external serial port devices.

About group identifies the selected action.

• Name: allows you to define a custom action name. This makes actions easily recognizable on the
solution's list of actions. By default, the action name is taken from its type.

• Description: custom information about the action. Enter a description to explain the purpose and role
of action in a solution.

• Action type: read-only information about the selected action type.

Port group defines the serial port.

• Port name: name of the port to which an external device connects to. This can either be a hardware
COM port or a virtual COM port.

Port Settings group defines additional port connection settings.

• Bits per second: speed rate used by the an external device to communicate with the PC. The usual
alias used with the setting is "baud rate".

• Data bits: specifies the number of data bits in each character. 8 data bits are almost universally used
in newer devices.

• Parity: specifies the method of detecting errors in a transmission. The most common parity setting, is
"none", with error detection handled by a communication protocol (flow control).

• Stop bits: halts the bits sent at the end of every character allowing the receiving signal hardware
to detect the end of a character and to resynchronize with the character stream. Electronic devices
usually use a single stop bit.

• Flow control: serial port may use interface signals to pause and resume the data transmission.

194

Example

A slow device might need to handshake with the serial port to indicate that data should be paused while the
device processes received data.

Options group includes the following settings:

• Read delay: optional delay when reading data from serial port. After the delay, the entire content of
the serial port buffer is read. Enter the delay manually or click the arrows to increase or decrease the
value.

• Send initialization data: specifies the string that is sent to the selected serial port before the data is
read. This option enables the action to initialize the device to be able to provide the data. The option
can also be used for sending a specific question to the device, and to receive a specific answer. Click
the arrow button to enter special characters.

Data Extraction group defines how the defined parts of received data are extracted.

• Start position: starting position for data extraction.

• End position: ending position for data extraction.

Result group defines a variable for data storing.

• Save data to variable: select or create a variable to store the received data.

Action Execution and Error Handling

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

195

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

5.14.9. Send Data to Printer

This action sends data to a selected printer. Use it to send pre-generated printer streams to any available
printer.

NiceLabel Automation module uses the installed printer driver in pass-through mode just to be able to send
data to the target port, such as LPT, COM, TCP/IP or USB port, to which the printer is connected.

NOTE
Possible scenario. Data received by the trigger must be printed out on the same network
printer, but on different label templates (.NLBL label files). The printer can accept data
from various workstations and will usually print the jobs in the received order. Automation
Builder module will send each label template in a separate print job, making it possible
for another workstation to insert its job between the jobs created in our own Automation
Builder module. Instead of sending each job separately to the printer, merge all label jobs
(using the action Redirect Printing to File) and send a single "big" print job to the printer.

About group identifies the selected action.

• Name: allows you to define a custom action name. This makes actions easily recognizable on the
solution's list of actions. By default, the action name is taken from its type.

• Description: custom information about the action. Enter a description to explain the purpose and role
of action in a solution.

• Action type: read-only information about the selected action type.

Printer group selects the printer.

• Printer name: name of the printer to send the data to. Select the printer from the drop-down list of
locally installed printer drivers, enter a custom printer name, or define it dynamically using an existing
or newly created variable.

Data Source group defines the content to be sent to printer.

• Use data received by the trigger: trigger-received data it used. In this case, you want the received
printer stream to be used as an input to the filter. Your goal is to redirect it to a printer without any

196

modification. The same result can be achieved by enabling the internal variable DataFileName and
using the contents of the file it refers to. For more information, see section Using Compound Values in
NiceLabel Automation user guide.

• File name: path and file name of the file containing a printer stream. Content of the specified file is
sent to a printer. Select Data source to define the file name dynamically using a variable value.

• Variable: variable (existing or new) that contains the printer stream.

• Custom: defines custom content to be sent to a printer. Fixed content, mix of fixed and variable
content, or variable content alone are permitted. To enter variable content, click the button with
arrow to the right of data area and insert a variable from the list. For more information, see section
Combining Values in an Object in NiceLabel 10 user guide.

Action Execution and Error Handling

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

197

5.14.10. HTTP Request

This action sends data to the destination Web server using the selected HTTP method. HTTP and HTTPS
URI schemes are allowed.

HTTP works as a request-response protocol in client-server computing model. In this action, NiceLabel 10
acts as a client that communicates with a remote server. This action submits a selected HTTP request
message to a server. The server returns a response message, which can contain completion status
information about the request and may also contain requested content in its body.

About group identifies the selected action.

• Name: allows you to define a custom action name. This makes actions easily recognizable on the
solution's list of actions. By default, the action name is taken from its type.

• Description: custom information about the action. Enter a description to explain the purpose and role
of action in a solution.

• Action type: read-only information about the selected action type.

Connection Settings group sets connection parameters.

NOTE
This action supports Internet Protocol version 6 (IPv6).

• Destination: address, port and destination (path) of the Web server.

TIP
If a Web server runs on default port 80, skip the port number. Hard-code the
connection parameters and use a fixed host name or IP address. Use a variable value
to define this option dynamically. For more information, see section Using Compound
Values in NiceLabel Automation user guide.

Example

If the variable hostname provides the Web server name and the variable port provides the port
number, you can enter the following for the destination:

[hostname]:[port]

• Request method: available request methods.

198

• Timeout: timeout duration (in ms) during which the server connection should be established and
response received.

• Save status reply in a variable: variable to store the status code received from the server.

TIP
Status code in range 2XX is a success code. Common "OK" response is code 200.
Codes 5XX are server errors.

• Save data reply in a variable: variable to store the data received from the server.

Authentication group enables you to secure the Web server connection.

• Enable basic authentication: allows you to enter the required credentials to connect to the Web
server. User name and password can either be fixed or provided using a variable.

NOTE
HTTP Basic authentication (BA) uses static standard HTTP headers. The BA mechanism
provides no confidentiality protection for the transmitted credentials. They are merely
encoded with Base64 in transit, but are not encrypted or hashed in any way. Basic
Authentication should be used over HTTPS.

• Show password: unmasks the password characters.

NOTE
HTTP Request action is executed on Web Printing Server and not on the Web Printing
Client.

If you use HTTP Request action in NiceLabel Web Client and you want to execute locally
(bypassing the Web Printing Server), add the prefix "LOCAL_" to your action name.

Content group defines the contents to be sent to a Web server.

• Data: content to be sent outbound. Fixed content, mix of fixed and variable content, or variable
content alone are permitted. To enter variable content, click the button with arrow to the right of
data area and insert variable from the list. For more information, see section Combining Values in an
Object in NiceLabel 10 user guide.

199

• Encoding: encoding type for the sent data.

TIP
Auto defines the encoding automatically. If needed, select the preferred encoding type
from the drop-down list.

• Type: Content-Type property of the HTTP message. If no type is selected, the default application/
x-www-form-urlencoded is used. If an appropriate type is not listed, define a custom one or set a
variable that would define it dynamically.

Additional HTTP Headers are requested by certain HTTP servers (especially for REST services).

NOTE
HTTP Request action already uses a built-in subscription key, so you don't need to enter
Ocp-Apim-Subscription-Key value in Additional HTTP Headers.

You must provide Ocp-Apim-Subscription-Key value if you make a call to Cloud API from
non-NiceLabel application.

• Additional headers: hard coded headers or headers obtained from variable values. To access the
variables, click the small arrow button to the right hand side of the text area. For more information,
see section Combining Values in an Object in NiceLabel 10 user guide.
Certain HTTP servers (especially for REST services) require custom HTTP headers to be included in
the message. This section allows you to provide the required HTTP header.
HTTP headers must be entered using the following syntax:

header field name: header field value

For example, to use the header field names Accept, User-Agent and Content-Type, you could
use the following syntax:

Accept: application/json; charset=utf-8

User-Agent: Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML,

like Gecko) Chrome/31.0.1650.63 Safari/537.36

Content-Type: application/json; charset=UTF-8

You can hard code the header field names, or you can obtain their values from trigger variables. Use
as many custom header fields as you want, just make sure that each header field is placed in a new
line.

NOTE
The entered HTTP headers override the already defined headers elsewhere in the
action properties, such as Content-Type.

Action Execution and Error Handling

200

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

5.14.11. Web Service

Web Service is a method of communication between two electronic devices or software instances. Web
Service is defined as a data exchange standard. It uses XML format to tag the data, SOAP protocol is used
to transfer the data, and WSDL language is used to describe the available services.

This action connects to a remote Web service and executes the methods on it. Methods can be described
as actions that are published on the Web Service. The action sends inbound values to the selected method
in the remote Web service, collects the result and saves it in selected variables.

201

After importing the WSDL and adding a reference to the Web Service, its methods are listed in the Method
combo box.

NOTE
You can transfer simple types over the Web Service, such as string, integer, boolean, but not
the complex types. The WSDL must contain single binding only.

NOTE
You plan to print product labels. Your trigger would receive only a segment of the required
data. E.g. the trigger receives the value for Product ID and Description variables,
but not the Price. The price information is available in a separate database, which is
accessible over Web service call. Web service defines the function using a WSDL definition.
For example, function input is Product ID and its output is Price. The Web Service
action sends Product ID to the Web service. It executes and makes an internal look up in
its database and provide the matching Price as the result. The action saves the result in a
variable, which can be used on the label.

About group identifies the selected action.

• Name: allows you to define a custom action name. This makes actions easily recognizable on the
solution's list of actions. By default, the action name is taken from its type.

• Description: custom information about the action. Enter a description to explain the purpose and role
of action in a solution.

• Action type: read-only information about the selected action type.

Web Service Definition group includes the following settings:

NOTE
This action supports Internet Protocol version 6 (IPv6).

• WSDL: location of WSDL definition.
WSDL is usually provided by the Web service. Typically, you would enter the link to WSDL and click
Import to read the definition. If facing troubles while retrieving the WSDL from online resource, save
the WSDL to a file and enter the path with file name to load the methods from it. NiceLabel 10
automatically detects if the remote Web Service uses a document or RPC syntax, and whether it
communicates appropriately or not.

• Address: address at which the Web Service is published.
Initially, this information is retrieved from the WSDL, but can be updated before the action is executed.
This is helpful for split development / test / production environments, where the same list of actions
is used, but with different names of servers on which the Web Services run.

202

Fixed content, mix of fixed and variable content, or variable content alone are permitted. To enter
variable content, click the button with arrow to the right hand side of data area and insert variable
from the list. For more information, see section Combining Values in an Object in NiceLabel 10 user
guide.

• Method: methods (functions) that are available for the selected Web service. The list is automatically
populated by the WSDL definition.

• Parameters: input and output variables for the selected method (function).
Inbound parameters expect an input. For testing and troubleshooting reasons, you can enter a
fixed value and see the preview result on-screen. Typically, you would select a variable for inbound
parameter. Value of that variable will be used as input parameter. The outbound parameter provides
the result from the function. You must select the variable that will store the result.

• Timeout: timeout after which the connection to a server is established.

NOTE
Web Service action is executed on Web Printing Server and not on the Web Printing Client.

If you use Web Service action in NiceLabel Web Client and you want to execute locally
(bypassing the Web Printing Server), add the prefix "LOCAL_" to your action name.

Authentication enables basic user authentication. This option defines user credentials that are necessary
to establish an outbound call to a remote web service.

• Enable basic authentication: enables defining the Username and Password that can be entered
manually or defined by variable values. Select Data sources to select or create the variables.

• Show password: uncovers the masked Username and Password characters.
Details about security concerns, are available in section Securing Access to your Triggers in NiceLabel
Automation user guide.

Data Preview field allows you to perform a test Web service execution.

• Execute button executes a Web service call.
It sends values of inbound parameters to the Web service and provides the result in the outbound
parameter. Use this functionality to test the execution of a Web service. You can enter values for
inbound parameters and see the result on-screen. When satisfied with execution, replace the entered
fixed value for inbound parameter with a variable from the list.

203

Action Execution and Error Handling

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

5.15. Other

5.15.1. Get Label Information

This action returns structural information about the associated label file. It provides information about the
label dimensions, printer driver and lists all label variables, and their main properties.

204

The Get Label Information action returns the original information as saved in the label file. Additionally,
it also provides information after the print process has been simulated. The simulation ensures that all
labels variables get the value as they would have during a normal print. Also, the label height information
provides correct dimensions in case you define the label as a variable-height label (in this case, the label
size depends on the amount of data to be printed). The action returns the dimensions for a label size, not
for a page size.

The action saves label structure information in a selected variable. You can then send the data back to the
system using the HTTP Request action (or a similar outbound data connectivity action), or send it back in
trigger response, if you use a bidirectional trigger.

NOTE
This action must be nested under the Open Label action.

Variable group selects or creates a variable that stores the structural information about a label.

• Name: specifies the variable name. Select or create a variable which stores the XML-formatted label
information.

• If you want to use the information from the XML inside this trigger, you can define the and
execute it with Use Data Filter action (Automation Builder only).

• If you want to return the XML data as a response in your HTTP or Web Service trigger, use this
variable directly in the Response data field of the trigger configuration page.

• If you want to save the XML data to a file, use the Save Data to File action.

Additional settings group allows you to enable the use of provisional values.

• Use provisional values: replaces missing data source values with provisional values.

TIP
See section Variable in NiceLabel 10 Designer user guide for detailed description of
provisional values.

Sample Label Information XML

The sample below presents a structural view of the label elements and their attributes as they are returned.

<?xml version="1.0" encoding="UTF-8"?>

<Label>

205

 <Original>

 <Width>25000</Width>

 <Height>179670</Height>

 <PrinterName>QLS 3001 Xe</Printer>

 </Original>

 <Current>

 <Width>25000</Width>

 <Height>15120</Height>

 <PrinterName>QLS 3001 Xe</Printer>

 </Current>

 <Variables>

 <Variable>

 <Name>barcode</Name>

 <Description></Description>

 <DefaultValue></DefaultValue>

 <Format>All</Format>

 <CurrentValue></CurrentValue>

 <IncrementType>None</IncrementType>

 <IncrementStep>0</IncrementStep>

 <IncrementCount>0</IncrementCount>

 <Length>100</Length>

 </Variable>

 </Variables>

</Format>

Label Information XML Specification

This section contains a description of the XML file structure as returned by the Get Label Information
action.

NOTE
All measurement values are expressed in the 1/1000 mm units. For example width of
25000 is 25 mm.

• <Label>: this is a root element.

• <Original>: specifies label dimensions and printer name as stored in the label file.

• Width: this element contains the original label width.

• Height: this element contains the original label height.

• PrinterName: this element contains the printer name for which the label has been created for.

• Current: specifies label dimensions and printer name after the simulated print has been completed.

• Width: this element contains the actual label width.

206

• Height: this element contains the actual label height. If a label is defined as a variable-height
label, it can increase along with label objects. For example, Text Box and RTF object sizes may
increase in vertical direction and cause the label to expand as well.

• PrinterName: this element contains printer name that will be used for printing.

Example

A printer different from the original one is going to be used if the original printer driver is not
installed on this computer, or if the printer has been changed using the Set Printer action.

• <Variables> and <Variable>: the element Variables contains a list of all prompt label variables,
each defined in a separate Variable element. The prompt variables are the ones listed in the print
dialog box when you print label from NiceLabel 10 . If there are no prompt variables defined in the
label, the element Variables is empty.

• Name: contains variable name.

• Description: contains variable description.

• DefaultValue: contains default value as defined for the variable during the label design process.

• Format: contains the acceptable type of variable content (characters).

• IsPrompted: contains information whether or not the variable is prompted at print time or not.

• PromptText: contains text that prompts the user for value input.

• CurrentValue: contains the actual value that is used for printing.

• IncrementType: contains information, if the variable is defined as a counter or not. If identified
as a counter, it tells what kind of counter it is.

• IncrementStep: contains information about the counter step. Counter value increments/
decrements for this value on the next label.

• IncrementCount: contains information about the point of counter value incrementing/
decrementing. Usually, the counter changes value on every label, but that can be changed.

• Length: contains maximum number of stored characters in a variable.

• IsPickListEnabled: contains information whether or not the user selects variable values from a
pick list.

• iPickListValues: contains the actual (selectable) pick list values.

XML Schema Definition (XSD) for Label Specification XML

<?xml version="1.0" encoding="utf-8"?>

<xs:schema id="Format" xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="Label">

 <xs:complexType>

207

 <xs:all>

 <xs:element name="Original">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Width" type="xs:decimal"

minOccurs="1" />

 <xs:element name="Height" type="xs:decimal"

minOccurs="1" />

 <xs:element name="PrinterName" type="xs:string"

minOccurs="1" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Current">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Width" type="xs:decimal"

minOccurs="1" />

 <xs:element name="Height" type="xs:decimal"

minOccurs="1" />

 <xs:element name="PrinterName" type="xs:string"

minOccurs="1" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Variables">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Variable" minOccurs="0"

maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Name"

type="xs:string" minOccurs="1" />

 <xs:element name="Description"

type="xs:string" minOccurs="1" />

 <xs:element name="DefaultValue"

type="xs:string" minOccurs="1" />

 <xs:element name="Format"

type="xs:string" minOccurs="1" />

 <xs:element name="CurrentValue"

type="xs:string" minOccurs="1" />

 <xs:element name="IncrementType"

type="xs:string" minOccurs="1" />

 <xs:element name="IncrementStep"

type="xs:integer" minOccurs="1" />

208

 <xs:element name="IncrementCount"

type="xs:integer" minOccurs="1" />

 <xs:element name="Length"

type="xs:string" minOccurs="1" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:all>

 </xs:complexType>

 </xs:element>

</xs:schema>

Action Execution and Error Handling

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

209

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

5.15.2. Execute Script

This action enhances the software functionality by using custom VBScript or Python scripts. Use this
function if the built-in actions don't meet your data manipulation requirements.

Scripts can include the trigger variables – both internal variables and the variables defined or imported from
labels.

Make sure that Windows account under which the service runs has the privileges to execute the commands
in the script.

NOTE
The script type is configured per trigger in the trigger properties. All Execute Script actions
within a single trigger must be of the same type.

About group identifies the selected action.

• Name: allows you to define a custom action name. This makes actions easily recognizable on the
solution's list of actions. By default, the action name is taken from its type.

• Description: custom information about the action. Enter a description to explain the purpose and role
of action in a solution.

• Action type: read-only information about the selected action type.

Script editor offers the following features:

• Insert data source: inserts an existing or newly created variable into the script.

• Verify: validates the entered script syntax.

• Script editor: opens the editor which makes scripting easier and more efficient.

Action Execution and Error Handling

210

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

5.15.2.1. Script Editor

NiceLabel 10 provides a script editor which makes your Python or VBScript scripting easier, error-free and
time efficient.

211

The selection of scripting languages that should be used in Script editor differs between NiceLabel
Designer Pro and Automation Builder:

• In Designer, double-click on the form design surface to open Form Properties >Additional Settings >
Form Scripting Language.

• In Automation Builder, go to Configuration items > click Edit to open trigger properties >Settings >
Other > Scripting.

NiceLabel 10 uses .NET variant of Python named IronPython. It works as a fully compatible implementation
of Python scripting language which also supports .NET methods.

Editor Ribbon includes commonly used commands which are distributed over multiple functional groups.

• Clipboard group offers Cut, Copy, Paste and Delete commands.

• Undo Redo group allows undoing or repeating script editing actions.

• File group allows loading and saving scripts in a file.

• Load from file: loads a script from an external previously saved textual file.

• Save to file: stores the currently edited script in a textual file.

• Editing group allows finding and replacing strings in a script.

• Find: locates the entered string in the script.

• Replace: replaces string in the script.

212

• Insert group: Data Source command inserts existing or newly defined data sources into the script.

• Script group: Validate script command validates of the entered script's syntax.

Available scripting elements contain all available script items which can be used when building a script.
Double-click the element or click the Insert button to insert the element at cursor position into the script.

Element description provides basic information about the inserted script element.

Error list includes the errors which are reported after the Validate script command is run.

5.15.3. Message

Use the Message action to write custom strings (For example, custom warning messages, variable
values, and comments). The message action creates custom entries in your Automation Manager log
files. Automation log files contain application-generated information, warnings, and error descriptions. Use
Message logs to track your message variables during configuration, troubleshooting, and debugging.

To configure Message actions, do the following:

1. Go to All Actions and select Message from the drop-down Action menu.

2. Rename your action and insert your description.

3. Configure your message Content: Caption, Message, and Message Type.
Message Types include:

• Information

• Error

• Warning

4. Expand Show execution and error handling options to set conditions for showing messages,
ignoring failures, and saving Automation errors to variables.

NiceLabel Automation Manager displays colored Messages (For example, red errors and orange warnings)
in your Automation Log pane.

Example:

You print Pasta labels with Automation. Your trigger receives variable values from ERP generated CSV files.
When your variable "Package" value is greater than 4, Automaton Log creates a warning.

213

Configuring Message actions.

Your result in Automation Manager looks like this:

NOTE
When you set your Message severity to Error, your triggers do not go to error state. Printing
is still possible.

Use Message logs for:

• configuration troubleshooting

• debugging your solutions

214

• tracking values of your selected variables

displaying your customized warnings and error messages

Action Execution and Error Handling

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

5.15.4. Verify License

This action reads the activated license and executes the actions nested below this action only if a certain
license type is used.

TIP
Verify License action provides protection of your trigger configuration from being run on
unauthorized machines.

215

NOTE
License key that activates software can also encode the Solution ID. This is the unique
number that identifies the solution provider that sold the NiceLabel 10 license.

If the configured Solution ID matches the Solution ID encoded in the license, the target machine is
permitted to run nested actions, effectively limiting execution to licenses sold by the solution provider.

The triggers can be further encrypted and locked so only authorized users are allowed to open the
configuration. For more information, see section Protecting Trigger Configuration in NiceLabel Automation
user guide.

About group identifies the selected action.

• Name: allows you to define a custom action name. This makes actions easily recognizable on the
solution's list of actions. By default, the action name is taken from its type.

• Description: custom information about the action. Enter a description to explain the purpose and role
of action in a solution.

• Action type: read-only information about the selected action type.

License Information group allows you to select the license ID.

• License ID: defines the ID number of the licenses that are allowed to run the nested actions.

• If the entered value is not the License ID that is encoded in the license, the nested actions is not
executed.

• If the entered value is set to 0, the actions execute if a valid license is found.

NOTE
Digital Partner UID can also be used as License ID. This option is available for members of
NiceLabel Digital Partner Program.

Action Execution and Error Handling

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

216

http://www.nicelabel.com/partners/digital

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

5.15.5. Try

This action allows you to:

• Monitor errors while the actions are being executed.

• Run an alternative set of actions if an error occurs.

Try action creates Do and On error placeholders for actions. All actions that should execute if a trigger
fires, must be placed inside the Do placeholder. If no error is detected when executing actions from Do
placeholder, these are the only actions that ever execute. However, if an error does happen, the execution of
actions from Do placeholder stops and the execution switches over to actions from On error placeholder.

NOTE
You must enable Synchronous Printing to catch errors with On error.

217

Example

If any action in the Do placeholder fails, the action execution stops and resumes with the actions in the On
Error placeholder. If Try would be placed on its own, that would terminate the trigger execution. In our case,
Try is nested under the For loop action. Normally, any error in Do placeholder would also stop executing the
For loop action, even if there are still further steps until the For loop is complete. In this case, the Save Data
to File action does not execute as well. By default, each error breaks the entire trigger processing.

However, you can also continue with the execution of the next iteration in the For loop action. To make
this happen, enable the Ignore failure option in the Try action. If the data from the current step in For Loop
causes an error in the Do placeholder, the actions from On Error execute. After that, the Save Data to File in
level 2 execute and then the For loop action continues to execute in the next iteration.

TIP
This action provides for an easy error detection and execution of "feedback" or "reporting"
actions. For example, if an error happens during trigger processing, you can send out
a warning. For more information, see section Print Job Status Feedback in NiceLabel
Automation user guide.

NOTE
Important! The Try action gives expected results with asynchronous actions. If your Try
loop includes the Print Label action that fails, the action execution still completes the Try
loop, and does not switch to the On error actions as expected. The result for not switching
to the On error actions is the Print Label action that runs in synchronous mode by default.
To avoid this, make sure supervised printing is on. Go to trigger settings > Other > Feedback
from the Print Engine and enable Supervised printing.

Read more about supervised printing in section Synchronous Print Mode.

218

About group identifies the selected action.

• Name: allows you to define a custom action name. This makes actions easily recognizable on the
solution's list of actions. By default, the action name is taken from its type.

• Description: custom information about the action. Enter a description to explain the purpose and role
of action in a solution.

• Action type: read-only information about the selected action type.

Action Execution and Error Handling

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

5.15.6. XML Transform

219

This action transforms an XML document into another document using the provided transformation rules.
The rules must be provided by a .XSLT definition in a file, or by another variable source.

The action allows you to convert complex XML documents into XML documents with a more manageable
structure. XSLT stands for XSL Transformations. XSL stands for Extensible Stylesheet Language, and
works as a stylesheet language for XML documents.

XML Transform action stores the converted XML document in the selected variable. The original file is left
intact on the disk. If you want to save the converted XML document, use action Save Data to File.

NOTE
Typically, you would use the action to simplify XML documents provided by the host
application. Defining XML filter for the complex XML document might take a while, or in
some cases the XML is just too complex to be handled. As alternative, you would define
the rules to convert XML into structure that can be easily handled by the XML filter, or
even skipping the need for a filter altogether. You can convert XML document into natively-
supported XML, such as Oracle XML and then simply executing it using the Run Oracle XML
Command File action.

About group identifies the selected action.

• Name: allows you to define a custom action name. This makes actions easily recognizable on the
solution's list of actions. By default, the action name is taken from its type.

• Description: custom information about the action. Enter a description to explain the purpose and role
of action in a solution.

• Action type: read-only information about the selected action type.

Data Source group defines the XML data to be transformed.

• Use data received by the trigger: defines that the trigger-received data it used. The same result can
be achieved by enabling the internal variable DataFileName and using the contents of file it refers
to. For more information, see section Using Compound Values in NiceLabel Automation user guide.

• File name: defines the path and file name of the file containing the XML file to be transformed.
Contents of the specified file is used. Data source enables the file name to be defined dynamically.
Select or create a variable that contains the path and/or file name. The action opens the specified file
and applies transformation on file contents, which must be XML- formatted.

• Variable: selects or creates the variable that contains printer stream. The contents of selected
variable is used and it must contain XML structure.

Transformation Rules Data Source (XSLT) group defines the transformation rules (.XSLT document) that
are going to be applied to the XML document.

• File name: defines path and file name of the file containing the transformation rules (.XSLT).

• Custom: defines custom contents. You can use fixed content, mix of fixed and variable content, or
variable content alone. To insert a variable content, click the button with arrow to the right of data

220

area and insert variable from the list. For more information, see section Using Compound Values in
NiceLabel Automation user guide.

Save Result to Variable group defines the variable to store the transformed file.

• Variable: selects or creates a variable that is going to contain the result of the transformation
process. E.g. if you use the rules that convert complex XML into simpler XML, the content of the
selected variable is a simple XML file.

Action Execution and Error Handling

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

5.15.7. Group

This action configures multiple actions within the same container. All actions placed below the Group
action belong to the same group and are going to be executed together.

221

This action provides the following benefits:

• Better organization and displaying of action workflow. You can expand or collapse the Group action
and display the nested actions only when needed. This helps keep the configuration area cleaner.

• Defining conditional execution. You can define a condition in the Group action just once, not
individually for each action. If the condition is met, all actions inside the Group are executed. This
can save a lot of configuration time and can reduce the number of configuration errors. Group action
provides a good method to define IF..THEN execution rules for multiple actions.

About group identifies the selected action.

• Name: allows you to define a custom action name. This makes actions easily recognizable on the
solution's list of actions. By default, the action name is taken from its type.

• Description: custom information about the action. Enter a description to explain the purpose and role
of action in a solution.

• Action type: read-only information about the selected action type.

Action Execution and Error Handling

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

222

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

5.15.8. Log Event

This action logs an event to NiceLabel Control Center for history and troubleshooting purposes.

NOTE
To make Log event action active, make sure that print job logging to NiceLabel Control
Center is enabled.

About group identifies the selected action.

• Name: allows you to define a custom action name. This makes actions easily recognizable on the
solution's list of actions. By default, the action name is taken from its type.

• Description: custom information about the action. Enter a description to explain the purpose and role
of action in a solution.

• Action type: read-only information about the selected action type.

Event Data group provides information about the logged event.

• Information: basic description of the event that will be included in the NiceLabel Control Center event
log. Up to 255 characters are allowed in this area.

• Details: detailed description of the event to be logged in the NiceLabel Control Center. Up to 2000
characters are allowed in this area.

TIP
The descriptions entered in Information and Details fields allows you to filter out the events
in Control Center All Activities History. When working with Control Center, go to History >
All Activities > Define filter. For more details, read the Control Center User Guide.

Action Execution and Error Handling

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

223

https://help.nicelabel.com/hc/categories/360003767257-Control-Center

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

5.15.9. Preview Label

This action executes the print process and provides label image preview. By default, the preview is saved to
disk as JPEG image, but you can choose other image format. You can also control the size of the created
preview image. The action generates preview for a single label.

Once you have the label preview created in a file, you can send the file to a third party application using one
of the outbound actions, such as Send Data to HTTP, Send Data to Serial Port, Send Data to TCP/IP Port,
or use it as response message from bidirectional triggers, such as and Web Service Trigger. The third party
application can take the image and show is as label preview to the user.

About group identifies the selected action.

• Name: allows you to define a custom action name. This makes actions easily recognizable on the
solution's list of actions. By default, the action name is taken from its type.

224

• Description: custom information about the action. Enter a description to explain the purpose and role
of action in a solution.

• Action type: read-only information about the selected action type.

Preview group defines the file to be previewed and its details.

• File name: specifies the path and file name. If hard-coded, the same file is used every time. If you
only use the file name without path, the folder with configuration file (.MISX) is used. You can use
a relative reference to the file name, where folder with .MISX file is used as root folder. Data source
option enables variable file name. Select or create a variable that contains the path and/or file name
after a trigger is executed. Usually, the value to the variable is assigned by a filter.

• Image type: specifies the image type which is used for saving the label preview.

• Preview label back side (2-sided labels): enables preview of the back label. This is useful, if you use
double-sided labels and want to preview the label's back side.

Example

For example, if your label template defines dimension as 4" × 3" and the label printer resolution is set to 200
DPI, the resulting preview image has dimensions of 800 × 600 pixels. Width equals 4 inches times 200 DPI,
which results in 800 pixels. Height equals 3 inches times 200 DPI, which results in 600 pixels.

Additional settings group allows you to enable the use of provisional values.

• Use provisional values: replaces missing data source values with provisional values and displays
them in the label preview.

TIP
Provisional value defines a custom placeholder variable value in an object while
designing labels or forms. In a label object, the provisional value is replaced by the
real variable value at print time.

Action Execution and Error Handling

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

225

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

5.15.10. Create Label Variant

This action allows you to create a review-ready variant of an existing label. Label objects in such variants
have locked data source values. Their content is defined by the current value of the applicable data source.

The purpose of creating a review-ready variant of a label with “locked” data sources is to make the label
suitable for approval process in which data and template need to be approved together. Instead of viewing
a label without defined content for its objects, the approver reviews a variant with defined values. This
allows him to quickly see and approve the final label layout with actual values that are going to be used for
printing.

TIP
Label approval process is applicable to labels that are stored in Control Center Document
Storage. You can apply various approval workflow types for the stored labels and label
variants. Approval workflow selection depends on the requirements of your business
environment. See NiceLabel 10 Control Center User Guide for more details.

About group identifies the selected action.

• Name: allows you to define a custom action name. This makes actions easily recognizable on the
solution's list of actions. By default, the action name is taken from its type.

226

• Description: custom information about the action. Enter a description to explain the purpose and role
of action in a solution.

• Action type: read-only information about the selected action type.

Settings group defines the label file to be converted and the output file (label variant).

• Label name: the name of the label file to be converted into a review-ready variant with locked data
source values. Data source dynamically defines the Label name using an existing or newly created
variable.

• Print time data sources: this option allows you to define the data sources whose values are going
to be provided at the actual print time. If a data source is listed in this field, its value is not locked
and can be provided at print time. Typical examples are data sources for production values like LOT
number, expiry date, etc.

TIP
Insert only data source names without square brackets, separated by commas or
listed in a column using Enter key.

• Output file name: the name of the label variant file that is going to be ready for review. Data source
dynamically defines the Label name using an existing or newly created variable.

There are several rules that apply to the review-ready label variant:

1. Data source values are locked by default. To exclude the data sources from being locked, list them
in Print time data sources field to keep them active on the review-ready label. You can define their
values at print time.

2. Counter variables, functions, database fields and global variables are converted to non-prompted
variables.

3. Graphics are embedded.

4. The destination label variant stored in NiceLabel Control Center Document Storage is automatically
checked in. Original Label name and Print time data sources are used as check-in comment.

5. Label variants can be opened in NiceLabel 10 Designer in locked state.

6. Label files generated with this action cannot be imported.

7. If label variants are stored in printer memory, the recall command can only provide values for print
time data sources.

8. If using NiceLabel Control Center, label preview in Document Storage allows editing of print time
data sources.

9. Current time and current date variables cannot be set as Print time data sources on the review-
ready label variant.

Action Execution and Error Handling

227

Each action can be set as a conditional action. Conditional actions only run when the defined conditions
allow them to be run. To define these conditions, click Show execution and error handling options.

Execution options are:

• Enabled: specifies if the action is enabled or disabled. Only enabled actions will execute. This
functionality may be used while testing a form.

• Condition: defines one-line programming expression that must provide a Boolean value (true or
false). When the result of the expression is true, the action will execute. Condition offers a way to
avoid executing actions every time.

Error handling options are:

• Ignore failure: specifies whether an error should be ignored or not. With Ignore failure option enabled,
the execution of actions continues even if the current action fails.

NOTE
Nested actions that depend on the current action do not execute in case of a failure.
The execution of actions continues with the next action on the same level as the
current action. The error is logged but does not break the execution of the action.

Example

At the end of printing, you might want to send the status update to an external application using HTTP
Request action. If the printing action fails, action processing stops. In order to execute the reporting even
after the failed print action, the Print Label action must have the option Ignore failure enabled.

• Save error to variable: allows you to select or create a variable to save the error to. The same cause
of the error is also saved to internal variables ActionLastErrorId and ActionLastErrorDesc.

228

6. Running and Managing Triggers

6.1. Deploying Configuration
After you have configured and tested the triggers in Automation Builder, deploy the configuration using
NiceLabel Automation service and start the triggers. At that time, the triggers become active and start
monitoring the defined events.

To deploy the configuration, use any of the following methods.

Deploying from Automation Builder

1. Start Automation Builder.

2. Load the configuration.

3. Go to Configuration Items tab.

4. Click the Deploy Configuration button in the Deploy ribbon group.
The configuration loads inside Automation Manager running on the same machine.

5. Start the triggers you want to activate.

If this configuration has already been loaded, the deployment forces its reload, while keeping the triggers
status active.

Deploying from Automation Manager

1. Start Automation Manager.

2. Go to Triggers tab.

3. Click +Add button and browse for configuration on the disk.

4. Start the triggers you want to make active.

229

Deploying using command-line
To deploy the configuration C:\Project\Configuration.MISX and to run the included trigger named
as CSVTrigger using command- line, enter the following:

NiceLabelAutomationManager.exe ADD c:\Project\Configuration.MISX

NiceLabelAutomationManager.exe START c:\Project\Configuration.MISX CSVTrigger

For more information, see section Controlling the Service with Command-line Parameters.

6.2. Event Logging Options
NiceLabel Automation logs events on various locations, depending on the deployment scenario. The first
two logging features are available with every NiceLabel Automation product level.

• Logging to log database: Logging to internal log database is always enabled. Internal log database
keeps record of all events with all details. When viewing the logged information, you can use filters to
display events that match the rules. For more information, see section Using Event Log.
The data is stored in an SQLite database. This is a temporary log repository – the events are removed
from the database on a weekly basis. The housekeeping interval is configurable in Options. Records
of old events are deleted from the database, but the database does not get compacted (vacuumed),
so it might still occupy the disk space. To compact the database, use a 3rd party SQLite management
software.

• Logging to Windows Application Event Log: Important events are saved to Windows Application
Event Log in case NiceLabel Automation fails to start. This ensures a secondary resource for logged
events.

• Logging to Control Center: Logging to Control Center is available in LMS Enterprise and LMS Pro
products. Control Center is a Web-based management console that records all events on one or
more NiceLabel Automation servers. The data is stored in Microsoft SQL Server database. You can
search through the collected data, and additionally, the application also supports automated alerts in
case of certain events, printer management, document storage, revision control system (versioning),
workflows, and label reprinting.

NOTE
For more information, see the Control Center user guide.

6.3. Managing Triggers
Automation Manager is the management part of NiceLabel Automation software. When using Automation
Builder for configuring the triggers, you are using Automation Manager to deploy and run the triggers in

230

https://help.nicelabel.com/hc/categories/360003767257-Control-Center

production environment. The application allows you to load triggers from different configurations, see their
live status, start/stop them, and see execution details in log file.

You can customize the view on the loaded configurations and their triggers. The last view is remembered
and applied when you run Automation Manager for the next time. If you enable view By status, triggers
from all open configurations that share the same status are displayed together. If you enable view by
Configurations, triggers from the selected configuration are displayed together, no matter what their status
is. Trigger status is color-coded in the trigger icon for easier identification.

The displayed trigger details change in real time – as soon as the trigger events are detected. You can
see the information items, such as trigger name, type of trigger, how many events have already been
processed, how many errors were detected, and the time that passed since the last event. If you hover your
mouse above the number of already processed triggers, you see the number of trigger events waiting to be
processed.

NOTE
The loaded configuration is cached in memory. If you make a change to the configuration in
Automation Builder, the Automation Manager does not automatically apply it. To apply the
change, reload the configuration.

Loading configuration
To load a configuration, click the +Add button and browse for the configuration file (.MISX). Triggers
from the configuration load in suspended state. You have to start triggers to make them active. For more
information, see section Deploying Configuration.

The list of loaded configurations and statuses for each trigger is remembered. If the server is restarted for
whatever reason, NiceLabel Automation Service restores the trigger state from before the restart.

Configuration reloading and removal
After you update and save the configuration in Automation Builder, the changes are not automatically
applied in Automation Manager. To reload the configuration, right-click the configuration name, and
click Reload Configuration. This reloads all triggers. If you have file caching enabled, the reload forces
synchronization off all files that are used by the triggers.

Starting / stopping triggers
If you load triggers from a configuration, their default state is stopped. To start the trigger, click the Start
button in the trigger area. To stop the trigger, click Stop. You can select more triggers from the same
configuration and start / stop all of them simultaneously.

You can also control starting/stopping of a configuration using command-line. For more information, see
section Controlling the Service with Command-line Parameters.

231

urn:resource:component:50725

Handling trigger conflicts
Triggers can be in error state due to below listed situations. You cannot start triggers in error until you
resolve the issue.

• Trigger not configured correctly or completely: In this case, the trigger is not configured, mandatory
properties are not defined, or actions defined for this printer are not configured. You cannot start such
trigger.

• Trigger configuration overlaps with another trigger: Two triggers cannot monitor the same event.

Example

Two file triggers cannot monitor the same file. Two HTTP triggers cannot accept data on the same port. If
the trigger configuration overlaps with another trigger, the second trigger cannot run because the event is
already captured by the first trigger. For more information, see Log pane for that trigger.

Resetting the error status
When the trigger execution causes an error, the trigger icon color changes to red, trigger receives error
status, and event details are logged to the logging database. Even if all of the upcoming events complete
successfully, the trigger remains in error state until you confirm that you understand the error and that you
want to clear the status. To acknowledge the error, click the icon next to the error counter under trigger
details.

Using notification pane
Notification pane is the area above the list of triggers in the Triggers tab where important messages are
displayed. Notification area displays application status messages, such as "Trial mode" or "Trial mode
expired", or warning messages, such as "Tracing has been enabled".

Viewing Logged data
Every trigger activity is logged in the database, including trigger start/stop events, successful execution of
action and errors encountered during processing. Click the Log button to see logged events just for the
selected trigger. For more information, see section Using Event Log.

6.4. Using Event Log
All activities in NiceLabel Automation are logged to a database to enable history and troubleshooting. When
you click the Log button in the Triggers tab, events for that particular trigger are displayed. The log pane
displays information for all events that are related to the defined filter.

232

Logging data is useful for troubleshooting. If a trigger or action cannot be executed, the application records
an error description in the log file that helps you identify and resolve the issue.

NOTE
The default data retention time is 7 days and is configurable in Options. To minimize log
database size on busy systems you might want to reduce the retention period.

233

Filtering events
The configurable filters:

• Configuration and triggers: Specifies which events to display – events from the selected trigger, or
events from all triggers in the selected configuration.

• Logged period: Specifies the time frame in which the events occurred. Default time frame is Last 5
minutes.

• Event level: Specifies the type (importance) of the events you want to display:

• Error is the type of event that breaks the execution.

• Warning is the type of event during which errors happen, but are configured to be ignored.

• Information is the type of event that logs all non-erroneous information.

NOTE
In case of errors and warnings, Automation also displays the entire sequence of
successfully executed actions in a trigger.

Log level is configurable in Options.

• Filter by description: You can display all events that contain the provided string. Use this option to
troubleshoot busy triggers. The filter is applied to the trigger description field.

234

Clearing the log database
You can clear the log from Automation Builder. To clear the log database, click the Clear Log button.

WARNING
Use log clearing with caution, because it is an irreversible command. Clear log removes ALL
logged events from the database and is applied to all triggers, not just to the current trigger.

Resetting the errors counter

You can reset the errors counter in Automation Manager by clicking the icon.

Resetting the counter doesn't remove errors from the log.

235

Automated log database cleanups
Automation allows you to set up regular automated cleanups for log entries about the successfully
executed triggers. This is how you make sure the growing log database does reduce the system
performance.

To schedule the automated log database cleanups:

1. Open file product.config in text editor.
The file is located here:

%PROGRAMDATA%\NiceLabel\NiceLabel 10\product.config

2. Create a backup copy of the product.config file.

3. Automation uses two parameters to clean up the triggers. Add these two parameters to your
product.config file.

• /IntegrationService/LogSuccessfulTriggerPurgeInterval>. This parameter
defines the length of the time interval between two consecutive cleanups. Type the interval
length in minutes.

• /IntegrationService/LogSuccessfulTriggerPurgeRemovalAge>. This parameter
checks the age of the messages about the successfully executed actions.

<configuration>

 <IntegrationService>

 <LogSuccessfulTriggerPurgeInterval>1</

LogSuccessfulTriggerPurgeInterval>

<LogSuccessfulTriggerPurgeRemovalAge>1<LogSuccessfulTriggerPurgeRemovalAg

e>

 </IntegrationService>

</configuration>

6.5. If your configuration fails to load...
When deployed, your Automation configuration runs as a Windows process in the background. The
Automation Manager using which you manage and monitor your configuration is merely an interface that
represents the actual Automation services. In certain cases, the configuration that you developed, tested,
and deployed fails to load. There are multiple possible reasons. Follow the proposed solutions to get your
Automation configuration up and running:

1. Configuration file was removed, renamed or moved to another location. You can check to which file
your deployed configuration points in Automation Manager:

236

Make sure the .misx configuration file is available at the specified location, and the it still has the
same name as in Automation Manager. If you moved or renamed your configuration file, open it in
Automation Builder and deploy the configuration again.

2. Configuration file is on a network location which cannot be accessed due to network connection
problem. Check the network connectivity of your computer/server that stores the configuration.

3. Automation service does not have permission to access the configuration file. Check permissions
for user account used by Automation service. This error indicates issues with the Automation
service running in the background.
Possible solutions are:

• If your configuration file is stored on a local disk or network share, check that you are running
your configuration under your local user or domain credentials. Running your configuration
under Local System Account may restrict access to shared network folders and printers.
Open Services, and see the properties of the NiceLabel Automation Service 10.

• If your configuration file is stored in the document storage of your Control Center, these are
the possible scenarios:

• Your Control Center uses the application authentication. The reason why your
configuration fails to load, is incorrect Automation service identity. The Automation
service identity must match the user identity as defined in your Control Center.
You can find your configuration's Automation service identity in Automation Manager >
About tab.

237

• Your Control Center uses the Windows authentication. Your configuration fails to load
because you try to run it as a user with insufficient privileges on your Control Center.
Check under which user you are running the Automation service. Open Services, and see
the properties of the NiceLabel Automation Service 10.

NOTE
In both cases, see NiceLabel Control Center user guide for more details
on the available authentication methods and user privileges.

238

7. Performance and Feedback Options

7.1. Parallel Processing

NiceLabel Automation supports parallel processing for both – inbound and outbound processing. This
ensures maximum efficiency on any system with installed software. NiceLabel Automation executes
multiple tasks simultaneously, while still preserving the order in which the triggers have been added.
Throughput of label job processing depends greatly on the hardware in use.

Inbound Parallel Processing
You can run many triggers on the same machine. They all simultaneously respond to changes in the
monitored events. Each trigger remembers the data of unprocessed events on the queue list. This list
buffers incoming data in case none of the print processes is available at the moment. As soon as one
of the print processes becomes available, the first job is taken from queue using FIFO (First In, First Out)
principle. This ensures the correct order of inbound data processing. However, it does not ensure the FIFO
principle for printing. See the next section below.

NOTE
Parallel processing means more than just running multiple triggers at once. Each trigger
can also allow concurrent connections. TCP/IP, HTTP, and Web Service triggers all accept
concurrent connections from many clients. Also, file trigger can be configured to monitor a
set of files in a folder. This is configurable by file mask.

239

Outbound Parallel Processing
Usually, the result of a trigger is label printing process. For this process, you are using data received by the
trigger to print it on labels. NiceLabel Automation service runs the printing processes (aka "print engines")
in parallel in the background. Modern processors have two or more independent central processing units
called cores. Multiple cores can run multiple instructions at the same time, increasing the overall speed of
processing. In case of NiceLabel Automation, multiple cores increase print job processing, and ultimately
label printing performance.

By default, each NiceLabel Automation instance runs each printing process as a separate thread on every
available core. The more powerful CPU you have, the more throughput is available. This maximizes the
usage of the available CPU power. The software installs with reasonable defaults defining that every
available core accommodates a single thread for print processing. Under normal circumstances, there is
no need to make any changes on the defaults. If the configuration setup requires a change, see section
Changing Multi-threaded Printing Defaults.

If there are multiple printing processes available, the data from the first event can be printed by one
printing process, while the data from the second event could be printed by a different printing process
simultaneously, if the second printing process is available at that time. If the second event did not provide
a significant amount data, the printing process might provide the data for the printer faster than the first
printing process, breaking the order. In such case, data from the second event could print before the data
from the first event. To ensure FIFO principle also for printing, see section Synchronous Print Mode.

7.2. Caching Files
To improve the time-to-first label and performance in general, NiceLabel Automation supports file caching.
When loading the labels, images and database data from network shares, you might experience delays
while printing the labels. NiceLabel Automation must fetch all required files before the printing process can
begin.

There are two levels of caching that complement each other.

• Memory cache: Memory cache stores the already used files. The labels that have been used at least
once are loaded in the memory cache. When a trigger requests a printout of the same label, the label
is immediately available for printing process. Memory cache is enabled by default. Its contents are
cleared after you remove or reload a configuration. The label file is checked for changes for each
Open Label action. If there is a newer label available, it loads automatically, replacing the old version
in the cache.

NOTE
After a label is not in use for 8 hours, it is offloaded from the memory cache.

• Persistent cache: Persistent cache stores data to disk – its role is to provide medium term storage
for files. Caching is managed per file object. After a file is being requested from the network share,
the service first verifies if the file is already present in cache, and uses it. If a file is not in the cache,

240

it is fetched from network share and cached for future use. The cache service continuously updates
cache contents with new versions of files. You can configure the time intervals for version checking in
Options menu.

Prolonging the Time Period for Label Offloading
After a label is used for the first time, it is loaded in the memory cache. The label becomes available for
instant printing the next time it is required. Memory cache housekeeping process removes all labels that
haven't been in use for 8 hours or more.

To prolong the time interval in which labels are offloaded from memory cache, do the following:

1. Navigate to the NiceLabel Automation System folder.
%PROGRAMDATA%\NiceLabel\NiceLabel 10

2. Make a backup copy of the file product.config.

3. Open product.config in a text editor. The file has XML structure.

4. Add the element Common/FileUpdater/PurgeAge.

5. This parameter defines the number of seconds that define the time frame for keeping labels in
memory cache. NiceLabel Automation keeps track of the time when each label was used for
printing for the last time. When that time frame reaches the defined threshold, the labels are
unloaded from memory.

NOTE
Default value: 28800 (8 hours). Maximum value is 2147483647.

The product.config file should have the following contents:

<?xml version="1.0" encoding="utf-8"?>

<configuration>

 <Common>

 <FileUpdater>

 <PurgeAge>28800</PurgeAge>

 </FileUpdater>

 </Common>

...

</configuration>

6. After you save the file, NiceLabel Automation Service automatically applies the setting.

241

Enabling Persistent Cache

To enable and configure persistent cache, open the Option, select NiceLabel Automation and enable Cache
remote files.

• Refresh cache files: Defines the time interval in minutes in which the files in the cache will be
synchronized with the files in the original folder. This is the time interval that you allow the system to
use the old version of the file.

• Remove cache files when older than: Defines the time interval in days for removing all files in cache
that haven't been accessed for the specified time duration.

NiceLabel Automation uses the following local folder to cache remote files:

%PROGRAMDATA%\NiceLabel\NiceLabel 10\FileCache

NOTE
File caching supports label and picture file formats. After you enable file caching, restart
Automation service to make the changes take effect.

Forcing Reload of the Cache Content
NiceLabel Automation automatically refreshes cache content upon the defined time interval. Default value
is 5 minutes.

To manually force cache reloading, do the following:

1. Open Automation Manager.

2. Locate the configuration that contains the trigger for which you want to force-reload labels.

3. Right-click the configuration.

4. Select Reload Configuration.

7.3. Error Handling
If an error occurs while executing an action, NiceLabel Automation stops executing all actions in the trigger.
If there are actions defined after the current action that reports an error, these actions are not executed.

For example, actions are defined as shown in the screenshot below. If Set Printer action fails due to
invalid name or inaccessible printer, the actions Print Label and HTTP Request are not executed. Action

242

processing stops at Set Printer, Automation Manager shows the trigger in error state and the trigger status
feedback (if enabled) reports "wrong printer specified / printer not accessible".

However, in this particular case you don't want to use synchronous feedback which is sent automatically
if enabled in the trigger that supports synchronous feedback. Status feedback must be provided
asynchronously using the HTTP Request action after the print job is created (or not). After the print process
completes, update an application with its status. To achieve this, send the application an HTTP formatted
message.

In this case, the HTTP Request action must be executed regardless of success of all the actions in the list
above it. Enable the Ignore failure option for all actions that are placed above the HTTP Request action.
The option is available under Execution and error handling options of an action.

If a particular action fails, NiceLabel Automation starts executing the next action on the higher level of
hierarchy.

Example

If the Set Printer action on level 1.1 fails, the execution does not continue with Print Label action on level
1.2 because it will likely fail as well. It continues with the HTTP Request action on level 2, because it is the
next action in the higher-level hierarchy.

The same logic can be implemented for looping actions, such as Use Data Filter, Loop and For Each
Record. With these actions, you iterate through all members on the list. If processing of one member fails

243

from whatever reason, by default NiceLabel Automation stops processing all other members and reports
an error. If you enable Ignore failure option, the processing of the failed member stops, but NiceLabel
Automation continues with the next member. At the end, the error is reported anyway.

7.4. Synchronous Print Mode

7.4.1. Asynchronous Print Mode

The default operation mode of NiceLabel Automation is asynchronous mode. Asynchronous mode is
a form of printing, during which a trigger sends data for printing and closes connection with the print
subsystem. The trigger does not wait for the result of the printing process and does not receive any
feedback. Immediately after the data is sent, the trigger is ready to accept a new incoming data stream.

Asynchronous mode boosts trigger performance and increases the number of triggers that can be
processed in a time frame. Each printing process has buffer in front – this is where the trigger feeds
the print requests in. The buffer accommodates for trigger spikes and makes sure no data is lost.

If an error occurs during processing, it still gets logged in Automation Manager (and NiceLabel Control
Center, if you use it), but the trigger by itself is not aware of it. When running Automation in asynchronous
print mode, you cannot define conditional actions that would execute, if the trigger execution is in error.

7.4.2. Synchronous Print Mode

In comparison to asynchronous mode, synchronous mode doesn't break connection when the printing
process begins. In this mode, the trigger sends data for printing and keeps the connection to the print
subsystem established for as long as it is busy executing actions. When the printing process is complete
(successfully or with an error), the trigger receives feedback about the status.

You can use this information inside the actions that are defined in the same trigger and decide to execute
another action in case an error occurs. You can also send print job status back to the data-issuing
application. For more information, see section Print Job Status Feedback.

244

Example

You can report printing status to the ERP application that provided the data.

245

Enabling the Synchronous Print Mode
Print mode is definable per-trigger. To enable synchronous mode in a trigger, do the following:

1. Open the properties of the trigger.

2. Go to Settings tab.

3. Select Other.

4. In section Feedback from the Print Engine, enable option Supervised printing.

NOTE
Use synchronous printing mode when you want to receive status feedback within the trigger
or print your labels in the FIFO method. FIFO method means that labels are printed in the
same order as receives trigger events. When a trigger runs in synchronous printing mode, it
communicates with a single printing process only.

By default, multi-core processing can't ensure the printing order. By changing multi-
threaded printing defaults and limiting concurrent requests, you can ensure the FIFO
method:

1. Open file product.config in text editor.
The file is located here:

%PROGRAMDATA%\NiceLabel\NiceLabel 10\product.config

2. Set the values for elements MaxConcurrentPrintProcesses and
MaxConcurrentSessionPrintProcesses to 1.

<configuration>

 <IntegrationService>

 <MaxConcurrentPrintProcesses>1</

MaxConcurrentPrintProcesses>

 <MaxConcurrentSessionPrintProcesses>1</

MaxConcurrentSessionPrintProcesses>

 </IntegrationService>

</configuration>

3. Save the file. automatically updates the service with the new number of print
threads.

4. Open Builder and go to your trigger properties.

5. Go to the Execution tab.

6. In section Concurrent Requests set Number of concurrent action executions to 1.

246

7.5. Print Job Status Feedback
The application that provides data for label printing into NiceLabel Automation might expect to receive
information about print job statuses. Feedback can be as simple as "All OK" in case of a successful print
job generation, or detailed error description in case of an issue. Due to performance reasons, NiceLabel
Automation disables feedback possibility by default. This ensures high-throughput printing as trigger
doesn't care about the print process execution. The errors are logged to log database, but the trigger
does not handle them.

You can also use this method to send feedback about other data the trigger collects. This can be status
of network printers, number of jobs in the printer spooler, list of labels in a folder, list of variables in the
specified label file, and many more.

NOTE
To enable feedback support from print engine, enable synchronous print mode. For more
information, see section Synchronous Print Mode.

Enable print job status feedback using one of the two available methods.

Trigger provides feedback about print job status (Synchronous feedback)
Some triggers have built-in feedback possibility. If synchronous print mode is enabled, the trigger is
internally aware of the job status. The client can send the data into trigger, keep the connection open and
wait for the feedback. To use this feedback method, select and use a trigger type that supports providing
feedback.

If an error happens with any of the actions, the internal variable ActionLastErrorDesc contains the
detailed error message. You can send its value as-is or customize it.

For more information, see details about the respective trigger types.

• Web Service Trigger: This trigger type supports feedback by design. The WSDL (Web Service
Description Language) document describes details about the Web Service interface and instructs
how to enable feedback. You can use the default reply that returns error description in case the print
action failed. Or, you can customize the response and send back content of any variable. The variable
itself can contain any data, including label preview or label print job (binary data).

• HTTP Server Trigger: This trigger type supports feedback by design. NiceLabel Automation uses
standard HTTP response codes to indicate print job status. You can customize the HTTP response
and send back content of any variable. The variable itself can contain any data, including label
preview or label print job (binary data).

• TCP/IP Server Trigger: This trigger supports feedback, but not automatically. To make it deliver
feedback, configure the data-providing client not to break the connection once the data is sent. After
the print process completes, the next action on the list (Send Data to TCP/IP Port) might have the
setting Reply to sender enabled. Provide feedback over the established still-open connection.

247

Action provides feedback about print job status (Asynchronous feedback)
In case of triggers that do not natively support feedback or in case you want to send feedback messages
during the trigger processing, define an action that sends feedback to a selected destination. In this case,
the data-providing application can close the connection as soon as the trigger data is delivered.

Example

You used the TCP/IP trigger to capture the data. The client dropped connection immediately after the
data was sent, so we cannot reply over the same connection. In such cases, you can use another channel
to send feedback. You can configure any of the outbound-connectivity actions, such as Execute SQL
Statement, Open Document/Program, HTTP Request, Send Data to TCP/IP Port, and others. You would
place such action under the Print Label action.

If you want to send feedback only for specific status, such as "error occurred", you can use the following
methods.

• Using condition on action: Print job status is exposed in two internal variables
(ActionLastErrorID and ActionLastErrorDesc). The first one contains error ID or contains
value 0 in case of no reported errors. The second one contains a detailed error message. Use values
of these variables in conditions on actions that you want to execute in case of errors. For example,
you would use the action HTTP Request after printing. The action would send feedback in if an error
occurred. To enable such feedback, do the following:

1. Open trigger properties.

2. In ribbon group Variable, click the Internal Variables button and enable variable
ActionLastErrorID.

3. Go to Actions tab.

4. Add the action Send Data to HTTP.

5. Inside the action's properties expand Show execution and error handling options.

6. For Condition, enter the following. The action with this condition executes only if an error
occurs and ActionLastErrorID contains the error ID (any value greater than 0). By
default, the conditions runs using VBScript syntax.

ActionLastErrorID > 0

7. You also have to enable the Ignore failure option on each action you expect to fail. This
instructs Automation not to stop executing actions entirely, but to continue with the next
action on the same hierarchical level.

NOTE
For more information, see section Error Handling.

248

• Using action Try: Action Try eliminates the need for coding conditions. The action gives you two
placeholders. Placeholder Do contains actions that you want to run. If any error occurs when running
them, the execution breaks, and actions in the On error placeholder are executed. You would use
outbound-connectivity actions in this placeholder to provide a print job status feedback. For more
information, see section Try.

7.6. Excluding printers from automated printing
In certain cases, your printing environment requires you to exclude some of your printers from the
automated printing process. Possible reasons why you should exclude printers from the automated printing
are your company printing policy or the limitations of you license.

By default, Automation prevents automated printing using file printers, such as Microsoft Shared Fax Driver,
Microsoft Print To PDF, Microsoft XPS Document Writer, and similar. These file printers require the users to
manually select the location for their "printouts". The request for manual user intervention causes the print
engine to stop, reporting an error.

To prevent the Automation from using specific printers in the running configurations:

NOTE
When specifying the excluded printers from the automated printing in the
product.config file, you must also explicitly list your file printers.

1. Open file product.config in text editor.
The file is located here:
%PROGRAMDATA%\NiceLabel\NiceLabel 10\product.config

2. Create a backup copy of the product.config file.

3. Automation uses two parameters to check which printer model and printer port should be excluded
from automated printing. Add these parameters to your product.config file.

• /IntegrationService/DisabledPrinterDrivers and type the printer models you
want to exclude from automated printing.

• /IntegrationService/DisabledPrinterPorts and type the ports you want to exclude
from automated printing.

249

<configuration>

 <IntegrationService>

 <DisabledPrinterDrivers>NiceLabel Graphics

Driver,NicePrinter1200dpi</DisabledPrinterDrivers>

 <DisabledPrinterPorts>LPT1,LPT2</DisabledPrinterPorts>

 </IntegrationService>

</configuration>

4. Once you define the printer models and printer ports in the product.config file, you can still run
your Automation configurations, but your updated settings prevent printing on the listed printers.
Automation reports an error if the these printers are part of the running configurations.

NOTE
Automated printing does not stop if the excluded printers are used in the Redirect
Printing to File action.

7.7. Using Store/Recall Printing Mode
Store and Recall printing mode optimizes the printing process. It enhances printer response by reducing the
amount of data that needs to be sent during repetitive printing tasks.

With store and recall mode activated, NiceLabel Automation does not need to resend the complete label
data for each printout. Instead, the labels (templates) are stored in the printer memory. Fixed objects
are stored as such, while placeholders are defined for the variable objects. NiceLabel Automation only
sends data for variable label objects and the recall commands. The printer applies received data in the

250

placeholders on the stored label and prints the label by recalling it from the memory. Typically, a few bytes
of data are sent to the printer, compared to a few kilobytes as would be the case during normal printing.

The action consists of two processes:

• Store label: During this process, the application creates a description of the label template formatted
in the selected printer's command language. When done, the application sends the created command
file to the printer memory and stores it. You can store a label from label designer or from NiceLabel
Automation using the Store label to printer action.

NOTE
The label must have the store and recall printing mode defined in its properties before
you can store it to printer.

• Recall (print) label: A label stored in the printer memory is printed out immediately. Using the recall
process, NiceLabel Automation creates another command file to instruct the printer which label from
its memory should be printed. The actual amount of data sent to the printer depends on the current
situation. For fixed labels without any variable contents, the recall command file only contains the
recall label command. For variable labels that contain variable fields, the command file includes the
values for these variables and the recall label command.
To recall a label from NiceLabel Automation just use one of the usual printing actions. When
executed, the action analyzes the label and enables the appropriate printing mode: normal print or
recall print, as defined in the label.

WARNING
Before activating this mode, make sure the appropriate printer driver is selected for the
label printer. Not all label printers have the ability to use the store and recall printing
mode. The printer driver for which the label was created in the label designer must also be
installed on the machine where NiceLabel Automation is running.

7.8. High-availability (Failover) Cluster

NiceLabel Automation supports Microsoft high-availability (fail-over) cluster. A fail-over cluster is a group
of independent computers that work together to increase the availability of label printing through NiceLabel
Automation. The clustered servers (called nodes) are connected by physical cables and by software. If one
or more of the clustered nodes fail, other nodes begin to provide service (a process known as fail-over).
In addition, the clustered roles are proactively monitored to verify that they are working properly. If they
are not working, they are restarted or moved to another node. The clients providing data connect to the IP
address that belongs to the entire cluster, and not to the individual node IP addresses.

251

To enable NiceLabel Automation to perform in a high-availability cluster, do the following:

• Set up Microsoft Failover Clustering feature on your Windows Servers.

• Install NiceLabel Automation on each node.

• Enable fail-over cluster support in NiceLabel Automation properties on each node.
Do the following:

1. Open File > Options > Automation.

2. Under Cluster Support group, enable Failover Cluster Support.

3. Browse for the folder, located outside of both nodes, but still accessible with full access
privileges to NiceLabel Automation software. Important system files that both nodes need will
be copied to this folder.

• Configure the cluster to start NiceLabel Automation on the second node in case the master node is
down.

See the detailed description about configuring Automation failover cluster in our KB article.

7.9. Load-balancing Cluster

NiceLabel Automation supports Microsoft load-balancing cluster. Load-balancing cluster is a group of
independent computers that work together to increase the availability and scalability of label printing
through NiceLabel Automation. The clustered servers (called nodes) are connected by physical cables and
by software. The incoming requests for label printing are distributed among all nodes in a cluster. The
clients providing data connect to the IP address belonging to the cluster, and not to individual node IP
addresses.

NOTE
You can use TCP/IP-based triggers with load-balancing cluster. These triggers are TCP/IP
Server Trigger, HTTP Server Trigger, Web Service Trigger, and Cloud Trigger.

To enable NiceLabel Automation for load-balancing, do the following:

• Set up Microsoft Load-balancing Clustering feature in your Windows Servers.

• Install NiceLabel Automation on each node.

• Load the same configuration files in Automation Manager on each node.

252

https://help.nicelabel.com/hc/articles/4816829331473

8. Understanding Data Structures
This section demonstrates data structures that are frequently used in automation scenarios. When working
with various data files, we have to analyze their structure, extract the relevant values from fields of interest,
and print them on labels.

• Text Database

• Compound CSV

• Binary Files

• Legacy Data

• Command Files

• XML Data

• JSON Data

8.1. Binary Files
Binary files contain plain text and binary characters, such as control codes (characters below ASCII code
32). The Unstructured Data Filter supports binary characters. You can use binary characters to define fields
positions, and you can also use binary characters for field values.

Typical example would be data export from a legacy system, in which the data for each label is delimited
with a Form Feed character <FF>.

8.1.1. Example

In this case, Automation trigger captures the print stream. The yellow-highlighted data section must be
extracted from the stream and sent to a different printer. The filter is configured to search for <FF> as
field-end position.

253

8.2. Command Files

Command files are plain text files containing commands that are executed one at a time from top to
bottom. NiceLabel Automation supports native command files, as well as Oracle and SAP XML command
files. For more information see section Command Files Specifications, Oracle XML Specifications, and SAP
AII XML Specifications.

8.2.1. Example

The label label2.nlbl is going to print to CAB A3 203DPI printer.

LABEL "label2.nlbl"

SET code="12345"

SET article="FUSILLI"

SET ean="383860026501"

SET weight="1,0 kg"

PRINTER "CAB A3 203DPI"

PRINT 1

254

8.3. Compound CSV
Compound CSV is a text file that contains data in two structures – in a standard CSV structure, and in
a multi-line header that uses a non-standard structure. The contents of a compound CSV file cannot be
parsed using a single filter. To parse data in both structures, configure two separate filters:

• Structured Text Filter for fields in CSV structure

• Unstructured Data Filter for fields in the header non-standard structure

Configuration that includes a compound CSV file, requires two actions to execute both filters on the
received data.

8.3.1. Example

Data items from line 3 until the end of the document have CSV structure and are parsed by the Structured
Text filter. Data items in the first two lines do not have any particular structure and are parsed using
Unstructured Data filter.

OPTPEPPQPF0 NL004002 ;F75-TEP77319022891-001-001

OPT2 zg2lbprt.p 34.1.7.7 GOLF+ label

print"printer";"label";"lbl_qty";"f_logo";"f_field_1";"f_field_2";"f_field_3"

"Production01";"label.nlbl";"1";"logo-nicelabel.png";"ABCS1161P";"Post: ";"1"

"Production01";"label.nlbl";"1";"logo-nicelabel.png";"ABCS1162P";"Post: ";"2"

"Production01";"label.nlbl";"1";"logo-nicelabel.png";"ABCS1163P";"Post: ";"3"

"Production01";"label.nlbl";"1";"logo-nicelabel.png";"ABCS1164P";"Post: ";"4"

"Production01";"label.nlbl";"1";"logo-nicelabel.png";"ABCS1165P";"Post: ";"5"

8.4. Legacy Data
Legacy data are unstructured or semi-structured exports from legacy applications. These exports do not
use CSV or XML data structures. To extract relevant data from such files, use the Unstructured Data Filter
and define the positions of fields of interest. The filter in Automation extracts field values and makes them
available for printing on labels.

8.4.1. Example

The file below follows no structure related rules. Each field must be configured manually.

HAWLEY ANNIE ER12345678 ABC XYZ

 9876543210

255

PRE OP 07/11/12 F 27/06/47 St. Ken Hospital 3

G015 134 557 564 9 A- 08/11/12 LDBS F- PB 1

G015 134 654 234 0 A- 08/11/12 LDBS F- PB 2

G015 134 324 563 C A- 08/11/12 LDBS F- PB 3

 Antibody Screen: Negative

 Store Sample :

 SAMPLE VALID FOR 24 HOURS, NO TRANSFUSION HISTORY SUPPLIED

07/11/12 B,31.0001245.E O Rh(D) Pos PHO

 RLUH BT

8.5. Text Database

Text database is an alias for text files with structured fields, such as CSV (comma separated file), or text
files with fixed-width fields. In either case, you can click the Import Data Structure button and follow the
wizard to import the fields. If you have a data file with delimited structure and the number of fields varies
from one copy to another, enable the Dynamic structure feature and let NiceLabel Automation handle
the data extraction and mapping to variables automatically. For more information, see section Enabling
Dynamic Structure.

8.5.1. Example

• File with delimited fields: The first line in the file contains field names that the filter can import.

Product_ID;Code_EAN;Product_desc;Package

CAS006;8021228110014;CASONCELLI ALLA CARNE 250G;6

PAS501;8021228310001;BIGOLI 250G;6

PAS502GI;8021228310018;TAGLIATELLE 250G;6

PAS503GI;8021228310025;TAGLIOLINI 250G;6

PAS504;8021228310032;CAPELLI D'ANGELO 250G;6

• File with fixed-width fields: Fields contain a fixed number of characters.

CAS006 8021228110014 CASONCELLI ALLA CARNE 250G 6

PAS501 8021228310001 BIGOLI 250G 6

PAS502GI 8021228310018 TAGLIATELLE 250G 6

256

PAS503GI 8021228310025 TAGLIOLINI 250G 6

PAS504 8021228310032 CAPELLI D'ANGELO 250G 6

8.6. XML Data

XML stands for eXtensible Markup Language. XML tags are not predefined, you are free to define your own
tags to describe the data. XML is designed to be self-descriptive.

XML structure is defined by elements, attributes (and their values), and text (element text).

8.6.1. Examples

Oracle XML
Processing of Oracle XML is an integral part of the software. You don't have to configure any filters to
extract the data, just run the built-in action Run Oracle XML Command File. For more information on the
XML structure, see section Oracle XML Specifications.

<?xml version="1.0" standalone="no"?>

<labels _FORMAT="case.nlbl" _PRINTERNAME="Production01" _QUANTITY="1">

 <label>

 <variable name="CASEID">0000000123</variable>

 <variable name="CARTONTYPE"/>

 <variable name="ORDERKEY">0000000534</variable>

 <variable name="BUYERPO"/>

 <variable name="ROUTE"></variable>

 <variable name="CONTAINERDETAILID">0000004212</variable>

 <variable name="SERIALREFERENCE">0</variable>

 <variable name="FILTERVALUE">0</variable>

 <variable name="INDICATORDIGIT">0</variable>

 <variable name="DATE">11/19/2012 10:59:03</variable>

 </label>

</labels>

257

General XML
If the XML structure in not natively supported in the software, define the XML filter, and define rules to
extract the data. For more information, see section Understanding Filters.

<?xml version="1.0" encoding="utf-8"?>

<asx:abap xmlns:asx="http://www.sap.com/abapxml" version="1.0">

 <asx:values>

 <NICELABEL_JOB>

 <TIMESTAMP>20130221100527.788134</TIMESTAMP>

 <USER>PGRI</USER>

 <IT_LABEL_DATA>

 <LBL_NAME>goods_receipt.nlbl</LBL_NAME>

 <LBL_PRINTER>Production01</LBL_PRINTER>

 <LBL_QUANTITY>1</LBL_QUANTITY>

 <MAKTX>MASS ONE</MAKTX>

 <MATNR>28345</MATNR>

 <MEINS>KG</MEINS>

 <WDATU>19.01.2012</WDATU>

 <QUANTITY>1</QUANTITY>

 <EXIDV>012345678901234560</EXIDV>

 </IT_LABEL_DATA>

 </NICELABEL_JOB>

 </asx:values>

</asx:abap>

258

NiceLabel XML
Processing of NiceLabel XML is an integral part of the software. You don't have to configure any filters to
extract the data, just run the built-in action Run Command File. For more information on the XML structure,
see section XML Command File.

<nice_commands>

 <label name="label1.nlbl">

 <session_print_job printer="CAB A3 203DPI" skip=0 job_name="job name

1" print_to_file="filename 1">

 <session quantity="10">

 <variable name="variable name 1" >variable value 1</variable>

 </session>

 </session_print_job>

 <print_job printer="Zebra R-402” quantity="10" skip=0

identical_copies=1 number_of_sets=1 job_name="job name 2"

print_to_file="filename 2">

 <variable name="variable1" >1</variable>

 <variable name="variable2" >2</variable>

 <variable name="variable3" >3</variable>

 </print_job>

 </label>

</nice_commands>

8.7. JSON Data

JavaScript Object Notation (JSON) is an open-standard file format. JSON uses human-readable text to
transmit data objects consisting of name–value pairs, and array data types (or any other serializable value).
JSON is a very common data format used for asynchronous browser–server communication, including as a
replacement for XML.

There are multiple online resources describing the similarities and differences between JSON and XML. The
table below describes a portion of them:

JSON XML

It is JavaScript Object Notation It is Extensible markup language

259

JSON XML

It is based on JavaScript language. It is derived from SGML.

It is a way of representing objects. It is a markup language and uses tag structure to
represent data items.

It does not provides any support for
namespaces.

It supports namespaces.

It supports array. It doesn’t supports array.

Its files are very easy to read as compared to
XML.

Its documents are comparatively difficult to read
and interpret.

It doesn’t use end tag. It has start and end tags.

It is less secure. It is more secure than JSON.

It doesn’t supports comments. It supports comments.

It supports only UTF-8 encoding. It supports various encoding.

Source: https://www.geeksforgeeks.org/difference-between-json-and-xml/

260

https://www.geeksforgeeks.org/difference-between-json-and-xml/

Examples

{

 "DELIVERYNOTE": {

 "LIST_CUSTOMER_INFO": {

 "CUSTOMER_INFO": {

 "CUSTOMER_NAME": "Customer A",

 "CUSTOMER_STREET_ADDRESS": "Test St",

 "CUSTOMER_POST_ADDRESS": "1234, Test City",

 "CUSTOMER_NUMBER": "1234",

 "CURRENCY": "EUR",

 "DELIVERY_METHOD": "Express delivery",

 "EDI_INFORMATION": "EDI",

 "ORDER_TYPE": "CSO",

 "ORDER_NUMBER": "123",

 "LIST_ITEM": {

 "ITEM": [

 {

 "ARTICLE_NUMBER": "0001",

 "ARTICLE_NAME": "Collins Complete Woodworker's Manual",

 "PRICE": "23.3"

 },

 {

 "ARTICLE_NUMBER": "0002",

 "ARTICLE_NAME": "Be Careful What You Wish For (Clifton

Chronicles)",

 "PRICE": "16.6"

 },

 {

 "ARTICLE_NUMBER": "0003",

 "ARTICLE_NAME": "Mockingjay (part III of Hunger Games Trilogy)",

 "PRICE": "25.0"

 }

 }

 }

 }

 }

 }

}

{

 "NICELABEL_JOB": {

 "TIMESTAMP": "20130221100527.788134",

 "USER": "PGRI",

 IT_LABEL_DATA": {

 "LBL_NAME": "goods_receipt.nlbl",

 "LBL_PRINTER": "Production01",

261

 "LBL_QUANTITY": "1",

 "MAKTX": "MASS ONE",

 "MATNR": "28345",

 "MEINS": "KG",

 "WDATU": "19.01.2012",

 "QUANTITY": "1",

 "EXIDV": "012345678901234560"

 }

 }

 }

}

262

9. Reference and Troubleshooting

9.1. Command File Types

9.1.1. Command Files Specifications

Command files contain instructions for the print process. These instructions are expressed with NiceLabel
commands. Commands are executed one at a time from beginning to the end of the file. The files support
Unicode formatting, so you can include multi-lingual contents. Command files come in three different
flavors.

9.1.2. CSV Command File

The commands available in CSV command files are a subset of NiceLabel commands. The following
commands are available: LABEL, SET, PORT, PRINTER and PRINT.

CSV stands for Comma Separated Values. CSV file is a text file in which values are delimited by comma (,)
character. Such text file can contain Unicode value (important for multi-language data). Each line in the CSV
command file contains commands for a single label print action.

The first row in a CSV command file must contain commands and variable names. The order of commands
and names is not important, but all records in the same data stream must follow the same structure.
Variable name-value pairs are extracted automatically and sent to the referenced label. If the variable with
the name from CSV does not exist on the label, no error message is displayed.

9.1.2.1. Sample CSV Command File

The sample presents the structural view on the fields that you can use in the CSV command file.

@Label,@Printer,@Quantity,@Skip,@IdenticalCopies,NumberOfSets,@Port,Product_ID,

 Product_Name

label1.nlbl, CAB A3 203 DPI, 100, , , , , 100A, Product 1

label2.nlbl, Zebra R-402, 20, , , , , 200A, Product 2

CSV Commands Specification

The commands in the first line of data must be expressed with at (@) character. The fields without @ at the
beginning are names of variables. These fields are extracted with their values as name-value pairs.

263

• @Label: Specifies the label name to be used. It's a good practice to include label path and filename.
Make sure the service user can access the file. For more information, see section Access to Network
Shared Resources in NiceLabel Automation user guide. A required field.

• @Printer: Specifies the printer to be used. It overrides the printer defined in the label. Make sure the
service user can access the printer. For more information, see section Access to Network Shared
Resources. Optional field.

• @Quantity: Specifies the number of labels to be printed. Possible values: numeric value, VARIABLE or
UNLIMITED. For more information, see section Print Label. A required field.

• @Skip: Specifies the number of labels to be skipped at the beginning of the first printed page. This
feature is useful if you want to re-use the partially printed sheet of labels. Optional field.

• @IdenticalCopies: Specifies the number of label copies that should be printed for each unique label.
This feature is useful when printing labels with data from database or when you use counters, and you
need label copies. Optional field.

• @NumberOfSets: Specifies the number of times the printing process should repeat. Each label set
equals a single occurrence of printing process. Optional field.

• @Port: Specifies the port name for the printer. You can override the default port as specified in the
printer driver. You can also use it to redirect printing to file. Optional field.

• Other field names: All other fields define names of variables from the label. The field contents are
saved to the variable of the same name as its value.

9.1.3. JOB Command File

JOB command file is a text file that contains NiceLabel commands. The commands execute in top-to-
bottom order. The commands usually start with LABEL (to open label), then SET (to set variable value)
and finally PRINT (to print label). For more information about the available commands, see section Using
Custom Commands.

9.1.3.1. Sample JOB Command File

This JOB file open label2.nlbl, sets variable values and prints a single label. Because no PRINTER
command is used to redirect printing, the gets printed using the printer name as defined in the label.

LABEL "label2.nlbl"

SET code="12345"

SET article="FUSILLI"

SET ean="383860026501"

SET weight="1,0 kg"

PRINT 1

264

9.1.4. XML Command File

The commands available in the XML Command files are a subset of NiceLabel commands. The
following commands are available: LOGIN, LABEL, SET, PORT, PRINTER, SESSIONEND, SESSIONSTART
and SESSIONPRINT. The syntax for these commands differs to some extent if they are used in an XML file.

Root element in the XML Command file is <Nice_Commands>. The next element that must follow is
<Label>. This element specifies the label to be used.

To start printing the labels , there are two available methods: print labels normally using the element
<Print_Job>, or print labels in a session using the element <Session_Print_Job>. You can also
change the printer to which the labels are printed, and additionally set the variable value.

9.1.4.1. Sample XML Command File

The sample below serves as a structural overview of the elements and their attributes as you can use them
in an XML command file.

<nice_commands>

 <label name="label1.nlbl">

 <session_print_job printer="CAB A3 203DPI" skip=0 job_name="job name

1" print_to_file="filename 1">

 <session quantity="10">

 <variable name="variable name 1" >variable value 1</variable>

 </session>

 </session_print_job>

 <print_job printer="Zebra R-402" quantity="10" skip=0

identical_copies=1 number_of_sets="1" job_name="job name 2"

print_to_file="filename 2">

 <variable name="variable1" >1</variable>

 <variable name="variable2" >2</variable>

 <variable name="variable3" >3</variable>

 </print_job>

 </label>

</nice_commands>

XML Command File Specification

This section contains description of the XML Command file structure. There are several elements that
contain attributes. Some attributes are required while the others are optional. Some attributes can occupy
pre-defined values only, while for the others, you can specify custom values.

• <Nice_Commands>: This is a root element.

265

• <Label>: Specifies the label file to be opened. If the label is already opened, it does not re-open.
The label file must be accessible from this computer. For more information, see section Access to
Network Shared Resources. This element can occur several times within the command file.

• Name: This attribute contains label name. You can include the path along with the label name.
Required.

• <Print_Job>: The element that contains data for a single label job. This element can occur several
times within the command file.

• Printer:: Use this attribute to override the printer defined in the label. The printer must be
accessible from this computer. For more information, see section Access to Network Shared
Resources. Optional.

• Quantity: Use this attribute to specify the number of labels to be printed. Possible values:
numeric value, VARIABLE or UNLIMITED. For more information on parameters, see section Print
Label. Required.

• Skip: Use this attribute to specify how many labels should be skipped at the beginning. This
feature is useful if you print a sheet of labels to laser printer, but the sheet is partial already
printed. For more information, see the see section Print Label. Optional.

• Job_name: Use this attribute to specify the name of your job file. The specified name is visible in
the print spooler. For more information, see section Set print job name. Optional.

• Print_to_file: Use this attribute to specify the file name to which you want to save the printer
commands. For more information, see section Redirect Printing to File. Optional.

• Identical_copies: Use this attribute to specify the number of copies you need for each label. For
more information, see section Print Label. Op

• <Session_Print_Job>: The element that contains commands and data for one or more sessions. The
element can contain one or more <Session> elements. It considers session print rules. You can use
this element several times within the command file. For available attributes, look up the attributes for
the <Print_Job> element. All of them are valid, you just cannot use the quantity attribute. See the
description of <Session> element to find out how to specify label quantity in session printing.

• <Session>: The element that contains data for one session. When printing in session, all labels are
encoded into a single print job and sent to the printer.

• Quantity: Use this attribute to specify the number of printed labels. Possible values: numeric
value, string VARIABLE, or string UNLIMITED. For more information on parameters, see section
Print Label. Required.

• <Variable>: The element that sets the variable values on the label. This element can occur several
times within the command file.

• Name: The attribute contains the variable name. Required.

XML Schema Definition (XSD) for XML Command File

<?xml version="1.0" encoding="utf-8"?>

<xs:schema targetNamespace="http://tempuri.org/XMLSchema.xsd"

266

elementFormDefault="qualified" xmlns="http://tempuri.org/XMLSchema.xsd"

xmlns:mstns="http://tempuri.org/XMLSchema.xsd" xmlns:xs="http://www.w3.org/

2001/XMLSchema">

 <xs:element name="nice_commands">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="label" maxOccurs="unbounded" minOccurs="1">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="print_job" maxOccurs="unbounded"

minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="database"

maxOccurs="unbounded" minOccurs="0">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension

base="xs:string">

 <xs:attribute

name="name" type="xs:string" use="required" />

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="table"

maxOccurs="unbounded" minOccurs="0">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension

base="xs:string">

 <xs:attribute

name="name" type="xs:string" use="required" />

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="variable"

maxOccurs="unbounded" minOccurs="0">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension

base="xs:string">

 <xs:attribute

name="name" type="xs:string" use="required" />

 </xs:extension>

267

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="quantity"

type="xs:string" use="required" />

 <xs:attribute name="printer"

type="xs:string" use="optional" />

 <xs:attribute name="skip"

type="xs:integer" use="optional" />

 <xs:attribute name="identical_copies"

type="xs:integer" use="optional" />

 <xs:attribute name="number_of_sets"

type="xs:integer" use="optional" />

 <xs:attribute name="job_name"

type="xs:string" use="optional" />

 <xs:attribute name="print_to_file"

type="xs:string" use="optional" />

 <xs:attribute name="print_to_file_append"

type="xs:boolean" use="optional" />

 <xs:attribute name="clear_variable_values"

type="xs:boolean" use="optional" />

 </xs:complexType>

 </xs:element>

 <xs:element name="session_print_job"

maxOccurs="unbounded" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="database"

maxOccurs="unbounded" minOccurs="0">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension

base="xs:string">

 <xs:attribute

name="name" type="xs:string" use="required" />

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="table"

maxOccurs="unbounded" minOccurs="0">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension

base="xs:string">

268

 <xs:attribute

name="name" type="xs:string" use="required" />

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="session"

minOccurs="1" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element

name="variable" minOccurs="0" maxOccurs="unbounded">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension

base="xs:string">

<xs:attribute name="name" type="xs:string" use="required"

/>

 </

xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="quantity"

type="xs:string" use="required" />

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="printer"

type="xs:string" use="optional" />

 <xs:attribute name="skip"

type="xs:integer" use="optional" />

 <xs:attribute name="job_name"

type="xs:string" use="optional" />

 <xs:attribute name="print_to_file"

type="xs:string" use="optional" />

 <xs:attribute name="print_to_file_append"

type="xs:boolean" use="optional" />

 <xs:attribute name="clear_variable_values"

type="xs:boolean" use="optional" />

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="name" type="xs:string"

269

use="required" />

 <xs:attribute name="close" type="xs:boolean"

use="optional" />

 <xs:attribute name="clear_variable_values"

type="xs:boolean" use="optional" />

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="quit" type="xs:boolean" use="required" />

 </xs:complexType>

 </xs:element>

</xs:schema>

9.1.5. Oracle XML Specifications

Oracle defines the XML format so that the XML contents can be understood, parsed and printed on labels.
The XML Document Type Definition (DTD) defines the XML tags that are used in an XML file. Oracle
generates XML files according to this DTD, and any 3rd party software translates XML files according to
this DTD.

To execute an Oracle XML command file, use the Run Oracle XML Command File action.

9.1.5.1. XML DTD

The following is the XML DTD that is used while forming an XML for both – synchronous and asynchronous
XML formats. The DTD defines elements that are used in the XML file, list of their attributes, and next level
elements.

<!ELEMENT labels (label)*>

<!ATTLIST labels _FORMAT CDATA #IMPLIED>

<!ATTLIST labels _JOBNAME CDATA #IMPLIED>

<!ATTLIST labels _QUANTITY CDATA #IMPLIED>

<!ATTLIST labels _PRINTERNAME CDATA #IMPLIED>

<!ELEMENT label (variable)*>

<!ATTLIST label _FORMAT CDATA #IMPLIED>

<!ATTLIST label _JOBNAME CDATA #IMPLIED>

<!ATTLIST label _QUANTITY CDATA #IMPLIED>

9.1.5.2. Sample Oracle XML

This is the Oracle XML providing data for one label (there is only one <label> element).

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE labels SYSTEM "label.dtd">

270

<labels _FORMAT ="Serial.nlbl" _QUANTITY="1" _PRINTERNAME="" _JOBNAME="Serial">

 <label>

 <variable name= "item">O Ring</variable>

 <variable name= "revision">V1</variable>

 <variable name= "lot">123</variable>

 <variable name= "serial_number">12345</variable>

 <variable name= "lot_status">123</variable>

 <variable name= "serial_number_status">Active</variable>

 <variable name= "organization">A1</variable>

 </label>

</labels>

When executing this sample Oracle XML file, the label serial.nlbl is printed with the following variable
values.

Variable name Variable value

item O Ring

revision V1

lot 123

serial_number 12345

lot_status 123

serial_number_status Active

organization A1

There will be 1 printed copy of the label with spooler job name Serial. The printer name is not specified in
the XML file, so the label prints to the printer as defined in the label template.

9.1.6. SAP AII XML Specifications

NiceLabel Automation can present itself as an RFID device controller, capable of encoding RFID tags and
printing labels. For more information about SAP AII XML specifications, see the document SAP Auto-ID
Infrastructure Device Controller Interface on SAP web page.

To execute such command file, use the Run SAP AII XML Command File action.

9.1.6.1. Sample SAP AII XML

This is the SAP AII XML providing data for one label (note that there is only one <label> element).

<?xml version="1.0" encoding="UTF-8"?>

<Command xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="Command.xsd">

271

 <WriteTagData readerID="DEVICE ID">

 <Item>

 <FieldList format="c:\SAP Demo\SAP label.nlbl"

jobName="Writer_Device20040929165746" quantity="1">

 <Field name="EPC">00037000657330</Field>

 <Field name="EPC_TYPE">SGTIN-96</Field>

 <Field name="EPC_URN">urn:autoid:tag:sgtin:3.5.0037000.065774.8</

Field>

 <Field name="PRODUCT">Product</Field>

 <Field name="PRODUCT_DESCRIPTION">Product description</Field>

 </FieldList>

 </Item>

 </WriteTagData>

</Command>

When executing this sample SAP AI XML file, the label c:\SAP Demo\SAP label.nlbl is printed with
the following variable values.

Variable name Variable value

EPC 00037000657330

EPC_TYPE SGTIN-96

EPC urn:autoid:tag:sgtin:3.5.0037000.065774.8

PRODUCT Product

PRODUCT_DESCRIPTION Product description

There will be 1 printed copy of the label with spooler job name Writer_Device2004092916574. Printer
name is not specified in the XML file, so the label will be printed using the printer that is defined in the label
template.

9.1.7. PAS Command File

PAS command file is text file that contains Loftware LPS printing commands. The commands execute in
order from top to bottom. Each PAS file must start with the *FORMAT (open label) command, and end with
the *PRINTLABEL command.

PAS command file can be executed using the action Run Command File.

NOTE
If you migrated from Software to NiceLabel, you could use your existing PAS command files
with NiceLabel label templates (.nlbl) *FORMAT command checks if the.nlbl file exists with
the same name as .lwl.

272

9.1.7.1. PAS Command File Example

*FORMAT,\\127.0.0.1\labelcomputer$\labels\ML2193.lwl

*JOBNAME,PastaPallet002

*QUANTITY,1

*PRINTERNUMBER,1

Text0000,New Data

Text0001,New Data

*PRINTLABEL

NOTE
If you want to use *PRINTERNUMBER command, you must copy the
printr32.ini file from LPS to c:\Program Files\NiceLabel\NiceLabel 10\
\bin.net\Configuration.

You can find more details about PAS commands in Loftware LPS User Guide.

9.2. Custom Commands

9.2.1. Using Custom Commands

NiceLabel commands are used in command files to control label printing. NiceLabel Automation executes
the commands within command files in top-to-bottom order. For more details, see section Command Files
Specifications.

You can use specific custom commands if they are available in your NiceLabel Automation product in form
of an action.

Example

It is possible to the use the SETPRINTPARAM command if you can select the Set Print Parameter action.

273

NiceLabel Commands Specification
COMMENT

;

When developing a command file, it is good practice to document your commands. This helps you decode
what the script really does when you look at the code after some time. Use semicolon (;) at the beginning
of the line. Everything following the semicolon is treated as comment and does not get processed.

CLEARVARIABLEVALUES

CLEARVARIABLEVALUES

This command resets variable values to their default values.

CREATEFILE

CREATEFILE <file name> [, <contents>]

This command creates a text file. Use the text file to give signal to a third party application that the print
process has begun or ended, depending on the location where you put the command. Use UNC syntax for
network resources. For more information, see section Access to Network Shared Resources.

DELETEFILE

DELETEFILE <file name>

Deletes the specified file. Use UNC syntax for network resources. For more information, see section Access
to Network Shared Resources.

EXPORTLABEL

EXPORTLABEL ExportFileName [, ExportVariant]

This command automates the "Export to printer" command that is available in label designer. The label is
exported directly to the printer and stored in printer memory for off-line printing. The user recalls the label
using printer keyboard or by sending a command file to the printer. The same functionality is available also
with Store label to printer action.

NOTE
To specify the label for exporting, use the LABEL command first.

274

• ExportFileName: This mandatory parameter defines the file name of generated printer commands.

• ExportVariant: Some printers support multiple export variants. When exporting manually, the user can
select the export variant in the dialog. With the EXPORTLABEL command, you have to specify which
export variant you want to use. The variants are visible in the label designer after you enable the
Store/Recall printing mode.
The first variant in the list has value 0. The second variant has value 1, etc.
If you do not specify any variant type, value 0 is used as default.

For more information about off-line printing, see section Using Store/Recall Printing Mode.

IGNOREERROR

IGNOREERROR <on> [,<off>]

This command specifies that the error occurring in the JOB file does not terminate the printing process if
the following errors occur:

• Incorrect variable name is used.

• Incorrect value is sent to the variable.

• Label does not exist / is not accessible.

• Printer does not exist / is not accessible.

LABEL

LABEL <label name> [,<printer_name>]

This command opens the label to be printed. If the label is already loaded, it does not get re-opened. You
can include the path name. Enclose the label name in double quotes if the name or path contains spaces.
Use UNC syntax for network resources. For more information, see section Access to Network Shared
Resources.

The optional printer_name specifies the printer, for which the label is opened. Use this setting if you
want to override the printer name that is saved in the label template. If the driver for the provided printer
name is not installed or not available, the command raises an error.

MESSAGEBOX

MESSAGEBOX <message> [,<caption>]

This command logs the custom message into the trigger log. If the message contains space characters or
commas, enclose the text in double quotes (").

PORT

275

PORT <file name> [, APPEND]

This command overrides port as defined in the printer driver and redirects printing to a file. If file path or file
name contain spaces, enclose the value in double quotes ("). Use UNC syntax for network resources. For
more information, see section Access to Network Shared Resources.

The APPEND parameter is optional. By default, the file gets overwritten. Use this parameter to append data
into the existing file.

Once you use the PORT command in JOB file, it remains valid until the next PORT command, or until the end
of file (whichever comes first). If you use PRINTER command after the PORT command has been executed,
the PORT setting overwrites the port defined for the selected printer. If you want to use the actual port that
is defined for the selected printer, you have to use another PORT command with empty value, such as PORT
= "".

PRINT

PRINT <quantity> [,<skip> [,<identical label copies> [,number of label sets]]]

This command starts the printing process.

• Quantity: Specifies the number of printed labels.

• <number>: The specified number of labels gets printed.

• VARIABLE: Specifies that a label variable is defined as variable quantity and that it contains the
number of labels to be printed. The label determines how many labels get printed.

• UNLIMITED: If you use a database to acquire values for objects, unlimited printing prints as
many labels as there are records in the database. If you do not use a database, the maximum
number of labels that thermal printer internally supports gets printed.

• Skip: Specifies the number of labels you want to skip on the first page. The parameter is used for
printing labels on sheets of paper. If the part of the page has already been used, reuse the same sheet
by shifting the starting location of the first label.

• I dentical label copies: Specifies how many copies of the same label must be printed.

• Number of label sets. Specifies the number of times the whole printing process should repeat itself.

NOTE
Make sure the quantity values are provided as numeric value, not as a string value. Do not
enclose the value in double quotes.

PRINTER

PRINTER <printer name>

276

This command overrides the printer as defined in the label file. If the printer name contains space
characters, enclose it in double quotes (").

Use the printer name as displayed in the status line of label design application. Printer names usually
match the listed names under Printers and Faxes in Control Panel, but not always. If using network printers,
you might see the name displayed in syntax \\server\share.

PRINTJOBNAME

PRINTJOBNAME

This command specifies the print job name as displayed in Windows Spooler. If the name contains space
characters or commas, enclose the value in double quotes (").

SESSIONEND

SESSIONEND

This command closes print stream. Also see SESSIONSTART.

NOTE
SESSIONEND must be sent as the only item in Send Custom Command action. If you want
to send additional commands, use separate Send Custom Command actions.

SESSIONPRINT

SESSIONPRINT <quantity> [,<skip>]

This command prints the currently referenced label and adds it into the currently open session-print stream.
You can use multiple SESSIONPRINT commands one after another and join the referenced labels in a single
print stream. The stream does not close until you close it using SESSIONEND command. The meaning
of quantity and skip parameters is the same as with NiceCommand PRINT. Also see SESSIONSTART
command.

• Quantity: Specifies the number of labels to be printed.

• Skip: Specifies the number of labels you want to skip on the first page. The parameter is used for
printing labels on sheets of paper. If the part of the page has already been used, you can reuse the
same sheet by shifting the start location of the first label.

SESSIONSTART

SESSIONSTART

277

This command initiates the session-print type of printing.

The three session-print-related commands (SESSIONSTART, SESSIONPRINT, SESSIONEND) are used
together. When you use command PRINT, data for each label is sent to the printer in a separate print job.
If you want to join label data for multiple labels into a print stream, use the session print commands. To
do so, start with the SESSIONSTART command, followed by any number of SESSIONPRINT commands. The
sequence ends with SESSIONEND command.

Use these commands to optimize label printing process. Printing of labels that belong to a single print job
is much faster than printing labels using multiple print jobs.

Use the rules below to make sure the session print does not break:

• You cannot change the label within a session.

• You cannot change the printer within a session.

• You must set values for all variables from the label within a session, even if some of the variables
have empty values.

SET

SET <name>=<value> [,<step> [,<number or repetitions>]]

This command assigns the variable name with value. The variable must be defined on the label, or an
error is raised. If the variable isn't on the label, an error occurs. Step and number of repetitions are
parameters for counter variables. These parameters specify the counter increment value and the number
printed labels before the counter changes value.

If a value contains spaces or comma characters, enclose the text in double quotes ("). Also see
TEXTQUALIFIER.

If you want to assign a multi-line value, use \r\n to encode a newline character. \r is replaced with CR
(Carriage Return) and \n is replaced with LF (Line Feed).

Be careful when setting values to variables that provide data for pictures on the label, as backslash
characters might be replaced with other characters.

Example

If you assign a value "c:\My Pictures\raw.jpg" to the variable, the "\r" is replaced with CR character.

SETPRINTPARAM

SETPRINTPARAM <paramname> = <value>

This command allows you to fine-tune the printer settings just before printing. The supported parameter for
printer settings (paramname) are:

278

• PAPERBIN: Specifies the tray that contains label media. If the printer is equipped with more than one
paper / label tray, you can control which one is used for printing. The name of the tray should be
acquired from the printer driver.

• PRINTSPEED: Specifies the printing speed. The acceptable values vary from one printer to the other.
See printer's manuals for exact range of values.

• PRINTDARKNESS: Specifies the printing darkness / contrast. The acceptable values vary from one
printer to another. See printer manuals for exact range of values.

• PRINTOFFSETX: Specifies the left offset for all printing objects. The value for parameter must be
numeric, positive or negative, in dots.

• PRINTOFFSETY: Specifies the top offset for all printing objects. The value for parameter must be
numeric, positive or negative, in dots.

• PRINTERSETTINGS: Specifies the custom printer settings to be applied to the print job. The
parameter requires the entire DEVMODE for the target printer, provided in a Base64-encoded string.
The DEVMODE contains all parameters from the printer driver at once (speed, darkness, offsets and
other). For more information, see section Understanding printer settings and DEVMODE.

NOTE
The Base64-encoded string must be provided inside double quotes (").

TEXTQUALIFIER

TEXTQUALIFIER <character>

Text-qualifier is the character that embeds data value that is assigned to a variable. Whenever a data value
includes space characters, it must be included with text-qualifiers. The default text qualifier is a double
quote character ("). Because double quote character is used as shortcut for inch unit of measure, it is
sometimes difficult to pass the data with inch marks in the JOB files. You can use two double quotes to
encode one double quote, or use TEXTQUALIFIER.

Example

TEXTQUALIFIER %

SET Variable = %EPAK 12"X10 7/32"%

9.3. Access to Network Shared Resources
This section defines best practice steps for using network shared resources.

279

• User privileges for service mode. The execution component of NiceLabel Automation runs in service
mode under a specified user account inheriting access privileges of that account. For NiceLabel
Automation to be able to open label files and user printer drivers, the associated user account must
have granted the same privileges. For more information, see section Running in Service Mode.

• UNC notation for network shares. When accessing the file on a network drive, make sure you are
using the UNC syntax (Universal Naming Convention), and not the mapped drive letters. UNC is a
naming convention that specifies and maps network drives. NiceLabel Automation tries to replace the
drive-letter syntax with UNC syntax automatically.

Example

If a file is accessible as G:\Labels\label.nlbl, refer to it in UNC notation as \
\server\share\Labels\label.nlbl (where G: drive is mapped to \\server\share).

• Notation for accessing files in Control Center. If you open a file in Document Storage within Control
Center, you can use HTTP notation such as http://servername:8080/label.nlbl, or WebDAV
notation such as \\servername@8080\DavWWWRoot\label.nlbl.
Additional notes:

• User account under which the NiceLabel Automation service runs is also used to get files from
Document Storage. This user must be configured in Control Center Configuration. This makes
sure the user has access to the Document Storage files.

• WebDAV access can only be used with Windows user authentication type in Control Center.

NOTE
The Document Storage is available with products LMS Enterprise and LMS Pro.

• Printer drivers availability. To print labels to network shared printer, you will have to make the
printer driver available on the server where NiceLabel Automation is installed on. Make sure the user
account that NiceLabel Automation Service runs under has access to the printer driver. If the network
printer was just installed on the machine, NiceLabel Automation might not see it until your restart
the Service. To allow automatic notification of new network printer drivers, you have to enable the
appropriate inbound rule in the Windows firewall. For more information, see the Knowledge Base
article.

9.4. Document Storage and Versioning of Configuration
Files
Document Storage is a functionality of NiceLabel Control Center. It enables the NiceLabel Control Center
to perform as a shared file repository on the server, in which users can store their files, retrieve them, and
control their revisions.

280

https://help.nicelabel.com/hc/articles/4405121464081-Automatically-notify-Automation-Service-of-newly-installed-network-printer-driver
https://help.nicelabel.com/hc/articles/4405121464081-Automatically-notify-Automation-Service-of-newly-installed-network-printer-driver

Document Storage contextual tab enables you to perform document storage actions straight from
Automation Builder. This makes accessing and opening the Automation file in NiceLabel Control Center
unnecessary.

NOTE
This contextual tab requires connection with NiceLabel Control Center. LMS Enterprise
license is mandatory for such configurations.

Revisioning group allows you to perform the available document storage actions:

• Check Out: Checks out the file from NiceLabel Control Center document storage and makes it
available for editing. The checked-out file is marked and locked for editing for any other user. All
other users will see the current revision of the file, while the author already works on a new draft.

NOTE
After opening a document from the document storage (File > Open > Document Storage),
the editing commands remain disabled until you check out the document.

• Check In: Checks the file to NiceLabel Control Center document storage after the editing is done.
When you check in the file, its revision number increments by one. The entered comment is added to
file log.

• Discard Checkout: Discards checkout of the current file and gives other users full access to the file.

WARNING
If you click Discard Checkout, all changes since the last file checkout will be lost.

• Document Storage: Opens document storage location of the connected NiceLabel Control Center.

9.5. Accessing Databases
Whenever NiceLabel Automation needs to get data from a database, make sure that the necessary
database driver is installed on the Windows system. Database drivers are provided by the company
developing the database software. The driver that you install must match the bitness of your Windows
system. NiceLabel software always runs in the bitness of your Windows system.

9.5.1. 32-bit Windows

If you have 32-bit Windows, you can only install 32-bit database drivers. The same database driver is
be used to configure the trigger in Automation Builder and to execute trigger execution in NiceLabel
Automation Service. All NiceLabel Automation components run as 32-bit applications.

281

9.5.2. 64-bit Windows

If you have 64-bit Windows, you can install 64-bit or 32-bit database drivers. The applications that are
running in 64-bit use 64-bit database drivers. The applications that are running in 32-bit use 32-bit database
drivers.

By default, Automation Service runs as 64-bit process. As such, it uses 64-bit database drivers to make
a database connection. If 64-bit database drivers are not available on the system on which Automation
Service is running, the database connection task offloads to the NiceLabel Proxy process. This process
always runs as 32-bit process.

9.6. Automatic Font Replacement
You might design your label templates to print text objects using internal printer fonts. These are the fonts
that are stored in your printer's memory. If you try to print such labels to a different kind or printer, the
selected internal fonts might not be available. The new printer probably supports an entirely different set of
internal fonts. The font layout might be similar in such case, but is available under a different name.

Font mismatch might also occur if the Truetype font that you are using on your labels is not installed on the
computer on which you run Designer to design and print labels.

You can configure Designer to automatically replace the fonts used on the label with compatible fonts. I
such case, Designer maps and replaces the fonts using their names. If the original font is not available,
Designer uses the first available replacement font defined in the mapping table.

If there are no suitable replacement fonts, Designer uses the Arial Truetype font.

NOTE
After configuring font replacement, mapping rules execute when you change the printer for
your label.

282

Configuring the Font Mapping

1. Open File Explorer and navigate to the following folder:

%PROGRAMDATA%\NiceLabel\NiceLabel 10

2. Copy fontmapping.def file to fontmapping.local.def.

3. Open the fontmapping.local.def file in your favorite text XML editor.

4. Inside the FontMappings element, create a new element with a custom name.

5. Inside the new element, create at least two elements named as Mapping.

• Value of the first element named Mapping must contain the name of the original font.

• Value of the second element named Mapping must contain the name of the replacement font.

NOTE
Additional Mapping elements with new font names are allowed. If the
first replacement font is not available, Designer tries the next one. If no
replacement fonts are available, Arial Truetype is used instead.

NOTE
The file fontmapping.local.def is your file and is preserved during the
upgrades. On the other hand, fontmapping.def belongs to NiceLabel and is
overwritten during the upgrades. Do not modify the fontmapping.def file.

283

Sample Mapping Configuration
In the example below, two font mappings are defined.

• The first mapping converts any Avery font into a matching Novexx font. For example, Avery YT100
font gets replaced with Novexx YT100, Avery 1 font gets replaced with Novexx 1. If the Novexx font is
not available, Arial Truetype font is used instead.

• The second mapping converts Avery YT100 font into Novexx YT104. If that font is not available, then
Zebra 0 font is used. If this font is also not available, Arial Truetype is used instead.

• The second mapping overrides the first one.

<?xml version="1.0" encoding="utf-8"?>

<FontMappings>

 <AveryNovexx>

 <Mapping>Avery</Mapping>

 <Mapping>Novexx</Mapping>

 </AveryNovexx>

 <TextReplacement>

 <Mapping>Avery YT100</Mapping>

 <Mapping>Novexx YT104</Mapping>

 <Mapping>Zebra 0</Mapping>

 </TextReplacement>

</FontMappings>

9.7. Automating Reports

Combine your business system data with labels containing Reports. Create reports in NiceLabel Designer
and fill your reports with data from your business systems in NiceLabel Automation.

Your completed reports use your business system data to print. NiceLabel Automation:

• Receives your business system data.

• Parses your data with a data filter.

• Populates your Report with parsed data.

• Executes printing for your new populated reports with a trigger.

284

9.7.1. Creating temporary databases

You need to design your Reports before you automate them. To design reports, you need to connect them
to a database.

If you use data from external business systems for reports, you have no database to work with. To work
correctly, report data needs a hierarchical structure with clearly defined elements.

Create a temporary database with data from your business system (Usually XML or JSON data). With
your temporary database, design and configure your reports. Your temporary database is only for setup.
Configured reports print using Automation triggers, not your temporary database.

Data from your business system with no hierarchy.

Data with hierarchy you can use to print reports.

Sample XML data you need to design reports (unparsed).

For you temporary database, create a CSV text database file. You have multiple options:

1. Manually convert your data structure to a CSV text file:

285

Manually creating temporary CSV text databases.

2. Use a common XML to Excel or XML to CSV conversion tool and manually format your data in a
spreadsheet.

3. Use an Automation data filter to automatically parse your data into a CSV text database.

9.7.2. Designing automated Reports

Open Designer to create your Report with your temporary CSV text database:

1. Connect your temporary CSV text database to your Report.

2. Design your report using your CSV text data as variables for objects in in your Repeater Definition.

NOTE
Match your variable names with data names in your data filter to map your data
correctly.

Designing reports with your temporary CSV text database.

9.7.3. Creating data filters

Create a data filter in Automation to use in your report (Refer to your included example trigger for more
information on creating XML filters):

286

Configuring your XML data filter.

Tips for creating data filters for reports:

• You can use Structure Import Wizard to import your data structure.

• Name your elements in data blocks of repeatable elements.

• Set your elements as assignment areas or set sub-items as variables.

9.7.4. Creating triggers for your new data filter

NOTE
For your trigger to work, your data source names in Designer must match the data block
field names in your data filter.

• Include a Use Data Filter action to apply your data filter.

• Enable Collect records for report to collect all records in a table Automation uses to open your
report labels.

287

NOTE
Use the same data structure names in your reports, triggers, and filters.

• Include a Print Label action.

• Enable All (unlimited quantity).

Run your trigger. Your report now automatically updates with new data and prints with your trigger.

9.8. Changing Multi-threaded Printing Defaults

Every NiceLabel Automation product can take advantage of multiple processor cores – each core runs a
print process independently. Half of the number of cores is used for processing concurrent normal threads,
and the remaining half for processing concurrent session-print threads.

NOTE
Under normal circumstances, you never have to change the default settings. Make sure you
know what you are doing when changing these defaults.

To modify the number of the concurrent print threads, do the following:

1. Open file product.config in text editor.
The file is located here:

%PROGRAMDATA%\NiceLabel\NiceLabel 10\product.config

2. Change the values for elements MaxConcurrentPrintProcesses and
MaxConcurrentSessionPrintProcesses.

288

<configuration>

 <IntegrationService>

 <MaxConcurrentPrintProcesses>1</MaxConcurrentPrintProcesses>

 <MaxConcurrentSessionPrintProcesses>1</

MaxConcurrentSessionPrintProcesses>

 </IntegrationService>

</configuration>

3. Save the file. NiceLabel Automation automatically updates the service with the new number of print
threads.

9.9. Compatibility with NiceWatch Products
NiceLabel Automation allows you to load trigger configurations that were built using legacy NiceWatch
products. In the majority of cases, you can run NiceWatch configuration using NiceLabel Automation
without any modifications.

NiceLabel Automation products are using a new .NET based print engine optimized for performance and
low memory footprint. The new print engine does not support each label design option that is available in
the label designer. Each new release of NiceLabel Automation is closing the gap, but you might still come
across certain unavailable features.

289

Resolving Incompatibility Issues
NiceLabel Automation warns you if you try to print existing label templates that contain design features
which are not supported with the new print engine.

If there are incompatibilities with NiceWatch configuration file or label templates, Automation notifies you
about:

• Compatibility with trigger configuration: While opening the NiceWatch configuration (.MIS file),
NiceLabel Automation checks it against the supported features. Not all features from NiceWatch are
available in NiceLabel Automation. While some are not available at all, some of them are configured
differently. If the MIS file contains unsupported features, you will see them listed. Automation
removes these features from the configuration.
If you come across such a case, open the .MIS file in Automation Builder and resolve the
incompatibility issues. You will have to use the available NiceLabel Automation features to re-create
the removed configuration items.

• Compatibility with label templates: If your existing label templates contain unsupported print engine
features as provided by NiceLabel Automation, you will see error messages in the Log pane. This
information is visible in the Automation Builder (when designing triggers) or in Automation Manager
(when running the triggers).
In this case, you have to open the label file in label designer and remove unsupported features from
the label.

NOTE
For more information about incompatibility issues with NiceWatch and label designers, see
NiceLabel Automation Compatibility with NiceLabel Designers V6 and NiceWatch V5.

Opening NiceWatch Configuration for Editing
Open the existing NiceWatch configuration (.MIS file) in Automation Builder and edit it in Automation
Builder. You can save the configuration as a .MISX file only.

To edit the NiceWatch configuration, do the following:

1. Start Automation Builder.

2. Go to File > Open NiceWatch File.

3. In the Open dialog box, browse for the NiceWatch configuration file (.MIS file).

4. Click OK.

5. If the configuration contains unsupported features, they are displayed in a list. Automation removes
them from the configuration.

290

https://help.nicelabel.com/hc/articles/4405114748817-NiceLabel-Automation-Compatibility-with-NiceLabel-Designers-V6-and-NiceWatch-V5

Opening NiceWatch Configuration for Execution
You can open NiceWatch configuration (.MIS file) in Automation Manager without conversion to the
NiceLabel Automation file format (.MISX file). If the triggers from NiceWatch are compatible with NiceLabel
Automation, you can start using them right away.

To open and deploy NiceWatch configuration, do the following:

1. Start Automation Manager.

2. Click +Add button.

3. In Open dialog box, change the file type into NiceWatch Configuration.

4. Browse for the NiceWatch configuration file (.MIS file).

5. Click OK.

6. Automation Manager will display the trigger from the selected configuration. To start the trigger,
select it and click Start.

NOTE
If there are compatibility issues with NiceWatch configuration, open it in Automation Builder
and reconfigure it.

9.10. Controlling Automation Service with Command-line
Parameters
Read this section to learn how to use command prompt to:

• Start or stop Automation services.

• Control which configurations are loaded.

• Control which triggers are active.

NOTE
Make sure you are running Command Prompt in elevated mode (with administrative
permissions). Right-click cmd.exe and select Run as Administrator.

291

Starting and Stopping the Services
To start both services, use the following commands:

net start NiceLabelProxyService 10

net start NiceLabelAutomationService 10

If you want to open configuration file when the Service is started, use:

net start NiceLabelAutomationService 10 [Configuration]

For example:

net start NiceLabelAutomationService 10 "c:\Project\configuration.MISX"

To stop services, use the following commands:

net stop NiceLabelProxyService 10

net stop NiceLabelAutomationService 10

292

Managing the Configurations and Triggers
NiceLabel Automation service can be controlled using Automation Manager command-line parameters.
Use the following general syntax:

NiceLabelAutomationManager.exe COMMAND Configuration [TriggerName] [/SHOWUI]

NOTE
Include full path to the configuration name. Do not use the file name alone.

To ADD configuration

The provided configuration gets loaded into service. No trigger is started. If you include the /SHOWUI
parameter, Automation Manager UI is started.

NiceLabelAutomationManager.exe ADD c:\Project\configuration.MISX /SHOWUI

To RELOAD configuration

The provided configuration gets reloaded into service. The running status of all triggers is preserved.
Reloading the configuration forces the refresh of all files cached for this configuration. For more
information, see section Caching Files. If you include the /SHOWUI parameter, Automation Manager UI
is started.

NiceLabelAutomationManager.exe RELOAD c:\Project\configuration.MISX /SHOWUI

To REMOVE configuration

The provided configuration and all of its triggers are unloaded from service.

NiceLabelAutomationManager.exe REMOVE c:\Project\configuration.MISX

To START a trigger

The referenced trigger is started in the already loaded configuration.

NiceLabelAutomationManager.exe START c:\Project\configuration.MISX CSVTrigger

293

To STOP a trigger

The referenced trigger is stopped in the already loaded configuration.

NiceLabelAutomationManager.exe STOP c:\Project\configuration.MISX CSVTrigger

Status Codes
Status codes provide feedback about the command-line execution. To enable the status codes return, use
the following command-line syntax:

start /wait NiceLabelAutomationManager.exe COMMAND Configuration [TriggerName]

[/SHOWUI]

The status codes are captured in the errorlevel system variable. To see the status code, execute the
following command:

echo %errorlevel%

List of status codes:

Status Code Description

0 No error occurred

100 Configuration file name not found

101 Configuration cannot be loaded

200 Trigger not found

201 Trigger cannot start

Providing User Credentials for Application Authentication
If you have configured the LMS Enterprise or LMS Pro system to use Application Authentication (not
Windows Authentication), you have to provide user credentials with sufficient permissions to manage the
configurations and triggers.

There are two command-line parameters you can use:

• -USER:[username]. Where [username] is a placeholder for the actual user name.

• -PASSWORD:[password]. Where [password] is a placeholder for the actual password.

294

9.11. Database Connection String Replacement
Configuration file for Automation Service can include database connection string replacement commands.

You can configure the service to replace certain parts of a connection string while the trigger is
running. This enables a single instance of Automation to run the same configuration, but actually use
a different database server for database related functionality. This allows the user to configure triggers
in development environments and run them in production environments without any changes in the
configuration.

Connection string replacement logic is defined in the DatabaseConnections.Config file that is located
in the Automation system folder.

1. Open the Automation system folder %PROGRAMDATA%\NiceLabel\NiceLabel 10

2. Create a file with the name DatabaseConnections.config.

3. Open the newly created file DatabaseConnections.config in a text editor and enter the sample
content:

<?xml version="1.0" encoding="UTF-8"?>

<DatabaseConnectionReplacements>

 <Replacement>

 <From>Data Source=mySQLServer</From>

 <To>Data Source=NEW_mySQLServer</To>

 </Replacement>

 <Replacement>

 <From>Initial Catalog=myDatabase</From>

 <To>Initial Catalog=NEW_myDatabase</To>

 </Replacement>

</DatabaseConnectionReplacements>

This sample XML is an example, where an existing trigger contains a connection to the Microsoft
SQL server named mySQLServer and the database named myDatabase. You want to update the
connection string to use the database NEW_myDatabase on the server NEW_mySQLServer.
Two replacement elements have to be defined – one to change the server name and one to change
the database name.

4. Check the existing connection string in your labels, then change the <Replacement> content with
the correct values.
Configuration file defines from-to pairs using its XML structure. The <Replacement> element
contains one <From> and one <To> element. During trigger execution, the "from" string is replaced
with the "to" string. You can define as many <Replacement> elements as necessary.

NOTE
Some connection strings use Server=servername while others use Data
Source=servername. If you use the same database, you don't have to enter
database names.

295

5. Edit your product.config file that is located in %PROGRAMDATA%\NiceLabel\NiceLabel 10.
Add the element /Common/General/UseLocalReplacementStrings and assign value True:

<?xml version="1.0" encoding="utf-8"?>

<configuration>

 <Common>

 <General>

 ...

 <UseLocalReplacementStrings>True</UseLocalReplacementStrings>

 </General>

 </Common>

...

</configuration>

6. Restart both Automation services after adding or editing the config files.

7. Repeat steps 1-6 on all computers that run Automation configurations where you want to replace
database connection strings.

NOTE
Database connection string replacement does not change connection strings in your label
files. This procedure just overrides connection strings when printing from Automation.

9.12. Entering Special Characters (Control Codes)

Special characters or control codes are binary characters that are not represented on the keyboard. You
cannot type them the way normal characters are because they must be encoded using a special syntax.
You would need to use such characters when communicating with serial-port devices, receiving data on
TCP/IP port, or when working with binary files, such as print files.

There are two methods of entering special characters:

• Enter the characters manually using one of the described syntax examples:

• Use syntax <special_character_acronim>, such as <FF> for FormFeed, or <CR> for
CarriageReturn, or <CR><LF> for newline.

• Use syntax <#hex_code>, such as <#0D> (decimal 13) for CarriageReturn or <#00> for null
character.

For more information, see section List of Control Codes.

• Insert the listed characters. Objects that support special characters as their content have an arrow
button on their right side. The button contains a shortcut to all of the available special characters.
When you select a character in the list, it is added to the content. For more information, see section
Using Compound Values.

296

9.13. List of Control Codes

ASCII Code Abbreviation Description

1 SOH Start of Heading

2 STX Start of Text

3 ETX End of Text

4 EOT End of Transmission

5 ENQ Inquiry

6 ACK Acknowledgment

7 BEL Bell

8 BS Back Space

9 HT Horizontal Tab

10 LF Line Feed

11 VT Vertical Tab

12 FF Form Feed

13 CR Carriage Return

14 SO Shift Out

15 SI Shift In

16 DLE Data Link Escape

17 DC1 XON - Device Control 1

18 DC2 Device Control 2

19 DC3 XOFF - Device Control 3

20 DC4 Device Control 4

21 NAK Negative Acknowledgment

22 SYN Synchronous Idle

23 ETB End Transmission Block

24 CAN Cancel

25 EM End of Medium

26 SUB Substitute

27 ESC Escape

28 FS File Separator

29 GS Group Separator

30 RS Record Separator

31 US Unit Separator

188 FNC1 Function Code 1

189 FNC2 Function Code 2

297

190 FNC3 Function Code 3

191 FNC4 Function Code 4

9.14. Licensing and Printer Usage

Depending on the license type, your NiceLabel product might be limited to a number of printers you can use
simultaneously. In case of a multi-user license NiceLabel keeps track of the number and names of different
printers you have used for printing on all NiceLabel clients in your environment. The unique printer identifier
is a combination of printer driver name (not printer name), printer location and port.

"To use a printer" means that one of the below listed actions has been taken within the Automation
configuration:

• Print Label

• Send Data To Printer

• Preview Label

• Set Print Parameter

Each of these actions signalizes that a printer has been used. The associated printer is added to the list
of used printers and remains listed for 7 days since last usage. To remove a printer from the list, do not
use it for a period of 7 days and it will be removed automatically. The software displays the Last Used
information so you know when the 7-day period passes for each printer. You can bind a printer seat to a
specific printer by clicking the Reserved check box. Reservation ensures printer availability at all times –
even if a printer has been idle for more than 7 days.

WARNING
If you exceed the number of seats defined by your license, the software enters the 30-day
grace period. While in this mode, the number or allowed printers is temporarily increased to
twice the number of printers allowed by license.

Grace period provides plenty of time to resolve licensing issues without any printing downtime or loss of
ability to design labels. Exceeded number of allowed printers is usually an effect of printer replacement in
your environment. It happens if old and new printers are used simultaneously, or if you add new printers.
If you do not resolve license violation within the 30-day grace period, the number of available printers is
reduced to the number of purchased seats starting with the last used printer on the list.

TIP
To learn more about NiceLabel 10 licensing, read the dedicated document – NiceLabel 10
Licensing.

298

https://nicelabelhelpcenter.zendesk.com/hc/en-001/categories/4405139809937-Licensing-and-Activating-NiceLabel-Products

9.15. Running in Service Mode
NiceLabel Automation runs as a Windows service and is designed not to require any user intervention while
processing data and executing actions. The service is configured to start when the operating system is
booted and runs in the background for as long as Windows is running. NiceLabel Automation remembers
the list of all loaded configurations and active triggers. The last-known state is automatically restored when
the server restarts.

The service runs with privileges of the user account selected during the installation. The service inherits all
access permissions of that user account, including access to network shared resources, such as network
drives, and printer drivers. Use the account of an existing user with sufficient privileges, or even better,
create a dedicated account just for NiceLabel Automation.

You can manage the service by launching the Services from Windows Control Panel. In a modern Windows
operating system, you can also manage the services using Services tab in Windows Task Manager. You
would use Services to execute tasks such as:

• Starting and stopping the service.

• Changing the account under which the service logs on.

Good Practices Configuring the User Account for Service

• While being possible, it is considered a bad practice to run the service under the Local System
Account. This is a predefined local Windows account with extensive privileges on the local computer,
but is usually without privileges to access network resources. NiceLabel Automation requires full
access to the account's %temp% folder, which might not be available for Local System Account.

• If creating a new user account for NiceLabel Automation service, make sure that you log in Windows
with this new user for at least once. This makes sure that the user account is fully created. E.g., when
you log in, the temporary %temp% folder is created.

• Disable the requirement to occasionally change password for this user account.

• Make sure the account has permissions to Log on as service.

• Run the Service in x64 (64-bit) mode.

Accessing Resources
NiceLabel Automation inherits all privileges from the Windows user account under which the service
runs. The service executes all actions under that account name. Label can be opened if the account has
permissions to access the file. Label can be printed if the account has access to the printer driver.

If using revision control system and approval steps inside Document Storage in Control Center, you have
to make the service's user account a member of the 'Print-Only' profile, such as Operator. When done,
configure access permissions for the specific folder to read-only mode or profile Operator. This makes sure
that NiceLabel Automation only uses the approved labels, not drafts.

For more information, see section Access to Network Shared Resources.

299

Service Mode: 32-bit vs 64-bit
NiceLabel Automation can run on 32-bit (x86) and 64-bit (x64) systems natively. The execution mode is
auto-determined by the Windows operating system. NiceLabel Automation runs in 64-bit mode on 64-bit
Windows, and in 32-bit mode on 32-bit Windows.

• Printing: There are benefits of running Automation as a 64-bit process, such as direct communication
with the 64-bit printer Spooler service on 64-bit Windows. This eliminates the well-known issue
caused by the SPLWOW64.EXE, which is a 'middleware' that enables 32-bit applications to use the
64-bit printer spooler service.

• Database access: While running as a 64-bit process, NiceLabel Automation Service requires the
64-bit version of database drivers to be able to access the data. For more information, see section
Accessing Databases.

NOTE
If you don't have 64-bit database drivers for your database, you cannot use NiceLabel
Automation in 64-bit mode. You have to install it on a 32-bit system, or force it to run in
32-bit mode.

Forcing x86 Operation Mode on Windows x64
There might be reasons to run NiceLabel Automation as a 32-bit application on 64-bit Windows.

To force NiceLabel Automation into x86 mode on Windows x64, do the following:

• Select Start > Run.

• Type in regedit and press Enter.

• Navigate to the key

HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\services\NiceLabelAutomationService

• Change the file name to NiceLabelAutomationService10.x86.exe, while keeping the existing path.

• Restart NiceLabel Automation service.

WARNING
It is not recommended to change the NiceLabel Automation service mode. If you decide to
change it anyway, make sure you perform an extensive trigger testing before deploying the
configuration in production environment.

300

9.16. Search Order for Requested Files
When loading a specified label or image file, NiceLabel Automation tries to locate the requested file on
multiple predefined locations.

NiceLabel Automation locates the file in the following order:

1. Check if the file exists on the location as specified by the action.

2. Check if the file exists in the same folder as the configuration file (.MISX).

3. Check if the label file exists in .\Labels folder (for graphic files check .\Graphics folder).

4. Check if the label file exists in ..\Labels folder (for graphic files check ..\Graphics folder).

5. Check if the file exists in the global Labels folder (Graphics folder for graphics files) as configured
in the options.

If the file is not found on any of these locations, the action fails and the error is raised.

9.17. Securing Access to your Triggers
Certain deployments require secured access to the triggers. NiceLabel Automation allows you to enable
security measures that grant trigger access only to trustworthy network devices. Security configuration
depends on the trigger type. Some of the trigger types allow configuration of security access by design. For
all triggers that are based on TCP/IP protocol, you can further define all details within the Windows Firewall.

301

Configuring Firewall
When using TCP/IP based triggers, such as TCP/IP Server Trigger, HTTP Server Trigger or Web Service
Trigger make sure you allow external applications to connect to the triggers. Each trigger runs within
NiceLabel Automation service, to which access is governed by Windows Firewall.

NOTE
By default, the Windows Firewall is configured to allow all inbound connections to the
NiceLabel Automation service. This makes it easier for you to configure and test triggers,
but can be susceptible to unauthorized access.

If the NiceLabel Automation deployment in your company is a subject to strict security regulations, you
must update the firewall rules according to them.

For example:

• You can fine-tune the firewall to accept incoming traffic from well-known sources only.

• You can allow inbound data only on pre-defined ports.

• You can allow connection only from certain users.

• You can define on which interfaces your will accept incoming connection.

To make changes in the Windows Firewall, open the Windows Firewall with Advanced Security
management console from Control Panel > System And Security -> Windows Firewall > Advanced
Settings.

NOTE
If NiceLabel Automation is linked to NiceLabel Control Center products, make sure you
enable inbound connection on port 56415/TCP. If you close this port, you won't be able to
manage NiceLabel Automation from Control Center.

Allowing Access Based on the File Access Permissions
File trigger executes upon the time-stamp-change event in the monitored file or files. You must place the
trigger files in a folder, which the NiceLabel Automation service can access. The user account running
the Service must be able to access the files. Simultaneously, access permissions to the location also
determine, which user and/or application can save the trigger file. You should set up access permissions in
a way that only authorized users can save the files.

302

Allowing Access Based on the IP Address & Hostname
You can protect access to TCP/IP Server trigger with two lists of IP addresses and host names.

• The first list 'Allow connections from the following hosts' contains IP addresses or host names of
devices that can send data to the trigger. If a device has its IP address listed here, it is allowed to
send data to the trigger.

• The second list 'Deny connections from the following hosts' contains IP addresses or host names of
devices that are not allowed to send data. If a device has its IP address listed here, it is not allowed to
send data to the trigger.

Allowing Access Based on User names & Passwords
You can protect access to HTTP Server trigger by enabling the user authentication. When enabled, each
HTTP request sent to the HTTP Server trigger must include the 'user name & password' combination that
matches the defined combination.

Allowing Access Based on Application Group Membership
You can protect access to HTTP Server trigger adding users to an application group in Control Center. With
this option enabled, only authenticated members of this group are allowed to access the trigger.

9.18. Session Printing
Session printing enables printing of multiple labels using a single print job. If session printing is enabled,
the printer receives, processes and prints all labels in the print job at once. As a result, printing speed
increases due to continuous process of bundled label printing.

TIP
Session printing serves as an alternative to the normally used non-session printing, during
which each label is sent to a printer as a separate print job.

NOTE
Automation activates session printing automatically based on the configuration of actions.

303

How does session printing start?
Session printing automatically starts if For Loop, For Every Record or For Each Line actions are present
in the workflow. In such case, the nested Print Label action automatically enables session printing. This
means that print actions for all items in the loop are included in a single print job.

How does session printing end?
Each session printing ends either with a finished loop or with Print Label action combined with at least one
of the following conditions:

• Printer changes. If you select another printer using the Set Printer action, session printing ends.

• Printer port changes. If you redirect the print job to a file using the Redirect Printing to File action,
session printing ends.

• Label changes. If you select another label to be printed using Open Label action, session printing
ends.

• Custom command that ends session printing is sent. If you send SESSIONEND command using the
Send Custom Command action, session printing ends.

NOTE
In this case, SESSIONEND must be sent as the only item in Send Custom Command
action. If you would like to send additional commands, use separate Send Custom
Command actions.

NOTE
More complex configurations might have multiple loops nested within each other. In such
case, session printing ends when the outermost parent loop exits.

304

9.19. Tips and Tricks for Using Variables in Actions
If using variables in NiceLabel Automation actions, follow these recommendations.

• Enclose variables in parentheses. If you have variables with spaces in their names and refer to
variables in actions, such as Execute SQL Statement or Execute Script, enclose the variables in
parentheses, as in (Product Name). Also use parentheses if variable names are the same as
reserved names, e.g. in the SQL Statement.

• Place colon in front of the variable name. To refer to variables in Execute SQL Statement action or
in Database Trigger, you have to place a colon (:) in front of the variable name, such as :(Product
ID). The SQL parser understands it as 'variable value'.

SELECT * FROM MyTable WHERE ID = :(ProductID)

• Convert values to integer for computation. If you want to execute a numeric calculation with
variables, make sure that you convert variable values to integers. Defining variables to be numeric
only limits the acceptable characters for defining the value, but doesn't change the variable type.
NiceLabel Automation treats all variables of string type. In VBScript, you would use the function
CInt().

• Set default / start up values for scripts. When using variables in actions, make sure these variables
have some default value assigned, or the script checking might fail. You can define default values in
variable properties, or in a script (and remove them after testing the script).

9.20. Tracing Mode
By default, NiceLabel Automation logs events into log database. This includes higher-level information
gathering, such as:

• action execution logging

• filter execution logging

• logging of trigger status updates

For more information, see section Event Logging Options.

However, default logging doesn't keep track of the deep under-the-hood executions. If troubleshooting is
needed on the lower-level of the code execution, you must enable tracing mode. In this mode, NiceLabel
Automation logs details about all internal executions that take place during trigger processing. Tracing
mode should only be enabled during troubleshooting to collect logs and then disabled to resume normal
operation.

WARNING
Tracing mode slows down processing. It should only be used when instructed so by
NiceLabel technical support team.

305

urn:resource:component:50641

Enabling the tracing mode
To enable the tracing mode, do the following:

1. Navigate to the NiceLabel Automation System folder.

%PROGRAMDATA%\NiceLabel\NiceLabel 10

2. Create backup copy of product.config file.

3. Open product.config file in text editor. The file has an XML structure.

4. Add the element Common/Diagnostics/Tracing/Enabled and assign value True to it.
The file should have the following contents:

<?xml version="1.0" encoding="utf-8"?>

<configuration>

 <Common>

 <Diagnostics>

 <Tracing>

 <Enabled>True</Enabled>

 <Folder>c:\Troubleshooting\TracingLogs</Folder>

 </Tracing>

 </Diagnostics>

 </Common>

...

</configuration>

5. After you save the file, NiceLabel Automation Service automatically applies the setting.

6. By default, tracing files (*.LOG file extension) appear in the same System folder.
To override the log folder, use product.config file. Specify the custom log folder in the Folder
element. This element is optional.

7. To confirm that tracing mode is enabled, start the Automation Manager. With tracing mode
enabled, it displays text Tracing has been enabled in the notification pane above the trigger list.

After you reproduce the issue with enabled tracing, disable tracing in product.config file or restore your
original product.config file.

 <Tracing>

 <Enabled>False</Enabled>

306

9.21. Understanding Printer Settings and DEVMODE

NOTE
DEVMODE data structure is part of the GDI Print API structure in Windows. This section
includes highly technical content, relevant only for specific requirements.

Whenever you print labels with NiceLabel software (or any document in Windows applications for that
matter), the printing application reads printer settings as defined in the printer driver and applies them to
the print job. The same label can be printed using different printers just by selecting another printer driver.
Each time, printer settings of a newly selected printer apply to the label.

Printing a text document using two different laser printers usually produces the same or at least a
comparable result. Printing labels using two different label printers can produce very inconsistent results.
To produce comparable results, the same label file might require additional printer driver settings, such as
adjustment of offsets, speed, and temperature of printing. NiceLabel also applies printer settings to every
printout. By default, printer settings are saved inside the label file for the selected printer.

What is DEVMODE?
DEVMODE is a Windows structure that holds printer settings (initialization and environment information
about a printer). It contains two parts: public and private. Public part contains data that is common to all
printers. Private part contains data that is specific to a particular printer. Private part can be of variable
length and contains all specific manufacturer related settings.

• Public part: This part encodes general settings that are exposed in the printer driver model, such
as printer name, driver version, paper size, orientation, color, duplex, and similar. Public part remains
unchanged any printer driver and does not support specifics related to label printers (thermal printers,
industrial ink jet printers, laser engraving machines).

• Private part: This part encodes settings that are not available in the public part. Loftware printer
drivers use this part to store the printer model-specific data, such as printing speed, temperature
setting, offsets, print mode, media type, sensors, cutters, graphics encoding, RFID support, and
similar. Data structure within the private part of DEVMODE is a stream of binary data defined by
driver developers.

307

http://msdn.microsoft.com/en-us/library/windows/desktop/ff686802(v=vs.85).aspx

DEVMODE Changing
DEVMODE data structure is stored in Windows registry. There are two copies of the structure: default
printer settings and user-specific printer settings. You can alter the DEVMODE (printer settings) by changing
the parameters in the printer driver. The first two options are Windows related, while the third option is
available with NiceLabel software.

• Default printer settings: These settings are defined in Printer properties > Advanced tab > Printing
Defaults.

• User specific settings: These settings are stored separately for each user in the user's
HKEY_CURRENT_USER registry key. By default, user specific settings are inherited from the printer’s
default settings. The user specific settings are defined in Printer properties > Preferences. All
modifications here only affect the current user.

• Label specific settings: Label author that uses NiceLabel software can embed the DEVMODE into the
label. This makes printer settings portable. If the label is copied to another computer, printer settings
travel with it. To embed printer settings into the label, enable the option Use custom printer settings
saved in the label using Document Properties in Designer Pro. You can change the in-label printers
settings by selecting Printer panel in Document Properties.

Applying custom DEVMODE to printout
In NiceLabel Automation, you can open a label file and apply a custom DEVMODE to it. When printing
a label, its design is taken from the .NLBL file, and the DEVMODE applies the specific printer-related
formatting. This allows you to have a single label master. In such case, label printout remains the same no
matter which printer you use for printing because optimal settings for that printer are applied.

To apply a custom DEVMODE to a label, you can use two options:

1. Using an action, more specifically parameter Printer settings.

2. JOB command file, more specifically command SETPRINTPARAM with parameter
PRINTERSETTINGS. For more information, see section Using Custom Commands.

9.22. Using the Same User Account to Configure and Run
Triggers
NiceLabel Automation Service always runs under credentials of the user account configured for the service.
However, Automation Builder always runs under credentials of the currently logged-in user. The credentials
of service account and currently logged-in account might be different.

While you can preview the trigger in Automation Builder without any issues, the Service might report an
error message caused by credentials mismatch. While the currently logged-in user has permissions to
access folders and printers, the user account that the Service uses might not.

308

You can test the execution of triggers in Automation Builder using the same credentials as Service does. To
do so, run Automation Builder under the same user account as defined for the Service.

To run Automation Builder under a different user account, do the following:

1. Press and hold Shift key, then right click the Automation Builder icon.

2. Select Run as different user.

3. Enter the credentials for the same user, as used in NiceLabel Automation Service.

4. Click OK.

If you plan to frequently run Automation Builder under credentials of the other user account, see the
Windows-provided command-line utility RUNAS. Use the switches /user to specify the user account, and /
savecred. The latter allows you to enter the password only once, and then it is remembered for the next
time.

309

	NiceLabel Automation 10 User Guide
	Table of Contents
	1. Welcome to NiceLabel Automation
	1.1. Architecture
	1.2. System Requirements
	1.3. Installation
	1.4. Activation
	1.5. Trial Mode
	1.6. File Tab
	1.6.1. Open
	1.6.2. Compatibility with NiceWatch Products
	1.6.3. Save
	1.6.4. Save as
	1.6.5. Options
	1.6.6. About

	2. Understanding Filters
	2.1. Configuring Structured Text Filter
	2.1.1. Structured Text Filter
	2.1.2. Defining Fields
	2.1.3. Enabling Dynamic Structure

	2.2. Configuring Unstructured Data Filter
	2.2.1. Unstructured Data Filter
	2.2.2. Defining Fields
	2.2.3. Defining Sub Areas
	2.2.4. Defining Assignment Areas

	2.3. Configuring XML filter
	2.3.1. XML Filter
	2.3.2. Defining XML Fields
	2.3.3. Defining Repeatable Elements in XML Filter
	2.3.4. Defining XML Assignment Area

	2.4. Configuring JSON filter
	2.4.1. JSON Filter
	2.4.2. Defining JSON Fields
	2.4.3. Defining Repeatable Elements in JSON Filter
	2.4.4. Defining JSON Assignment Area

	2.5. Setting Label and Printer Names from Input Data

	3. Understanding Triggers
	3.1. File Trigger
	3.2. Serial Port Trigger
	3.3. Database Trigger
	3.4. TCP/IP Server Trigger
	3.5. TCP/IP Client Trigger
	3.6. HTTP Server Trigger
	3.7. Web Service Trigger
	3.8. Scheduler Trigger
	3.8.1. General
	3.8.2. Recurrences

	3.9. LPS Trigger
	3.10. Testing Triggers
	3.11. Using Secure Transport Layer (HTTPS)
	3.12. Protecting Trigger Configuration from Editing
	3.13. Configuring Firewall for Network Triggers

	4. Variables
	4.1. Using Compound Values
	4.2. Internal Variables
	4.3. Global Variables

	5. Actions
	5.1. Defining actions
	5.2. Nested actions
	5.3. Action execution
	5.4. Conditional actions
	5.5. Identifying actions in configuration error state
	5.6. Disabling actions
	5.7. Copying actions
	5.8. Navigating the action list
	5.9. Describing the actions
	5.10. General
	5.10.1. Open Label
	5.10.2. Print Label
	5.10.3. Run Oracle XML Command File
	5.10.4. Run SAP AII XML Command File
	5.10.5. Run Command File
	5.10.6. Send Custom Commands

	5.11. Printer
	5.11.1. Set Printer
	5.11.2. Set Print Job Name
	5.11.3. Redirect Printing to File
	5.11.4. Set Print Parameter
	5.11.5. Redirect Printing to PDF
	5.11.6. Printer Status
	5.11.7. Store Label to Printer
	5.11.8. Print PDF Document

	5.12. Variables
	5.12.1. Set Variable
	5.12.2. Save Variable Data
	5.12.3. Load Variable Data
	5.12.4. String Manipulation

	5.13. Batch Printing
	5.13.1. For Loop
	5.13.2. Use Data Filter
	5.13.3. For Every Record

	5.14. Data & connectivity
	5.14.1. Open Document/Program
	5.14.2. Save Data to File
	5.14.3. Read Data from File
	5.14.4. Delete File
	5.14.5. Execute SQL Statement
	5.14.6. Send Data to TCP/IP Port
	5.14.7. Send Data to Serial Port
	5.14.8. Read Data from Serial Port
	5.14.9. Send Data to Printer
	5.14.10. HTTP Request
	5.14.11. Web Service

	5.15. Other
	5.15.1. Get Label Information
	5.15.2. Execute Script
	5.15.2.1. Script Editor

	5.15.3. Message
	5.15.4. Verify License
	5.15.5. Try
	5.15.6. XML Transform
	5.15.7. Group
	5.15.8. Log Event
	5.15.9. Preview Label
	5.15.10. Create Label Variant

	6. Running and Managing Triggers
	6.1. Deploying Configuration
	6.2. Event Logging Options
	6.3. Managing Triggers
	6.4. Using Event Log
	6.5. If your configuration fails to load...

	7. Performance and Feedback Options
	7.1. Parallel Processing
	7.2. Caching Files
	7.3. Error Handling
	7.4. Synchronous Print Mode
	7.4.1. Asynchronous Print Mode
	7.4.2. Synchronous Print Mode

	7.5. Print Job Status Feedback
	7.6. Excluding printers from automated printing
	7.7. Using Store/Recall Printing Mode
	7.8. High-availability (Failover) Cluster
	7.9. Load-balancing Cluster

	8. Understanding Data Structures
	8.1. Binary Files
	8.1.1. Example

	8.2. Command Files
	8.2.1. Example

	8.3. Compound CSV
	8.3.1. Example

	8.4. Legacy Data
	8.4.1. Example

	8.5. Text Database
	8.5.1. Example

	8.6. XML Data
	8.6.1. Examples

	8.7. JSON Data

	9. Reference and Troubleshooting
	9.1. Command File Types
	9.1.1. Command Files Specifications
	9.1.2. CSV Command File
	9.1.2.1. Sample CSV Command File

	9.1.3. JOB Command File
	9.1.3.1. Sample JOB Command File

	9.1.4. XML Command File
	9.1.4.1. Sample XML Command File

	9.1.5. Oracle XML Specifications
	9.1.5.1. XML DTD
	9.1.5.2. Sample Oracle XML

	9.1.6. SAP AII XML Specifications
	9.1.6.1. Sample SAP AII XML

	9.1.7. PAS Command File
	9.1.7.1. PAS Command File Example

	9.2. Custom Commands
	9.2.1. Using Custom Commands

	9.3. Access to Network Shared Resources
	9.4. Document Storage and Versioning of Configuration Files
	9.5. Accessing Databases
	9.5.1. 32-bit Windows
	9.5.2. 64-bit Windows

	9.6. Automatic Font Replacement
	9.7. Automating Reports
	9.7.1. Creating temporary databases
	9.7.2. Designing automated Reports
	9.7.3. Creating data filters
	9.7.4. Creating triggers for your new data filter

	9.8. Changing Multi-threaded Printing Defaults
	9.9. Compatibility with NiceWatch Products
	9.10. Controlling Automation Service with Command-line Parameters
	9.11. Database Connection String Replacement
	9.12. Entering Special Characters (Control Codes)
	9.13. List of Control Codes
	9.14. Licensing and Printer Usage
	9.15. Running in Service Mode
	9.16. Search Order for Requested Files
	9.17. Securing Access to your Triggers
	9.18. Session Printing
	9.19. Tips and Tricks for Using Variables in Actions
	9.20. Tracing Mode
	9.21. Understanding Printer Settings and DEVMODE
	9.22. Using the Same User Account to Configure and Run Triggers

