
NiceLabel Automation 2017
User Guide
Rev-1702 ©NiceLabel 2017.

www.nicelabel.com

1 Contents
1 Contents 2
2 Welcome to NiceLabel Automation 8
3 Typographical Conventions 10
4 Setting Up Application 11

4.1 Architecture 11

4.2 System Requirements 11

4.3 Installation 12

4.4 Activation 13

4.5 Trial Mode 13

4.6 File Tab 13

4.6.1 Open 14

4.6.2 Compatibility with NiceWatch Products 14

4.6.3 Save 16

4.6.4 Save as 16

4.6.5 Options 16

4.6.6 About 20

5 Understanding Filters 22

5.1 Understanding Filters 22

5.2 Configuring Structured Text Filter 24

5.2.1 Structured Text Filter 24

5.2.2 Defining Fields 24

5.2.3 Enabling Dynamic Structure 26

5.3 Configuring Unstructured Data Filter 28

5.3.1 Unstructured Data Filter 28

5.3.2 Defining Fields 30

5.3.3 Defining Sub Areas 33

5.3.4 Defining Assignment Areas 35

5.4 Configuring XML filter 37

5.4.1 XML Filter 37

5.4.2 Defining XML Fields 38

5.4.3 Defining Repeatable Elements 40

www.nicelabel.com 2

5.4.4 Defining XML Assignment Area 41

5.5 Setting Label and Printer Names from Input Data 44

6 Configuring Triggers 45

6.1 Understanding Triggers 45

6.2 Defining Triggers 47

6.2.1 File Trigger 47

6.2.2 Serial Port Trigger 50

6.2.3 Database Trigger 52

6.2.4 TCP/IP Server Trigger 58

6.2.5 HTTP Server Trigger 62

6.2.6 Web Service Trigger 67

6.3 Using Variables 76

6.3.1 Variables 76

6.3.2 Using Compound Values 77

6.3.3 Internal Variables 78

6.3.4 Global Variables 80

6.4 Using Actions 81

6.4.1 Actions 81

6.4.1.1 Defining actions 81

6.4.1.2 Nested actions 82

6.4.1.3 Action execution 82

6.4.1.4 Conditional actions 82

6.4.1.5 Identifying actions in configuration error state 83

6.4.1.6 Disabling actions 83

6.4.1.7 Copying actions 83

6.4.1.8 Navigating the action list 84

6.4.1.9 Describing the actions 84

6.4.2 General 85

6.4.2.1 Open Label 85

6.4.2.2 Print Label 86

6.4.2.3 Run Oracle XML Command File 89

6.4.2.4 Run SAP AII XML Command File 91

6.4.2.5 Run Command File 93

6.4.2.6 Send Custom Commands 94

www.nicelabel.com 3

6.4.3 Printer 96

6.4.3.1 Set Printer 96

6.4.3.2 Set Print Job Name 97

6.4.3.3 Redirect Printing to File 98

6.4.3.4 Set Print Parameter 100

6.4.3.5 Redirect Printing to PDF 103

6.4.3.6 Printer Status 104

6.4.3.7 Store Label to Printer 108

6.4.4 Variables 109

6.4.4.1 Set Variable 109

6.4.4.2 Save Variable Data 110

6.4.4.3 Load Variable Data 112

6.4.4.4 String Manipulation 113

6.4.5 Batch Printing 116

6.4.5.1 For Loop 116

6.4.5.2 Use Data Filter 117

6.4.5.3 For Every Record 120

6.4.6 Data & connectivity 121

6.4.6.1 Open Document/Program 121

6.4.6.2 Save Data to File 123

6.4.6.3 Read Data from File 124

6.4.6.4 Delete File 126

6.4.6.5 Execute SQL Statement 127

6.4.6.6 Send Data to TCP/IP Port 131

6.4.6.7 Send Data to Serial Port 132

6.4.6.8 Read Data from Serial Port 134

6.4.6.9 Send Data to Printer 136

6.4.6.10 HTTP Request 137

6.4.6.11 Web Service 140

6.4.7 Other 143

6.4.7.1 Get Label Information 143

6.4.7.2 Execute Script 147

6.4.7.2.1 Script Editor 148

6.4.7.3 Message (Configuration) 149

www.nicelabel.com 4

6.4.7.4 Verify License 151

6.4.7.5 Try 152

6.4.7.6 XML Transform 154

6.4.7.7 Group 156

6.4.7.8 Log Event 157

6.4.7.9 Preview Label 159

6.4.7.10 Create Label Variant 160

6.5 Testing Triggers 162

6.5.1 Testing Triggers 162

6.6 Protecting Trigger Configuration from Editing 165

6.7 Configuring Firewall for Network Triggers 165

6.8 Using Secure Transport Layer (HTTPS) 166

7 Running and Managing Triggers 169

7.1 Deploying Configuration 169

7.2 Event Logging Options 170

7.3 Managing Triggers 170

7.4 Using Event Log 172

8 Performance and Feedback Options 174

8.1 Parallel Processing 174

8.2 Caching Files 175

8.3 Error Handling 177

8.4 Synchronous Print Mode 178

8.5 Print Job Status Feedback 179

8.6 Using Store/Recall Printing Mode 181

8.7 High-availability (Failover) Cluster 182

8.8 Load-balancing Cluster 183

9 Understanding Data Structures 184

9.1 Understanding Data Structures 184

9.2 Binary Files 184

9.3 Command Files 185

9.4 Compound CSV 185

9.5 Legacy Data 186

www.nicelabel.com 5

9.6 Text Database 186

9.7 XML Data 187

10 Reference and Troubleshooting 189

10.1 Command File Types 189

10.1.1 Command Files Specifications 189

10.1.2 CSV Command File 189

10.1.3 JOB Command File 190

10.1.4 XML Command File 190

10.1.5 Oracle XML Specifications 195

10.1.6 SAP AII XML Specifications 196

10.2 Custom Commands 197

10.2.1 Using Custom Commands 197

10.3 Access to Network Shared Resources 202

10.4 Document Storage and Versioning of Configuration Files 203

10.5 Accessing Databases 204

10.6 Automatic Font Replacement 204

10.7 Changing Multi-threaded Printing Defaults 206

10.8 Compatibility with NiceWatch Products 207

10.9 Controlling the Service with Command-line Parameters 208

10.10 Database Connection String Replacement 210

10.11 Entering Special Characters (Control Codes) 211

10.12 List of Control Codes 212

10.13 Licensing and Printer Usage 213

10.14 Running in Service Mode 214

10.15 Search order for the Requested Files 216

10.16 Securing Access to your Triggers 216

10.17 Session Printing 217

10.18 Tips and Tricks for Using Variables in Actions 219

10.19 Tracing Mode 219

10.20 Understanding Printer Settings and DEVMODE 220

10.21 Using the Same User Account to Configure and to Run Triggers 222

11 Examples 223

www.nicelabel.com 6

11.1 Examples 223

12 Technical Support 224

12.1 Online Support 224

www.nicelabel.com 7

2 Welcome to NiceLabel
Automation
NiceLabel Automation is an application that automates repetitive tasks. In most cases you would
use it to integrate label printing processes into existing informational systems, such as existing
business applications, production and packaging lines, distribution systems, supply chains. All
applications across all divisions and locations in your company can now print authorized labels
templates.

NiceLabel Automation represents the optimal business label printing system by synchronizing
business events with label production. Automated printing without human interaction is by far
the most effective way to remove user errors and maximize performance.

Automating label printing with a trigger-based application revolves around 3 core processes.

Trigger

Triggers are a simple but powerful function that help you automate work. At its core a trigger is a
cause and effect statement: ff a monitored event happens, do something.

We are talking about IF .. THEN processing. Triggers are good for things you find yourself
repeating.

Automated label printing is triggered by a business operation. NiceLabel Automation is set to
supervise a folder, file, or a communication port. When a business operation takes place, a file
change or incoming data is detected and it triggers the label printing process.

Learn more about various Triggers:

 l File trigger

 l Serial port trigger

 l Database trigger

 l TCP/IP trigger

 l HTTP trigger

 l Web Service trigger

Data Extraction and Placement

Once the printing is triggered, the NiceLabel Automation extracts label data and inserts it into
variable fields on the label design.

Data extraction Filters support:

 l Structured text files

 l Unstructured text files

www.nicelabel.com 8

 l Various XML files

 l Binary data: printer replacement, export from legacy software, data from hardware
devices, etc.

Action Execution

When the data has been matched with variable fields on the label, NiceLabel Automation
performs actions. Basic operations usually include the Open Label and Print Label actions to
print extracted data on the label. You can also send the data to custom destinations, such as
files on the disk, to Web servers, hardware devices and much more. All together you can select
from over 30 different actions.

See more information about basic and advanced printing Actions.

www.nicelabel.com 9

3 Typographical Conventions
Text that appears in bold refers to menu names and buttons.

Text that appears in italic refers to options, confirming actions like Read only and locations like
Folder.

Text enclosed in <Less-Than and Greater-Than signs> refers to keys from the desktop PC
keyboard such as <Enter>.

Variables are enclosed in [brackets].

NOTE: This is the style of a note.

EXAMPLE: This is t he s t y le of a n exa mple.

This is the style of a best practice.

WARNING: This is the style of a warning.

TIP: This is the style of a tip.

www.nicelabel.com 10

4 Setting Up Application
4.1 Architecture
NiceLabel Automation is a service-based application. The execution of all rules and actions is
performed as the background process under the credentials of the user account defined for the
Service.

The NiceLabel Automation consists out of three components.

 l Automation Builder. This the configuration application that the developer would use to
create triggers, filters and actions to execute when data is received into the trigger. This
application always runs as the 32-bit application.

 l Automation Manager. This is the management application that is used to monitor the
execution of triggers in the real time and start/stop the triggers. This application always
runs as the 32-bit application.

 l NiceLabel Automation Service. This is the 'print engine' executing the rules defined in
the triggers. Actually, there are two service applications, NiceLabel Automation Service
and NiceLabel Proxy Service. The Service always detects the 'bitness' of the Windows
machine and runs in the same level (e.g. as 64-bit application on 64-bit Windows), while
Proxy Service always runs as 32-bit process.

4.2 System Requirements
 l CPU: Intel or compatible x86 family processor

 l Memory: 2 GB or more RAM

 l Hard drive: 1 GB of available disk space

 l 32-bit or 64-bit Windows operating system: Windows Server 2008 R2, Windows 7,
Windows 8, Windows 8.1, Windows Server 2012, Windows Server 2012 R2, Windows 10,
Windows Server 2016 (Windows Server Core and Windows Nano Server are not

www.nicelabel.com 11

supported)

 l Microsoft .NET Framework Version 4.5

 l Display: 1366×768 or higher resolution monitor

 l Label Designer:

 l Recommended: NiceLabel V2017 (.NLBL file format)

 l Minimum: NiceLabel Pro V5.4 (.LBL file format), but in this case compatibility issues
might occur

 l Recommended printer drivers: NiceLabel Printer Drivers V5.1 or higher

 l Full access to the application's system folder, where events are logged to a database

%PROGRAMDATA%\NiceLabel\NiceLabel 2017

 l Full access to the service user account's %temp% folder.

4.3 Installation

NOTE: Below is the summarized version of the installation procedure. For more information,
see the Installation Guide.

Before you begin with the installation, make sure your infrastructure is compatible with the
System Requirements.

To install NiceLabel Automation, do the following:

 1. Insert NiceLabel DVD.

The main menu application will start automatically.

If the main menu application does not start, double click the START.EXE file on the DVD.

 2. Click the Install NiceLabel.

 3. Follow the Setup Wizard prompts.

During the installation the Setup will prompt for the user name under which the NiceLabel
Automation service will run under. Make sure to select some real user name, because
service will inherit that user name's privileges. For more information, see the topic
Running in Service Mode.

Upgrade

To upgrade NiceLabel Automation to a new service release within the same major version,
install the new version on top of the installed one overwriting it. During the upgrade the old
version will be removed and replaced with the new, keeping the existing settings. During the
upgrade the log database will be emptied.

www.nicelabel.com 12

NOTE: Two different major versions of the same NiceLabel product are installed side-by-
side.

4.4 Activation
You must activate NiceLabel Automation software to enable processing of the configured
triggers. The activation procedure requires the Internet connection, preferably on the machine
where your are installing the software. The same activation procedure is used to activate the
trial license key.

NOTE: You can activate the software either from Automation Builder or Automation Manager
and achieve the same effect.

Activation in Automation Builder
 1. Run Automation Builder.

 2. Select File>About>Activate Your License.
The Activation Wizard will start.

 3. Follow on-screen instructions.

Activation in Automation Manager
 1. Run Automation Manager.

 2. Go to About tab.

 3. Click Activate Your License.

 4. Follow on-screen instructions.

4.5 Trial Mode
Trial mode allows you to test NiceLabel Automation product for up to 30 days. Trial mode has the
same functionality as running the licensed version, so it allows evaluation of the product prior
the purchase. The Automation Manager will continuously display the trial notification message
and the number of trial days remaining. When trial mode expires, the NiceLabel Automation
service will no longer process triggers. The countdown of 30 days begins from the day of the
installation.

NOTE: You can extend the trial mode by contacting your NiceLabel reseller and requesting
another trial license key. You have to activate the trial license key. For more information, see
the topic Activation.

4.6 File Tab
File tab serves as document management panel. The below listed options are available:

www.nicelabel.com 13

 l New: creates a new configuration file.

 l Open: opens existing configuration files.

 l Open NiceWatch File: opens a legacy NiceLabel NiceWatch configuration.

 l Save: saves the active configuration file.

 l Save as: allows saving the active configuration file by defining its name and location.

 l Options: opens the dialog for configuring the program defaults.

 l About: provides license and software version information.

 l Exit: closes the application.

4.6.1 Open
Open dialog allows you to open existing configurations in Automation Builder.

Browse allows selecting the configuration files on local or connected network drives.

Document Storage opens the document storage location of the connected NiceLabel Control
Center. If document versioning is enabled for this location in the Control Center, additional tab
opens. The Document Storage tab allows you to manage your copy of the stored configuration
file.

Recent Files field lists the latest configuration files that have been edited. Click any of them to
open the file.

4.6.2 Compatibility With NiceWatch Products
NiceLabel Automation can load the trigger configurations that were defined in one of the
NiceWatch products. In majority of cases you can run NiceWatch configuration in NiceLabel
Automation without any modification.

NiceLabel Automation products are using new .NET-based print engine optimized for
performance and low memory footprint. The new print engine does not support each label
design option that is available in the label designer. Each new release of NiceLabel Automation
is closing the gap, but you might still experience some unavailable features.

Resolving Incompatibility Issues

NiceLabel Automation will also warn you if you try to print existing label templates that contain
design functionality, not available in the new print engine.

www.nicelabel.com 14

If there are incompatibilities with the NiceWatch configuration file or label templates, you will be
notified about:

 l Compatibility with trigger configuration. While opening the NiceWatch configuration
(.MIS file), NiceLabel Automation checks it against the supported features. Not all features
from NiceWatch products are available in NiceLabel Automation. Some are not available at
all and some are configured differently. If the MIS file contains some not supported fea-
tures, you will see a list such features and they will be removed from the configuration.

In this case you have to open the .MIS file in Automation Builder and resolve the
incompatibility issues. You will have to use NiceLabel Automation functionality to re-
create the removed configuration.

 l Compatibility with the label templates. If your existing label templates contain func-
tionality not supported in the print engine provided by NiceLabel Automation, you will see
error messages in the Log pane. This information is visible in the Automation Builder
(when designing triggers) or in Automation Manager (when running the triggers).

In this case you have to open the label file in the label designer and remove the
unsupported features from the label.

NOTE: For more information about incompatibility issues with NiceWatch and label
designers, see Knowledge Base article KB251.

Opening NiceWatch Configuration for Editing

You can open the existing NiceWatch configuration (.MIS file) in Automation Builder and edit it in
Automation Builder. You can save the configuration only in the .MISX format.

To edit the NiceWatch configuration, do the following:

 1. Start Automation Builder.

 2. Select File>Open NiceWatch File.

 3. In Open dialog box, browse for the NiceWatch configuration file (.MIS file).

 4. Click OK.

 5. If the configuration contains unsupported functionality, a list of unsupported features will
be displayed. They will be removed from the configuration.

Opening NiceWatch Configuration for Execution

You can open NiceWatch configuration (.MIS file) in Automation Manager without conversion to
the NiceLabel Automation file format (.MISX file). If the triggers from NiceWatch are compatible
with NiceLabel Automation, you can start using them right away.

To open and deploy NiceWatch configuration, do the following:

 1. Start Automation Manager.

 2. Click +Add button.

 3. In Open dialog box, change the file type into NiceWatch Configuration.

www.nicelabel.com 15

http://kb.nicelabel.com/index.php?t=faq&id=251

 4. Browse for the NiceWatch configuration file (.MIS file).

 5. Click OK.

 6. In the Automation Manager, the trigger from the selected configuration will display.
To start the trigger, select it and click the Start button.

NOTE: If there is some compatibility problem with the NiceWatch configuration, you will have
to open it in Automation Builder and reconfigure it.

4.6.3 Save
Save saves the active configuration using the same file name that was used for opening it.

NOTE: If a configuration has been opened for the first time, Save directs you to the Save as
background dialog.

4.6.4 Save As
Save as allows saving the active configuration file by defining its name and location.

Recent folders field lists the folders that were recently used for saving the configuration files.

4.6.5 Options
Use settings in this dialog box to customize the application. Select the group in the left-hand
pane then configure settings in the right-hand pane.

Folders

You can select default folders for storing the labels, forms, databases and picture files. The
default folder location is the current user's Documents folder. These will be default folders
where NiceLabel Automation will search for files whenever you provide just the file name
without the full path. For more information about the search order, see topic Search order for
the Requested Files.

The folder changes will propagate to the Service within one minute. To apply changes
immediately, you can restart the NiceLabel Automation Service.

NOTE: The settings that you apply here are saved into the profile of the currently logged-in
user. If your NiceLabel Automation Service runs under a different user account, you will first
have to log into Windows using that other account, and then change the default label folder.
You can also use Windows command-line utility RUNAS to run Automation Builder as that
other user.

Language

Language tab allows selecting the NiceLabel Automation interface language. Select the
appropriate language and click OK.

www.nicelabel.com 16

NOTE: The change will be applied when you restart the application.

Global Variables

Global Variables tab allows defining which location with stored global variables should be used:

 l Use global variables stored on the server (Control Center). Sets the global variable
storage location on the Control Center.

NOTE: This option becomes available when using the NiceLabel LMS license.

 l Use global variables stored in a file (local or shared). Sets the global variable storage
location in a local or shared folder. Enter the exact path or click Open to locate the file.

Control center

Control Center tab allows you to enable and configure the monitoring of events and print jobs.
The use of NiceLabel Control Center enables centralized event and print job reporting, and
centralized storage of global variables.

NOTE: This tab is available only if LMS license is activated.

Address group defines which NiceLabel Control Center server should be used.

 l Control Center server address: URL of the connected NiceLabel Control Center server.
You can select from the list of automatically discovered servers on the network, or enter
a server address manually.

NOTE: The license keys on the NiceLabel Control Center server and on the
workstation must match to enable the connection.

Event Monitoring group defines what types of events should be logged by the connected
NiceLabel Control Center

 l Print Events: logs the print related events from the workstation.

 l Error Events: logs all reported errors.

NOTE: By default, Print Events and Error Events are logged to the NiceLabel Control
Center.

 l Trigger Activity: logs all fired triggers.

 l Trigger Status Change Events: logs the trigger status changes which have been caused
by the fired triggers.

Print Job Monitoring group enables you to log the completed and ongoing print jobs to
NiceLabel Control Center.

www.nicelabel.com 17

 l Enable Print Job Logging to Server: activates print job logging.

 l Detailed printing control: enables monitoring of statuses that are reported by the
connected printer.

NOTE: There are two requirements to make this option available:
- The printer must support bidirectional communication.
- NiceLabel printer driver must be used for printing.

Printer Usage

NOTE: Printer usage logging is available with multi-seat license.

Printer usage tab displays the logged usage of installed printers. Printer usage provides
information about the number of printers that have been used in your printing environment.

Printer usage information group displays how many of the permitted printer ports are used by
printing on multiple printers.

 l Number of printers allowed by license. Number of permitted printers to be used with
the current Designer license.

 l Number of used printers in the last 7 days. Number of printers that have been used
with Designer during the last 7 days.

TIP: During a 7-day period, Designer license allows only the specified number of
different printers to be used.

WARNING: When exceeding the allowed number of printers – this number is defined by the
license – a warning appears. After doubling the number of allowed printers, printing is no
longer allowed on the printers that are added further.

Printing statuses are visible in multiple columns:

 l Printer. Name or model of the printer that was selected for the print job.

NOTE: If the connected printer is shared, only printer model is displayed.

 l Location. Name of the computer from which the print job has been sent.

 l Port. Port used by the printer.

 l Last Used. Time passed since the last print job.

 l Reserved. Prevents the printer from being removed after idling for more that 7 days.

NOTE: If a printer remains unused for more then 7 days, it s removed automatically
unless the Reserved option is enabled.

Permissions group allows you to lock printer usage on local workstation.

www.nicelabel.com 18

 l This workstation can only use reserved printers: with this option enabled, only
reserved printers are allowed for label editing and printing in NiceLabel 2017.

TIP: Use this option to avoid exceeding the number of available licensed printer seats
by printing on unwanted printers or print-to-file applications. Reserve dedicated
thermal or laser labeling printers and limit printing only to them to ensure continuous
printing of labels with a multi-user licence.

This option can also be enabled using the product.config file:

 1. Navigate to the System folder.

EXAMPLE: [[[Undef ined v a r ia ble Va r ia bles .P a t h-Sy s t em-D es igner]]]

 2. Make a backup copy of the product.config file.

 3. Open product.config in a text editor. The file has an XML structure.

 4. Add the following lines:

<Configuration>
 <Activation>
 <ReservePrinters>Example Printer Name</ReservePrinters>
 </Activation>
 <Common>
 <General>
 <ShowOnlyReservedPrinters>True</ShowOnlyReservedPrinters>
 </General>
 </Common>
 </Configuration>

 5. Save the file. The Example Printer is reserved.

Automation

These settings define the application's advanced features.

NOTE: The changes will be applied when you restart the application.

Service Communication
 l Service communication port. The Automation Manager controls the service using

TCP/IP protocol on the selected port. If the default port is not convenient to be used on
your computer, you can select some other port number. Be careful not to select some
port number that is already in use by some other application.

Log

 l Clear log entries daily at. Defines the start of the housekeeping process. At this time
the log database will be purged of the old events.

www.nicelabel.com 19

 l Clear log entries when older than (days). Specifies the retention of the events in the
log database. All events older than the specified number of days will be purged from a
database at each housekeeping event.

 l Log messages. Specifies the level of logging you want to apply. During development and
testing phases you want to enable verbose logging. You want to enable all messages to
better trace the execution of triggers. However, in the production phase you want to min-
imize the amount of logging and enable logging of errors only.

Performance

TIP: The functionality from this topic is available in NiceLabel LMS Enterprise.

 l Cache remote files. To improve the time-to-first label and performance in general,
NiceLabel Automation supports file caching. When you load the labels, images and data-
base data from network shares, all required files must be fetched before the printing pro-
cess can begin.

TIP: If you enable local caching, the effect of network latency is reduced as label and
picture files are loaded from the local disk.

Automation service uses the following local folder to cache the remote
files: %PROGRAMDATA%\NiceLabel\NiceLabel 2017\FileCache.

 l Refresh cache files (minutes). Defines the time interval within which the files in
the cache are be synchronized with files in the original folder. This is the time limit
for the system to use a version which may not be the latest.

 l Remove cache files when older than (days). Defines the time interval after which
all files are removed from cache.

NOTE: File caching supports label and picture file formats. After you enable file
caching, restart Automation service to make the changes take effect.

Cluster Support

TIP: The functionality from this topic is available in NiceLabel LMS Enterprise.

This setting enables the support for the high-availability (failover) type of cluster in NiceLabel
Automation. Select the folder which both nodes in the cluster will use to share information
about the real-time trigger statuses.

4.6.6 About
About dialog provides information about your NiceLabel product license, enables license
purchasing (when in trial mode) and activation, provides software details, and enables you to
change the product level of NiceLabel 2017.

License information group includes:

www.nicelabel.com 20

 l Trial mode duration: Information about the remaining days for product evaluation. This
segment is no longer visible after purchasing and activating the product license.

 l Purchase License: Button directs you to the NiceLabel online store.

 l Activate license: Button opens the NiceLabel 2017 license activation dialog. See NiceLa-
bel 2017 installation guide for details about the license activation process. After activ-
ating the license, this button is renamed to Deactivate License – after clicking it and
confirming the deactivation, your copy of NiceLabel 2017 is no longer activated.

 l Change product level: Opens the product level selection dialog. When in trial mode, you
can choose and evaluate all product levels. With an activated license, you can change
your product level only to lower levels.

NOTE: Product level changes will take effect after restarting the application.

 l Upgrade license: Opens the product level upgrade dialog. See NiceLabel 2017 install-
ation guide for details about the license upgrade process.

Software information group include information about the installed software version and build
number.

www.nicelabel.com 21

http://www.nicelabel.com/resources/files/doc/installation-guide/ig-NiceLabel_2017_Installation_Guide-en.pdf
http://www.nicelabel.com/resources/files/doc/installation-guide/ig-NiceLabel_2017_Installation_Guide-en.pdf
http://www.nicelabel.com/resources/files/doc/installation-guide/ig-NiceLabel_2017_Installation_Guide-en.pdf

5 Understanding Filters
5.1 Understanding Filters
NiceLabel Automation uses filters to define structure of the data received by triggers. Every
time a trigger receives a data, that data is parsed through one or many filters, which extract the
values you need. Every filter is configured with rules that describe how to identify fields in the
data.

NOTE: As a result, the filter provides a list of fields and their values (name:value pairs).

Filter Types

For more information, see the topics Structured Text Filter, Unstructured Data Filter and XML
Filter.

Data Structure

The filter complexity depends on the data structure. The data that is already in the structured
form, such as CSV or XML, can be easily extracted. In this case the field names are already
defined with the data. Extracting of name:value pairs is quick. In case of data without a clear
structure, it takes more time to define the extraction rules. Such data might be in a form of
export of documents and reports from legacy system, intercepted communication between
devices, captured print stream, and similar.

The filter defines a list of fields that will be extracted from the incoming data once you run the
filter.

NiceLabel Automation supports various types of input data that can be all parsed by one of the
supported filter types. You must choose the correct filter to match the type of the incoming
data. For example, you would use Structured Text filter for incoming CSV data and you would
use XML filter for incoming XML data. For any unstructured data you would use Unstructured
Data filter. For more information, see the topic Understanding Data Structures.

Extracting Data

Filter is just a set of rules and doesn't do any extraction by itself. To run the filter you must run
the Use Data Filter action. The action will execute filter rules against the data and extract the
values.

Every trigger can execute as many of Use Data Filter actions as you need. If you receive
compound input data that cannot be parsed by a single filer alone, you can define several filters
and execute their rules in Use Data Filter actions running one after another. At the end you can
use the extracted values from all actions on the same label.

Mapping Fields to Variables

To use the extracted values, you have to save them into variables. The Use Data Filter action
doesn't only extract values, but also saves them to variables. To configure this process, you

www.nicelabel.com 22

have to map the variable to the respective field. Value of the field will then be saved to a
mapped variable.

It's a good practice to define fields and variables with the same names. In this case the auto-
mapping feature will link variables to the fields of the same names, eliminating the manual
process.

Auto-mapping is available for all supported filter types. With auto-mapping enabled, the Use
Data Filter action will extract values and automatically map them to the variables of the same
names as field names. For more information, see the topic Enabling Dynamic Structure for
Structured Text filter, Defining Assignment Areas for Unstructured Data filter and Defining
XML Assignment Area for XML filter.

Defining Actions to Run for Extracted Data

Usually you want to run some actions against the extracted data, such as Open Label, Print
Label, or some of the outbound connectivity actions. It is critically important that you nest your
actions under the Use Data Filter action. This will ensure that nested actions run for each data
extraction.

EXAMPLE: I f y ou ha v e C SV f ile wit h 5 lines , t he nes t ed a ct ions will a ls o run 5 t imes , once f or ea ch
da t a ext ra ct ion. I f t he a ct ions a re not nes t ed, t hey will only execut e one t ime a nd cont a in da t a f rom
t he la s t da t a ext ra ct ion. For exa mple a bov e, 5t h C SV line would pr int , but not a ls o t he f irs t f our
lines . I f y ou us e Sub Area s ma k e s ure t o nes t y our a ct ion under t he correct pla ceholder .

www.nicelabel.com 23

5.2 Configuring Structured Text Filter
5.2.1 Structured Text Filter
To learn more about filters in general, see topic Understanding Filters.

Use this filter whenever you receive a structured text file. These are text files where fields are
identified by one of the methods.

 l Fields are delimited by a characters. Usual delimiters are comma or semicolon. CSV
(comma separated values) is a typical example of a file.

 l Fields contain fixed number of characters. In other words, fields are defined by the
fixed-width columns.

For examples of the structured text data, see topic Text Database.

Defining Structure

To define the structure of the text file, you have the following options.

 l Importing structure using the Text File Wizard. In this case click the Import Data
Structure button in the ribbon and follow on-screen instructions. After you finish the wiz-
ard, the type of text database and all fields will be defined. If the first line of data contains
field names, the Wizard can import them. This is the recommended method, if trigger will
always receive data of the same structure.

 l Manually defining the fields. In this case you have to manually define the type of the
data (delimited fields or fixed-width fields and then define the field names. For more
information, see the topic Defining Fields.

 l Dynamically read the fields. In this case the trigger might receive data of different struc-
ture, such as new field names, and you don't want to update the filter for each structural
change. Dynamic support will automatically read all fields in the data, no matter if there
exist new fields, or some of the old fields are missing and will map them automatically with
the variables using the same names. For more information, see the topic Enabling
Dynamic Structure.

The Data Preview section simplifies the configuration. The result of defined filter rule highlights
in the preview area with every configuration change. You can see what data would be extracted
with each rule.

5.2.2 Defining Fields
The definition of fields is very easy for structured text files. You have two options.

 l Delimited defines the fields. In this case you have delimited, such as comma or semi-
colon between the fields. You just have to define the field names in the same order as
they will appear in the data received by a trigger.

www.nicelabel.com 24

 l Fixed-width fields. In this case you have to define the field names in the same order as
they will appear in the data received by a trigger and define the number of characters the
field will occupy. That many characters will be read from the data for this field.

Data Preview

This section provides the preview of the field definition. When the defined item is selected, the
preview will highlight its placement in the preview data.

 l Preview file name. Specifies the file that contains sample data that will be parsed
through the filter. The preview file is copied from the filter definition. If you change the
preview file name, the new file name will be saved.

 l Open. Selects some other file upon which you want to execute the filter rules.

 l Refresh. Re-runs the filter rules upon the contents of the preview file name. The Data Pre-
view section will be updated with the result.

Formatting Options

This section defines the string manipulation functions that will be applied to the selected
variables or fields. You can select one or several functions. The functions will be applied in the
order as selected in the user interface, from top to bottom.

 l Delete spaces at the beginning. Deletes all space characters (decimal ASCII code 32)
from the beginning of the string.

 l Delete spaces at the end. Deletes all space characters (decimal ASCII value 32) from the
end of a string.

 l Delete opening closing characters. Deletes the first occurrence of the selected
opening and closing characters that are found in the string.

EXAMPLE: I f y ou us e " {" f or opening cha ra ct er a nd " }" f or t he clos ing cha ra ct er , t he input
s t r ing {{selection}} w ill be conv ert ed t o {selection}.

 l Search and replace. Executes standard search and replace function upon the provided
values for find what and replace with. You can also use regular expressions.

NOTE: There are several implementations of the regular expressions in use. NiceLabel
Automation uses the .NET Framework syntax for the regular expressions. For more
information, see Knowledge Base article KB250.

www.nicelabel.com 25

http://kb.nicelabel.com/index.php?t=faq&id=250

 l Replace non printable characters with space. Replaces all control characters in the
string with space character (decimal ASCII code 32). The non printable characters are
characters with decimal ASCII values between 0-31 and 127-159.

 l Delete non printable characters. Deletes all control characters in the string. The non
printable characters are characters with decimal ASCII values between 0-31 and 127-
159.

 l Decode special characters. The special characters (or control codes) are characters
not available on the keyboard, such as Carriage Return or Line Feed. NiceLabel
Automation uses a notation to encode such characters in human-readable form, such as
<CR> for Carriage Return and <LF> for Line Feed. For more information see topic
Entering Special Characters (Control Codes).

This option converts special characters from NiceLabel syntax into actual binary
characters.

EXAMPLE: When y ou receiv e t he da t a " <C R ><LF>" , NiceLa bel Aut oma t ion will us e it a s pla in
s t r ing of 8 cha ra ct ers . Y ou will ha v e t o ena ble t his opt ion t o int erpret a nd us e t he receiv ed
da t a a s t wo bina ry cha ra ct ers CR (C a rr ia ge R et urn - ASC I I code 13) a nd LF (L ine Feed -
ASC I I code 10) .

 l Search and delete everything before. Finds the provided string and deletes all char-
acters from the beginning of the data until the string. The found string itself can also be
deleted.

 l Search and delete everything after. Finds the provided string and deletes all char-
acters from the string until the end of the data. The found string itself can also be
deleted.

5.2.3 Enabling Dynamic Structure
Structured Text filter has ability to automatically identify the fields and their values in the data,
eliminating the need of manual variable to field mapping.

This functionality is useful if the trigger receives the data of the changeable structure. The main
data structure is the same, e.g. fields delimited by a comma, or the same XML structure, but the
order in which the fields are represented is changed and/or the number of fields has
changed; there might be new fields, or some old fields are no longer available. The filter will
automatically identify structure. At the same time the field names and values (name:value
pairs) will be read from the data, eliminating the need to manually map fields to variables.

The Use Data Filter action won't display any mapping possibilities, because mapping will be
done dynamically. You even don't have to define label variables into trigger configuration. The
action will assign field values to the label variables of the same name without requiring the
variables imported from the label. However, this rule applies to Print Label action alone. If you
want to use the field values in any other action, you will have to define variables in the trigger,
while still keeping the automatic variable to field mapping.

NOTE: No error will be raised if the field available in the input data doesn't have a matching
label variable. The missing variables are silently ignored.

www.nicelabel.com 26

Configuring the dynamic structure

To configure the dynamic structure, enable the option Dynamic structure in the Structured
Text filter properties.

 l The first line of data must contain field names.

 l The line that you select for Start import at line must be the line with the field names (usu-
ally the first line in data).

 l The data structure must be delimited.

 l You can format the data, if necessary.

Formatting Options

This section defines the string manipulation functions that will be applied to the
selected variables or fields. You can select one or several functions. The functions
will be applied in the order as selected in the user interface, from top to bottom.

 l Delete spaces at the beginning. Deletes all space characters (decimal
ASCII code 32) from the beginning of the string.

 l Delete spaces at the end. Deletes all space characters (decimal ASCII value
32) from the end of a string.

 l Delete opening closing characters. Deletes the first occurrence of the
selected opening and closing characters that are found in the string.

EXAMPLE: I f y ou us e "
{" f or opening cha ra ct er a nd " }" f or t he clos ing cha ra ct er , t he input s t r ing
{{selection}} w ill be conv ert ed t o {selection}.

 l Search and replace. Executes standard search and replace function upon
the provided values for find what and replace with. You can also use regular
expressions.

www.nicelabel.com 27

NOTE: There are several implementations of the regular expressions in
use. NiceLabel Automation uses the .NET Framework syntax for the
regular expressions. For more information, see Knowledge Base article
KB250.

 l Replace non printable characters with space. Replaces all
control characters in the string with space character
(decimal ASCII code 32). The non printable characters are characters with
decimal ASCII values between 0-31 and 127-159.

 l Delete non printable characters. Deletes all control characters in the
string. The non printable characters are characters with decimal
ASCII values between 0-31 and 127-159.

 l Decode special characters. The special characters (or control codes) are
characters not available on the keyboard, such as Carriage Return or Line
Feed. NiceLabel Automation uses a notation to encode such characters in
human-readable form, such as <CR> for Carriage Return and <LF> for Line
Feed. For more information see topic Entering Special Characters (Control
Codes).

This option converts special characters from NiceLabel syntax into actual
binary characters.

EXAMPLE: When y ou receiv e t he da t a " <C R ><LF>" , NiceLa bel Aut oma t ion will
us e it a s pla in s t r ing of 8 cha ra ct ers . Y ou will ha v e t o ena ble t his opt ion t o
int erpret a nd us e t he receiv ed da t a a s t wo bina ry cha ra ct ers CR (C a rr ia ge
R et urn - ASC I I code 13) a nd LF (L ine Feed - ASC I I code 10) .

 l Search and delete everything before. Finds the provided string and
deletes all characters from the beginning of the data until the string. The
found string itself can also be deleted.

 l Search and delete everything after. Finds the provided string and deletes
all characters from the string until the end of the data. The found string itself
can also be deleted.

5.3 Configuring Unstructured Data Filter
5.3.1 Unstructured Data Filter
To learn more about filters in general, see topic Understanding Filters.

Use this filter whenever trigger receives non-structured data, such as documents and reports
exported from legacy system, intercepted communication between devices, captured print
stream, and similar. The filter allows you to extract individual fields, fields in the repeatable sub
areas, and even name-value pairs.

www.nicelabel.com 28

http://kb.nicelabel.com/index.php?t=faq&id=250

For examples of the structured text data, see topics Legacy Data and Compound CSV and
Binary Files.

Defining Structure

The items you can use to configure the filter:

 l Field. Specifies the location of field data between field-start and field-end location. There
are various options to define the field location, from hard-coding the position to enable
relative placements. You must map the defined fields to respective variables in the Use
Data Filter action. For more information, see the topic Defining Fields.

 l Sub area. Specifies the location of repeatable data. Each sub area defines at least one
data block, which in turn contains data for labels. There can be sub areas defined within
sub areas, allowing for definition of complex structures. You can define fields within each
data block. You must map the defined fields to respective variables in the action. For each
sub area a new level of placeholder will be defined inside Use Data Filter, so you can map
variables to fields of that level. For more information, see the topic Defining Sub Areas.

 l Assignment area. Specifies the location of repeatable data containing the name-value
pairs. The field names and their values are read simultaneously. The mapping to variables
is done automatically. Use this feature to accommodate filter to changeable input data,
eliminating the maintenance time. The assignment area can be defined in the root level
of the document, or inside the sub area. For more information, see the topic Defining
Assignment Areas.

The Data Preview section simplifies the configuration. The result of defined filter rule highlights
in the preview area with every configuration change. You can see what data would be extracted
with each rule.

The fields can be defined in the root level as document fields. The fields can be defined inside
data block. The name-value pairs can be defined inside assignment area.

www.nicelabel.com 29

General

This section defines the general properties of the unstructured data filter.

 l Name. Specifies the filter name. Use the descriptive name that will identify what the filter
does. You can change it anytime.

 l Description. Provides a possibility to describe the functionality of this filter. You can use
it to write short explanation what the filter does.

 l Encoding. Specifies the encoding of the data this filter will work with.

 l Ignore empty lines in data blocks. Specifies not to raise error if filter would extract
empty field values from the data blocks.

5.3.2 Defining Fields
When you define a field, you have to define its name and a rule how to extract the field value
from the data. When the filter will execute, the extraction rules apply to the input data and
assign result to the field.

www.nicelabel.com 30

Field Properties
 l Name. Specifies the unique name of the field.

 l Field has binary data. Specifies that the field will contain binary data. Don't enable it
unless you really expect to receive binary data.

Field Start
 l Position in document. The start/end point is determined by the hard-coded position in

the data. The coordinate origin is upper left corner. The character in the defined position
is included in the extracted data.

 l End of document. The start/end point is at the end of the document. You can also define
an offset from the end for specified number of lines and/or characters.

 l Find string from start of document. The start/end point is defined by position of the
searched-for-string. When the required string is found, the next character determines
the start/end point. The searched string is not included in the extracted data. The default
search is case sensitive.

 l Start search from absolute position. You can fine-tune searching by changing
the start position from data-start (position 1,1) to an offset. Use this feature to skip
searching at the beginning of data.

 l Occurrence. Specifies which occurrence of the search string should be matched.
Use this option if you don't wait to set start/stop position after the first found
string.

 l Offset from string. Specifies the positive or negative offset after the searched
string.

EXAMPLE: Y ou would def ine t he of f s et t o include t he s ea rched-f or-s t r ing in t he
ext ra ct ed da t a .

Field End
 l Position in document. The start/end point is determined by the hard-coded position in

the data. The coordinate origin is upper left corner. The character in the defined position
is included in the extracted data.

www.nicelabel.com 31

 l End of document. The start/end point is at the end of the document. You can also define
an offset from the end for specified number of lines and/or characters.

 l Find string from start of document. The start/end point is defined by position of the
searched-for-string. When the required string is found, the next character determines
the start/end point. The searched string is not included in the extracted data. The default
search is case sensitive.

 l Start search from absolute position. You can fine-tune searching by changing
the start position from data-start (position 1,1) to an offset. Use this feature to skip
searching at the beginning of data.

 l Occurrence. Specifies which occurrence of the search string should be matched.
Use this option if you don't wait to set start/stop position after the first found
string.

 l Offset from string. Specifies the positive or negative offset after the searched
string.

EXAMPLE: Y ou would def ine t he of f s et t o include t he s ea rched-f or-s t r ing in t he
ext ra ct ed da t a .

 l Find string after field start. The start/stop end point is defined by position of the
searched-for-string as in the option Find string from start of document, but the search
starts after the start position of the field/area, not at the beginning of the data.

 l Length. Specifies the length of the data in lines in characters. The specified number of
lines and/or characters will be extracted from the start position.

 l End of line. Specifies to extract the data from the start position until the end of the same
line. You can define a negative offset from end of the line.

Formatting Options

This section defines the string manipulation functions that will be applied to the selected
variables or fields. You can select one or several functions. The functions will be applied in the
order as selected in the user interface, from top to bottom.

 l Delete spaces at the beginning. Deletes all space characters (decimal ASCII code 32)
from the beginning of the string.

 l Delete spaces at the end. Deletes all space characters (decimal ASCII value 32) from the
end of a string.

 l Delete opening closing characters. Deletes the first occurrence of the selected
opening and closing characters that are found in the string.

EXAMPLE: I f y ou us e " {" f or opening cha ra ct er a nd " }" f or t he clos ing cha ra ct er , t he input
s t r ing {{selection}} w ill be conv ert ed t o {selection}.

 l Search and replace. Executes standard search and replace function upon the provided
values for find what and replace with. You can also use regular expressions.

www.nicelabel.com 32

NOTE: There are several implementations of the regular expressions in use. NiceLabel
Automation uses the .NET Framework syntax for the regular expressions. For more
information, see Knowledge Base article KB250.

 l Replace non printable characters with space. Replaces all control characters in the
string with space character (decimal ASCII code 32). The non printable characters are
characters with decimal ASCII values between 0-31 and 127-159.

 l Delete non printable characters. Deletes all control characters in the string. The non
printable characters are characters with decimal ASCII values between 0-31 and 127-
159.

 l Decode special characters. The special characters (or control codes) are characters
not available on the keyboard, such as Carriage Return or Line Feed. NiceLabel
Automation uses a notation to encode such characters in human-readable form, such as
<CR> for Carriage Return and <LF> for Line Feed. For more information see topic
Entering Special Characters (Control Codes).

This option converts special characters from NiceLabel syntax into actual binary
characters.

EXAMPLE: When y ou receiv e t he da t a " <C R ><LF>" , NiceLa bel Aut oma t ion will us e it a s pla in
s t r ing of 8 cha ra ct ers . Y ou will ha v e t o ena ble t his opt ion t o int erpret a nd us e t he receiv ed
da t a a s t wo bina ry cha ra ct ers CR (C a rr ia ge R et urn - ASC I I code 13) a nd LF (L ine Feed -
ASC I I code 10) .

 l Search and delete everything before. Finds the provided string and deletes all char-
acters from the beginning of the data until the string. The found string itself can also be
deleted.

 l Search and delete everything after. Finds the provided string and deletes all char-
acters from the string until the end of the data. The found string itself can also be
deleted.

5.3.3 Defining Sub Areas
Sub area is the section of data within which there are several blocks of data identified by the
same extraction rule. Each data block provides data for a single label. All data blocks must be
identified by the same configuration rule. Each data block can contain another sub area. You can
define unlimited number of nested sub areas within parent sub areas.

When the filter contains definition of a sub area, the Use Data Filter action will display sub areas
with nested placeholders. All action nested below such placeholder will execute only for data
blocks on this level. You can print different labels with data from different sub areas.

www.nicelabel.com 33

http://kb.nicelabel.com/index.php?t=faq&id=250

Configuring Sub Area

The sub area is defined with similar rules as individual fields. Each sub area is defined by the
following parameters.

 l Sub Area Name. Specifies the name of the sub area.

 l Data Blocks. Specifies how to identify the data blocks within the sub area. Each sub area
contains at least one data block. Each data block provides data for a single label.

 l Each block contains fixed number of lines. Specifies that each data block in a
sub area contains the provided fixed number of lines. Use this option if you know
that each data block contains exactly the same number of lines.

 l Blocks start with a string. Specifies that data blocks begin with the provided
string. All content between two provided strings belongs to a separate data block.
The content between last string and the end of the data identifies the last data
block.

 l Block end with a string. Specifies that data blocks end with the provided string.
All contents between two provided strings belongs to a separate data block. The
content between the beginning of data and the first string identifies the first data
block.

 l Blocks are separated by a string. Specifies that data blocks are separated with
the provided string. All contents between two provided strings belongs to sep-
arate data block.

 l Beginning of First Data Block. Specifies the start position of the first data block and
thus the start position of the sub area. Usually, start position is the beginning of the
received data. The configuration parameters are the same as for defining fields. For more
information, see the topic Defining Fields.

 l End of Last Data Block. Specifies the end position of the last data block and thus the
end position of the sub area. Usually, end position is at the end of the received data. The
configuration parameters are the same as for defining fields. For more information, see
the topic Defining Fields.

Configuring Fields Inside Sub Area

www.nicelabel.com 34

The fields inside the sub area are configured using the same parameters as for the fields
defined in the root level. For more information, see the topic Defining Fields.

NOTE: The field lines numbers refer to the position within data block, not position within the
input data.

Data Preview

This section provides the preview of the field definition. When the defined item is selected, the
preview will highlight its placement in the preview data.

 l Preview file name. Specifies the file that contains sample data that will be parsed
through the filter. The preview file is copied from the filter definition. If you change the
preview file name, the new file name will be saved.

 l Open. Selects some other file upon which you want to execute the filter rules.

 l Refresh. Re-runs the filter rules upon the contents of the preview file name. The Data Pre-
view section will be updated with the result.

5.3.4 Defining Assignment Areas
Unstructured Data filter has ability to automatically identify the fields and their values in the
data, eliminating the need of manual variable to field mapping.

This functionality is useful if the trigger receives the data of the changeable structure. The main
data structure is the same, e.g. fields delimited by a comma, or the same XML structure, but the
order in which the fields are represented is changed and/or the number of fields has
changed; there might be new fields, or some old fields are no longer available. The filter will
automatically identify structure. At the same time the field names and values (name:value
pairs) will be read from the data, eliminating the need to manually map fields to variables.

The Use Data Filter action won't display any mapping possibilities, because mapping will be
done dynamically. You even don't have to define label variables into trigger configuration. The
action will assign field values to the label variables of the same name without requiring the
variables imported from the label. However, this rule applies to Print Label action alone. If you
want to use the field values in any other action, you will have to define variables in the trigger,
while still keeping the automatic variable to field mapping.

NOTE: No error will be raised if the field available in the input data doesn't have a matching
label variable. The missing variables are silently ignored.

www.nicelabel.com 35

Configuring Assignment Area

The assignment area is configured using the same procedure as sub area. For more information,
see the topic Defining Sub Areas. The assignment area can be defined on the root data level,
appearing just once. Or it can be configured inside a sub are, so it will execute for each data
block in the sub area.

Configuring Fields in Assignment Area

When you create the assignment area, the filter will automatically define two placeholders,
which will define the name:value pair.

 l Variable name. Specifies the field, which contents will be the variable name (name com-
ponent in a pair). Configure the field using the same procedure as for document fields. For
more information, see the topic Defining Fields.

 l Variable value. Specifies the field, which contents will be the variable value (value com-
ponent in a pair). Configure the field using the same procedure as for document fields. For
more information, see the topic Defining Fields.

Example

The area between ^XA and ^XZ is assignment area. Every line in assignment area provides the
name:value pair. Name is defined as value between 6th character in the line and equal
character. Value is defined as value between equal character and end of the line with negative
offset of three characters

^X A
^FD 01Do natio nH R=G 095605 3412625^FS
^FD 02Do natio nBC =DG 0956053412625^FS
^FD 03H o s p italN o H R =H N 060241^FS
^FD 04H o s p italN o BC =060241^FS
^FD 05Surname=H awley^FS
^FD 07Fo rename=Annie^FS
^FD 09Pro d uct=Blo o d ^FS
^FD 10PatientBlG p =O Rh +ve^FS
^FD 11Do B=27 J une 1947^FS
^FD 12DateReq d =25 Dec 2012^FS
^X Z

www.nicelabel.com 36

For more information, see the topic Examples.

5.4 Configuring XML Filter
5.4.1 XML Filter

TIP: The functionality from this topic is available in NiceLabel LMS Enterprise and NiceLabel
LMS Pro.

To learn more about filters in general, see topic Understanding Filters.

Use this filter whenever trigger receives the XML-encoded data. The filter allows you to extract
individual fields, fields in the repeatable sub areas, and even name-value pairs. The XML
structure defines elements and sub elements, attributes and their values, and text values
(element values).

While you can define the structure of the XML file yourself, it's best practice to import the
structure from the existing sample XML file. Click Import Data Structure button in the ribbon.
When you import XML structure, the Data Preview section will display the XML contents and
then highlight the elements and attributes that you define as output fields.

For examples of the XML data, see topic XML Data.

Defining Structure

To use the XML items you must configure their usage as:

 l Variable value. Specifies that you want to use the selected item as field and you will map
its value to respective variables in the Use Data Filter action. For more information, see
the topic Defining XML Fields.

 l Optional element. Specifies that this element is not mandatory. This corresponds
to the attribute minOccurs=0 in the XML schema (XSD file). The variable mapped
to such field will have an empty value, when the element does not appear in the
XML.

 l Data block. Specifies that the selected element occurs many times and will provide data
for single label. Data block can be defined as repeatable area, as assignment area, or
both.

 l Repeatable area. Specifies that you want to extract values from all repeatable data
block, not just the first one. You can define fields within each data block. You must
map the defined fields to respective variables in the Use Data Filter action. For
more information, see the topic Defining Repeatable Elements.

 l Assignment area. Specifies that data block contains name-value pairs. The field
names and their values are read simultaneously. The mapping to variables is done
automatically. Use this feature to accommodate filter to changeable input data, elim-
inating the maintenance time. For more information, see the topic Defining
XML Assignment Area.

www.nicelabel.com 37

The Data Preview section simplifies the configuration. The result of a defined filter rule will be
highlighted in the preview area.

To change the previewed XML data, click Open and browse for a new sample XML file.

5.4.2 Defining XML Fields

TIP: The functionality from this topic is available in NiceLabel LMS Enterprise and NiceLabel
LMS Pro.

When you define the XML field, you make the value of selected item available as field. The filter
definition will provide such field for mapping to variable in action. You can extract the value of
the element or value of the attribute.

To define the item value as field, do the following:

 1. Select the element or attribute in the structure list.

 2. For Usage select Variable value.

 3. The item in the structure list will be displayed with bold letters, indicating it is in use.

 4. The element or attribute name will be used as the output field name.

 5. The Data Preview section will highlight value of the selected item.

Formatting Options

This section defines the string manipulation functions that will be applied to the selected
variables or fields. You can select one or several functions. The functions will be applied in the
order as selected in the user interface, from top to bottom.

 l Delete spaces at the beginning. Deletes all space characters (decimal ASCII code 32)
from the beginning of the string.

 l Delete spaces at the end. Deletes all space characters (decimal ASCII value 32) from the
end of a string.

www.nicelabel.com 38

 l Delete opening closing characters. Deletes the first occurrence of the selected
opening and closing characters that are found in the string.

EXAMPLE: I f y ou us e " {" f or opening cha ra ct er a nd " }" f or t he clos ing cha ra ct er , t he input
s t r ing {{selection}} w ill be conv ert ed t o {selection}.

 l Search and replace. Executes standard search and replace function upon the provided
values for find what and replace with. You can also use regular expressions.

NOTE: There are several implementations of the regular expressions in use. NiceLabel
Automation uses the .NET Framework syntax for the regular expressions. For more
information, see Knowledge Base article KB250.

 l Replace non printable characters with space. Replaces all control characters in the
string with space character (decimal ASCII code 32). The non printable characters are
characters with decimal ASCII values between 0-31 and 127-159.

 l Delete non printable characters. Deletes all control characters in the string. The non
printable characters are characters with decimal ASCII values between 0-31 and 127-
159.

 l Decode special characters. The special characters (or control codes) are characters
not available on the keyboard, such as Carriage Return or Line Feed. NiceLabel
Automation uses a notation to encode such characters in human-readable form, such as
<CR> for Carriage Return and <LF> for Line Feed. For more information see topic
Entering Special Characters (Control Codes).

This option converts special characters from NiceLabel syntax into actual binary
characters.

EXAMPLE: When y ou receiv e t he da t a " <C R ><LF>" , NiceLa bel Aut oma t ion will us e it a s pla in
s t r ing of 8 cha ra ct ers . Y ou will ha v e t o ena ble t his opt ion t o int erpret a nd us e t he receiv ed
da t a a s t wo bina ry cha ra ct ers CR (C a rr ia ge R et urn - ASC I I code 13) a nd LF (L ine Feed -
ASC I I code 10) .

 l Search and delete everything before. Finds the provided string and deletes all char-
acters from the beginning of the data until the string. The found string itself can also be
deleted.

 l Search and delete everything after. Finds the provided string and deletes all char-
acters from the string until the end of the data. The found string itself can also be
deleted.

Data Preview

This section provides the preview of the field definition. When the defined item is selected, the
preview will highlight its placement in the preview data.

 l Preview file name. Specifies the file that contains sample data that will be parsed
through the filter. The preview file is copied from the filter definition. If you change the
preview file name, the new file name will be saved.

www.nicelabel.com 39

http://kb.nicelabel.com/index.php?t=faq&id=250

 l Open. Selects some other file upon which you want to execute the filter rules.

 l Refresh. Re-runs the filter rules upon the contents of the preview file name. The Data Pre-
view section will be updated with the result.

5.4.3 Defining Repeatable Elements

TIP: The functionality from this topic is available in NiceLabel LMS Enterprise and NiceLabel
LMS Pro.

When you have a XML element that occurs many times in the XML data, that element is
repeatable. Usually, the repeatable element contains the data for a single label. To indicate that
you want to use data from all repeatable elements, not just the first one, you have to define the
element as Data block and enable the option Repeatable element. When the filter contains
definition of elements defined as data block / repeatable element, the Use Data Filter action will
display repeatable elements with nested placeholders. All action nested below such
placeholder will execute only for data blocks on this level.

Example

The <item> element is defined as Data block and Repeatable element. This instructs the filter
to extract all occurrences of the <item> element, not just the first one. In this case the <item>
would be defined as the sub-level in Use Data Filter action. You must nest the actions Open
Label and Print Label under this sub-level placeholder, so they will be looped as many times as
there are occurrences of the <item> element. In this case three times.

<?xml v ers ion=" 1.0" encoding=" ut f -8" ?>
<a s x:a ba p xmlns :a s x=" ht t p:/ / www.s a p.com/ a ba pxml" v ers ion=" 1.0" >
 <a s x:v a lues >
 <NI C ELAB EL_JOB >
 <TI MESTAMP >20130221100527.788134</ TI MESTAMP >
 <USER >P G R I </ USER >
 <I T_LAB EL_D ATA>

 <it em>
 <LB L_NAME>goods _receipt .nlbl</ LB L_NAME>
 <LB L_P R I NTER >P roduct ion01</ LB L_P R I NTER >
 <LB L_QUANTI TY >1</ LB L_QUANTI TY >
 <MAKTX >MASS ONE</ MAKTX >
 <MATNR >28345</ MATNR >
 <MEI NS>KG </ MEI NS>
 <WD ATU>19.01.2012</ WD ATU>
 <QUANTI TY >1</ QUANTI TY >
 <EX I D V>012345678901234560</ EX I D V>
 </ it em>

 <it em>
 <LB L_NAME>goods _receipt .nlbl</ LB L_NAME>
 <LB L_P R I NTER >P roduct ion01</ LB L_P R I NTER >
 <LB L_QUANTI TY >1</ LB L_QUANTI TY >
 <MAKTX >MASS TWO</ MAKTX >
 <MATNR >28346</ MATNR >
 <MEI NS>KG </ MEI NS>

www.nicelabel.com 40

 <WD ATU>11.01.2011</ WD ATU>
 <QUANTI TY >1</ QUANTI TY >
 <EX I D V>012345678901234577</ EX I D V>
 </ it em>

 <it em>
 <LB L_NAME>goods _receipt .nlbl</ LB L_NAME>
 <LB L_P R I NTER >P roduct ion01</ LB L_P R I NTER >
 <LB L_QUANTI TY >1</ LB L_QUANTI TY >
 <MAKTX >MASS TH R EE</ MAKTX >
 <MATNR >27844</ MATNR >
 <MEI NS>KG </ MEI NS>
 <WD ATU>07.03.2009</ WD ATU>
 <QUANTI TY >1</ QUANTI TY >
 <EX I D V>012345678901234584</ EX I D V>
 </ it em>

 </ I T_LAB EL_D ATA>
 </ NI C ELAB EL_JOB >
 </ a s x:v a lues >
</ a s x:a ba p>

5.4.4 Defining XML Assignment Area

TIP: The functionality from this topic is available in NiceLabel LMS Enterprise and NiceLabel
LMS Pro.

XML filter has ability to automatically identify the fields and their values in the data, eliminating
the need of manual variable to field mapping.

This functionality is useful if the trigger receives the data of the changeable structure. The main
data structure is the same, e.g. fields delimited by a comma, or the same XML structure, but the
order in which the fields are represented is changed and/or the number of fields has
changed; there might be new fields, or some old fields are no longer available. The filter will
automatically identify structure. At the same time the field names and values (name:value
pairs) will be read from the data, eliminating the need to manually map fields to variables.

The Use Data Filter action won't display any mapping possibilities, because mapping will be
done dynamically. You even don't have to define label variables into trigger configuration. The
action will assign field values to the label variables of the same name without requiring the
variables imported from the label. However, this rule applies to Print Label action alone. If you
want to use the field values in any other action, you will have to define variables in the trigger,
while still keeping the automatic variable to field mapping.

NOTE: No error will be raised if the field available in the input data doesn't have a matching
label variable. The missing variables are silently ignored.

www.nicelabel.com 41

Configuring XML Assignment Area

When you configure the Data Block as assignment area, two placeholders appear under this
element's definition. You have to define how the field name and value are defines, so the filter
can extract the name-value pair.

 l Variable name. Specifies the item that contains the field name. The name can be defined
by element name, selected attribute value, or element value. The label variable must have
the same name in order for automatic mapping to work.

 l Variable value. Specifies the item that contains the field value. The name can be defined
by element name, selected attribute value, or element value.

WARNING: The XML element containing name:value pairs cannot be the root element, but
must be at least second level element. For example, in the XML example below the element
<label> is the second level element and can contain the name:value pairs.

Formatting Options

This section defines the string manipulation functions that will be applied to the selected
variables or fields. You can select one or several functions. The functions will be applied in the
order as selected in the user interface, from top to bottom.

 l Delete spaces at the beginning. Deletes all space characters (decimal ASCII code 32)
from the beginning of the string.

 l Delete spaces at the end. Deletes all space characters (decimal ASCII value 32) from the
end of a string.

 l Delete opening closing characters. Deletes the first occurrence of the selected
opening and closing characters that are found in the string.

EXAMPLE: I f y ou us e " {" f or opening cha ra ct er a nd " }" f or t he clos ing cha ra ct er , t he input
s t r ing {{selection}} w ill be conv ert ed t o {selection}.

 l Search and replace. Executes standard search and replace function upon the provided

www.nicelabel.com 42

values for find what and replace with. You can also use regular expressions.

NOTE: There are several implementations of the regular expressions in use. NiceLabel
Automation uses the .NET Framework syntax for the regular expressions. For more
information, see Knowledge Base article KB250.

 l Replace non printable characters with space. Replaces all control characters in the
string with space character (decimal ASCII code 32). The non printable characters are
characters with decimal ASCII values between 0-31 and 127-159.

 l Delete non printable characters. Deletes all control characters in the string. The non
printable characters are characters with decimal ASCII values between 0-31 and 127-
159.

 l Decode special characters. The special characters (or control codes) are characters
not available on the keyboard, such as Carriage Return or Line Feed. NiceLabel
Automation uses a notation to encode such characters in human-readable form, such as
<CR> for Carriage Return and <LF> for Line Feed. For more information see topic
Entering Special Characters (Control Codes).

This option converts special characters from NiceLabel syntax into actual binary
characters.

EXAMPLE: When y ou receiv e t he da t a " <C R ><LF>" , NiceLa bel Aut oma t ion will us e it a s pla in
s t r ing of 8 cha ra ct ers . Y ou will ha v e t o ena ble t his opt ion t o int erpret a nd us e t he receiv ed
da t a a s t wo bina ry cha ra ct ers CR (C a rr ia ge R et urn - ASC I I code 13) a nd LF (L ine Feed -
ASC I I code 10) .

 l Search and delete everything before. Finds the provided string and deletes all char-
acters from the beginning of the data until the string. The found string itself can also be
deleted.

 l Search and delete everything after. Finds the provided string and deletes all char-
acters from the string until the end of the data. The found string itself can also be
deleted.

Example

The <label> element is defined as data block and assignment area. The variable name is
defined by value of the attribute name, the variable value is defined by element text.

<?xml v ers ion=" 1.0" s t a nda lone=" no" ?>
<la bels _FOR MAT=" ca s e.nlbl" _P R I NTER NAME=" P roduct ion01" _QUANTI TY =" 1" >
 <la bel>
 <v a r ia ble na me=" C ASEID " >0000000123</ v a r ia ble>
 <v a r ia ble na me=" C ART ON T YPE" / >
 <v a r ia ble na me=" ORDERKEY" >0000000534</ v a r ia ble>
 <v a r ia ble na me=" BUYERPO" / >
 <v a r ia ble na me=" ROUT E" > </ v a r ia ble>
 <v a r ia ble na me=" C ON T AIN ERDET AILID " >0000004212</ v a r ia ble>
 <v a r ia ble na me=" SERIALREFEREN C E" >0</ v a r ia ble>
 <v a r ia ble na me=" FILT ERVALUE" >0</ v a r ia ble>
 <v a r ia ble na me=" IN DIC AT ORDIG IT " >0</ v a r ia ble>
 <v a r ia ble na me=" DAT E" >11/19/2012 10: 59: 03</ v a r ia ble>

www.nicelabel.com 43

http://kb.nicelabel.com/index.php?t=faq&id=250

 </ la bel>
</ la bels >

For more information, see the topic Examples.

5.5 Setting Label And Printer Names From Input
Data
Typically, filters are used to extract values from the received data and send them to the label
variables for printing. In such case the label name or printer name are hard-coded into the
actions. For example, Open Label action will hard-code the label name, and Set Printer action
will hard-code the printer name. However, the input data can also provide the meta-data, the
values used inside NiceLabel Automation processing, but not printed on the label, such as label
name, printer name, label quantity, or anything else.

To use the values of meta-fields in the print process, do the following.

 1. Filter reconfiguration. You must define new fields for the input data to extract the meta-
data fields as well.

 2. Variable definition. You must manually define the variables that will store the meta-data,
they don't exist on the label and cannot be imported. Use intuitive names, such as
LabelName, PrinterName, and Quantity. You are free to use any variable name.

 3. Mapping reconfiguration. You must manually configure the Use Data Filter action to map
meta-fields to new variables.

 4. Action reconfiguration. You must reconfigure Open Label action to open label specified
by variable LabelName, and Set Printer action to use printer specified by variable Print-
erName.

Example

The CSV file contains label data, but also provides meta-data, such as label name, printer name
and quantity of labels. The Structured Text filter will extract all fields, send label-related values
to the label variables and use meta-data to configure action Open Label, Set Printer and Print
Label.

label_name;label_count;printer_name;art_code;art_name;ean13;weight
label1.nlbl;1;CAB A3 203DPI;00265012;SAC.PESTO 250G;383860026501;1,1 kg
label2.nlbl;1;Zebra R-402;00126502;TAGLIOLINI 250G;383860026002;3,0 kg

For more information, see the topic Examples.

www.nicelabel.com 44

6 Configuring Triggers
6.1 Understanding Triggers

TIP: The functionality from this topic is not all available in every NiceLabel Automation
product.

NiceLabel Automation is an event-based application and will trigger action execution upon
change in the monitored event. You can use any of the available triggers to monitor changes in
events, such as file drop into a certain folder, data acquire on specific TCP/IP socket, HTTP
message and other. The trigger's main job is to recognize the change in the event, get data
provided by the event and then execute actions. Majority of the triggers are designed to
passively listen for the monitored event to occur, but there are two exceptions. The Database
trigger is active trigger and will periodically check for changes in the monitored database. The
Serial port trigger can wait for incoming connection, or can actively poll for data in specified
time intervals.

Processing Triggers

In most cases the trigger receives data that must print on labels. Once the trigger receives the
data,the actions are executed in defined order from top to bottom. The received data can
contain values for the label objects. However, before you can use these values, you must extract
them from the received data and save them in variables. The filters define the extraction rules.
When executed, filters will save the extracted data to the mapped variables. Once you have the
data safely stored in the variables, you can run actions that will use the variables, such as Print
Label.

When the event occurs, the input data it provided is saved to the temporary file on the disk in
the service user's %temp% folder. The internal variable DataFileName references the
temporary file location. The file is deleted when the trigger completes its execution.

Trigger Properties

To configure trigger, you have to define how you will accept the data and the actions you want
to run. Optionally you can also use variables. There are three sections in trigger configuration.

 l Settings. Defines the main parameters of the selected trigger. You can define the event
that trigger will monitor for changes, or define the inbound communication channel. The
settings include selection of the script programming engine and security options. The
available options depend on the trigger type. For more information, see section Trigger
Types below.

 l Variables. This section defines the variables you need inside the trigger. Usually, you will
import variables from the label templates, so you can map them with the fields extracted
from the inbound data. You can also define variables to be used internally in various
actions and won't be sent to the label. For more information, see the topic Variables.

www.nicelabel.com 45

 l Actions. This section defines the actions to execute whenever the trigger detects
change in the monitored event. Actions execute in order from top to bottom. For more
information, see the topic Actions.

Trigger Types
 l File Trigger. Monitors the change in the file or set of files in the folder. Contents of the

file can be parsed in filters and used in actions.

 l Serial Port Trigger. Monitors the inbound communication on the serial RS232 port. Con-
tents of the input stream can be parsed in filters and used in actions. The data can be
also polled from the external device in defined time intervals.

 l Database Trigger. Monitors the record changes in the SQL database tables. Contents of
the returned data set can be parsed and used in actions. The database is monitored in
defined time intervals. The trigger can also update the database after the actions
execute using INSERT, UPDATE and INSERT SQL statements.

 l TCP/IP Server Trigger. Monitors the inbound raw data stream arriving on the defined
socket. Contents of the input stream can be parsed in filters and used in actions. Can be
bidirectional, providing feedback.

 l HTTP Server Trigger. Monitors the inbound HTTP-formatted data stream arriving on the
defined socket. Contents of the input stream can be parsed in filters and used in actions.
User authentication can be enabled. Is bidirectional, providing feedback.

 l Web Service Trigger. Monitors the inbound data stream arriving on the defined Web
Service method. Contents of the input stream can be parsed in filters and used in
actions. Is bidirectional, providing feedback.

Error Handling in Triggers

 l Configuration errors. The trigger will be in the error state, whenever it's not configured
properly or entirely. For example, the you have configured the file trigger, but failed to
specify the file name to check for changes. Or, you defined the action to print labels, but
you failed to specify the label name. You can save triggers that contain configuration
errors, but you cannot run them in Automation Manager until you resolve the problem.
The error in the lower level in the configuration will propagate itself all the way to the
higher level, so it is easy to find the error location.

EXAMPLE: I f y ou ha v e one a ct ion in error s t a t e, a ll upper-lev el a ct ions will indica t e t he error
s it ua t ion, t he error icon will be dis pla y ed in t he Act ions t a b a nd in t he t r igger na me.

 l Overlapping configurations. While it is perfectly acceptable for the configuration to
include triggers monitoring the same event, such as the same file name, or listening on
the same TCP/IP port, such triggers cannot run simultaneously. When you start the trig-
ger in Automation Manager, it will start only if no other trigger from the same or other con-
figuration monitors the same event.

Print Job Status Feedback

See the topic Print Job Status Feedback.

www.nicelabel.com 46

6.2 Defining Triggers
6.2.1 File Trigger
To learn more about triggers in general, see topic Understanding Triggers.

The file trigger event occurs when a monitored file or set of files in monitored folder change.
Appearance of new file will also fire a trigger. Dependent on the trigger configuration the
Windows system alerts the trigger about the changed files, or the trigger itself keeps a list of
the file's last-write time-stamp and will fire when the file has a newer time-stamp.

Typical usage: The existing business system executes a transaction, which in effect
generates trigger file in the shared folder. The contents of the data might be structured in
CSV, XML and other formats, or it can be structured in a legacy format. In either way,
NiceLabel Automation will read the data, parse values using filters and print them on labels.
For more information how to parse and extract data, see the topic Understanding Filters.

General

This section allows you to configure the most important file trigger settings.

 l Name. Specifies the unique name of the trigger. The names helps you distinguish
between different triggers when you configure them in Automation Builder and later run
them in Automation Manager.

 l Description. Provides a possibility to describe the functionality of this trigger. You can
use it to write short explanation what the trigger does.

 l Detect the specified file. Specifies the path and file name of the file that you will monitor
for changes.

 l Detect a set of files in the specified folder. Specifies the path to the folder, which you
will monitor for file changes, and the file names. You can use standard Windows wild cards
"*" and "?". Some file types are predefined in the drop-down box, you can also enter your
own types.

NOTE: When monitoring the network folder, make sure to use the UNC notation of
\\server\share\file. For more information, see the topic Access to Network
Shared Resources.

 l Automatically detect changes. The application will respond to the file changes as soon
as the file has been created or changed. In this case, Windows operating system informs
NiceLabel Automation Service about the change. You can use it when the monitored
folder is located on the local drive and also in some network environments.

 l Check for changes in folder in intervals. The application will scan the folder for file
changes in the defined time intervals. In this case, NiceLabel Automation itself monitors

www.nicelabel.com 47

folder for file changes. This polling method tends to be slower than automatic detection.
Use it as a fallback, when the automatic detection cannot be used in your environment.

Execution

Options in the File Access section specify how the application will access the trigger file.

 l Open file exclusively. Specifies to open the trigger file in exclusive mode. No other
application can access the file at the same time. This is default selection.

 l Open file with read only permissions. Specifies to open the trigger file in read-only
mode.

 l Open file with read and write permissions. Specifies to open the trigger file in read-
write mode.

 l File open retry period. Specifies the time period in which NiceLabel Automation will try
to open the trigger file. If the file access is still not possible after this time period, NiceLa-
bel Automation will report an error.

Options in the Monitoring Options section specify the file detection possibilities.

 l Check file size. Enables detection of changes not only in the time-stamp, but also in the
file length. The changes to the file time-stamp might not be detected, so it will help to
see that the file size has changed and trigger the actions

 l Ignore empty trigger files. If the trigger file has no contents, it will be ignored. The
actions will not execute.

 l Delete the trigger file. After the change in the trigger file has been detected, and trig-
ger fires the file will be deleted. Enabling this option will keep the folder clean of already
processed files.

NOTE: NiceLabel Automation always creates a backup of the received trigger data; in
this case the contents of trigger file and saves it to unique file name. This is important,
when you need the contents of the trigger file in some of the actions, such as Run
Command File. The location of the backup trigger data is referenced to by the
internal variable DataFileName.

 l Empty file contents. When actions execute, the trigger file is emptied. This is useful
when the third party applications appends data into the trigger file. You want to keep the
file so the append can be done, but you don't want to print old data.

 l Track changes while trigger is inactive. Specifies if you want to fire trigger upon the
files that changed while the trigger was not started. When your NiceLabel Automation is
not deployed in the high-availability environment with backup servers the incoming trig-
ger files might be lost, when the server is down. When the NiceLabel Automation is back
online, the existent trigger files can be processed.

Other

Options in the Feedback from the Print Engine section specify the communication with the
print engine.

www.nicelabel.com 48

TIP: The functionality from this topic is available in NiceLabel LMS Enterprise and NiceLabel
LMS Pro.

 l Supervised printing. Enables the synchronous printing mode. Use it whenever you want
to send the print job status back to the third party application. For more information, see
topic Synchronous Print Mode.

Options in the Data Processing section specify whether you want to trim the data so it fits into
variable or ignore missing label variables. By default, NiceLabel Automation will report errors and
break the printing process, if you try to save too long value into the label variable, or try to set
value to non-existing label variable.

 l Ignore excessive variable contents. Data values exceeding the length of the variable
as defined in the label designer will be truncated to fit into variable. This option is in effect
when setting variable values in filters, from command files and when setting values of
trigger variables to label variables of the same name.

EXAMPLE: The la bel v a r ia ble a ccept s 10 cha ra ct ers a t ma ximum. Wit h t his opt ion ena bled,
a ny v a lue longer t ha n 10 cha ra ct ers will be t runca t ed t o f irs t 10 cha ra ct ers , a ll cha ra ct ers
pa s t cha ra ct er number 10 will be ignored.

 l Ignore missing label variables. When you execute printing with command files (such as
JOB file), the printing process will ignore all variables that are specified in the command
file (using command SET), but are not defined in the label. There will be no error, when
trying to set value to non-existent label variable. Similar processing occurs when you
define assignment area in the filter to extract all name:value pairs, but you have less
variables defined in the label.

Options in the Scripting section specify the scripting possibilities.

 l Scripting language. Specifies the scripting language enabled for the trigger. All Execute
script actions that you use within a single trigger use the same scripting language.

Options in the Save Received Data section specify the commands available for the data
received by the trigger.

 l Save data received by the trigger to file. Enable this option to save the data received
by the trigger. The option Variable enables the variable file name. Select a variable that
contains path and file name.

 l On error save data received by the trigger to file. Enable this option to save the data
by into the trigger only if there the error occurs during the action execution. You might
want to enable this option to have the data that caused the problem ready the
troubleshooting at a later time.

WARNING: Make sure to enable the Supervised printing support, or NiceLabel
Automation will not be able to detect the error during the execution. For more
information, see topic Synchronous Print Mode.

NOTE: NiceLabel Automation already saves the received data into a temporary file

www.nicelabel.com 49

Internal Variables points to that file name. For more information, see Internal Variables.

Security
 l Lock and encrypt trigger. Enables the trigger protection. When enabled, the trigger is

locked and cannot be edited, and actions become encrypted. Only the user with a pass-
word can unlock the trigger and modify it.

6.2.2 Serial Port Trigger
To learn more about triggers in general, see topic Understanding Triggers.

The serial port trigger event occurs when data is received on the monitored RS232 serial port.

Typical usage: (1) Printer replacement. You will retire the existing serial port-connected
label printer. In its place NiceLabel Automation will accept the data , extract the values for
label objects from the received print stream, and create a print job for the new printer
model. (2) Weight scales. The weight scale provides the data about the weighted object.
NiceLabel Automation extracts the required data from the received data stream, and prints
a label. For more information how to parse and extract data, see the topic Understanding
Filters.

General

This section allows you to configure the most important file trigger settings.

 l Name. Specifies the unique name of the trigger. The names helps you distinguish
between different triggers when you configure them in Automation Builder and later run
them in Automation Manager.

 l Description. Provides a possibility to describe the functionality of this trigger. You can
use it to write short explanation what the trigger does.

 l Port. Specifies the serial port (COM) number where incoming data will be accepted on.
Use the port that is not in use by some other application, or device, such as printer driver.
If the selected port is in use, you won't be able to start the trigger in Automation Manager.

The options in the Port Settings section specify the communication parameters that must
match the parameters assigned on the serial port device.

 l Disable port initialization. Specifies that the port initialization will not be executed when
you start the trigger in Automation Manager. This option is sometimes required for virtual
COM ports.

Execution
 l Use initialization data. Specifies that you want to send the initialization string to the

serial device each time the trigger is started. Some serial devices require to be awaken
or put into standby mode before they can provide the data. For more information about
the initialization string and if you need it at all, see your device's user guide. You can
include binary characters. For more information, see the topic Entering Special

www.nicelabel.com 50

Characters (Control Codes).

 l Use data polling. Specifies that the trigger will actively ask the device for data. Within the
specified time intervals, the trigger will send the commands provided in the Contents
field. This field can include binary characters. For more information, see the topic Enter-
ing Special Characters (Control Codes).

Other

Options in the Feedback from the Print Engine section specify the communication with the
print engine.

TIP: The functionality from this topic is available in NiceLabel LMS Enterprise and NiceLabel
LMS Pro.

 l Supervised printing. Enables the synchronous printing mode. Use it whenever you want
to send the print job status back to the third party application. For more information, see
topic Synchronous Print Mode.

Options in the Data Processing section specify whether you want to trim the data so it fits into
variable or ignore missing label variables. By default, NiceLabel Automation will report errors and
break the printing process, if you try to save too long value into the label variable, or try to set
value to non-existing label variable.

 l Ignore excessive variable contents. Data values exceeding the length of the variable
as defined in the label designer will be truncated to fit into variable. This option is in effect
when setting variable values in filters, from command files and when setting values of
trigger variables to label variables of the same name.

EXAMPLE: The la bel v a r ia ble a ccept s 10 cha ra ct ers a t ma ximum. Wit h t his opt ion ena bled,
a ny v a lue longer t ha n 10 cha ra ct ers will be t runca t ed t o f irs t 10 cha ra ct ers , a ll cha ra ct ers
pa s t cha ra ct er number 10 will be ignored.

 l Ignore missing label variables. When you execute printing with command files (such as
JOB file), the printing process will ignore all variables that are specified in the command
file (using command SET), but are not defined in the label. There will be no error, when
trying to set value to non-existent label variable. Similar processing occurs when you
define assignment area in the filter to extract all name:value pairs, but you have less
variables defined in the label.

Options in the Scripting section specify the scripting possibilities.

 l Scripting language. Specifies the scripting language enabled for the trigger. All Execute
script actions that you use within a single trigger use the same scripting language.

Options in the Save Received Data section specify the commands available for the data
received by the trigger.

 l Save data received by the trigger to file. Enable this option to save the data received
by the trigger. The option Variable enables the variable file name. Select a variable that
contains path and file name.

www.nicelabel.com 51

 l On error save data received by the trigger to file. Enable this option to save the data
by into the trigger only if there the error occurs during the action execution. You might
want to enable this option to have the data that caused the problem ready the
troubleshooting at a later time.

WARNING: Make sure to enable the Supervised printing support, or NiceLabel
Automation will not be able to detect the error during the execution. For more
information, see topic Synchronous Print Mode.

NOTE: NiceLabel Automation already saves the received data into a temporary file
name, which is deleted right after the trigger execution completes. The internal
variable DataFileName points to that file name. For more information, see Internal
Variables.

Security
 l Lock and encrypt trigger. Enables the trigger protection. When enabled, the trigger is

locked and cannot be edited, and actions become encrypted. Only the user with a pass-
word can unlock the trigger and modify it.

6.2.3 Database Trigger
To learn more about triggers in general, see topic Understanding Triggers.

The database trigger event occurs when a change in the monitored database table is detected.
There might be new records, or existing records have been updated. Database trigger doesn't
wait for the for any event change, such as data delivery. Instead, it pulls the data from the
database in the defined time intervals.

Typical usage: The existing business system executes a transaction, which in effect
updates data in some database table. NiceLabel Automation will detect the updated and
new records, and print their contents on the labels.

General

This section allows you to configure the most important file trigger settings.

 l Name. Specifies the unique name of the trigger. The names helps you distinguish
between different triggers when you configure them in Automation Builder and later run
them in Automation Manager.

 l Description. Provides a possibility to describe the functionality of this trigger. You can
use it to write short explanation what the trigger does.

 l Database connection. Specifies the connection string to the database. Click on the
Define button opens a Database dialog box, where you can configure a connection to the
database, including database type, table name, and user credentials. You have to connect

www.nicelabel.com 52

to the database that enables access with SQL commands. For this reason you cannot use
database trigger to automatically detect data changes in CSV text files (comma
separated files) and Microsoft Excel spreadsheets.

NOTE: The configuration details depend on the type of selected database. The
options in the dialog box depend on the database driver that you use. For
configuration details, see user guide for your database driver. For more information
about database connectivity, see the topic Accessing Databases.

 l Check database in the time intervals. Specifies the time interval in which the database
will be polled for the records.

 l Detection Options and Advanced. These options allow you to fine-tune the record
detection mechanism. When the records are acquired from the database, the Action tab
will automatically display the object For Each Record, where you can map the table fields
to label variables.

Get records based on unique incremental field value

In this case the trigger will monitor specified auto-incremental numeric field in the table.
NiceLabel Automation will remember the field's value for the last processed record. At the
next polling interval only the records with values greater than the remembered value will
be acquired. To configure this option, you have to select the table name where the
records reside (table name), the auto-incremental field (key field) and the starting
value for the field (key field default value). Internally, the variable KeyField is
used to reference the last remembered value of key field.

NOTE: The last value of the key field is remembered internally, but is not updated back
into configuration, so the value for key field default value does not change in
this dialog box. You can safely reload configuration and/or stop/start this trigger in the
Automation Manager and still keep the last remembered value. However, if you remove
the configuration from Automation Manager and add it back, the value of last
remembered key field will be re-set to what you have defined in key field default
value.

Get records and delete them

In this case all records are acquired from the table and then deleted from the table. To
configure this option, you have to select the table name where the records reside (table
name) and specify the primary key in the table (key fields). While you can have a table
without a primary key, it is strongly recommended that you define a primary key. If the
primary key exists the records will be deleted one by one , when the particular record is
processed in the actions.

WARNING: If the primary key does not exists, all records obtained in the current
trigger will be deleted at once. That's fine if there is no error processing the records.
But if there is an error processing some record, the Automation will stop processing
any more records. Because all records captured in this polling interval have already

www.nicelabel.com 53

been deleted without being processed, you can lose data. Therefore having a primary
key in a table is a good idea.

SQL Code Examples

NOTE: These SQL statements are read-only and are provided for reference only. To
provide the custom SQL statements, select the Get and manage records with
custom SQL detection method.

Example table.

ID ProductID CodeEAN ProductDesc AlreadyPrinted
1 CAS0006 8021228110014 CASONCELLI ALLA CARNE 250G Y
2 PAS501 8021228310001 BIGOLI 250G
3 PAS502GI 8021228310018 TAGLIATELLE 250G

Example of Update SQL statement, when table contains the primary index.

DELETE FROM [Table]
WHERE [ID] = :ID

The field ID in the table is defined as a primary index. The construct :ID in the
WHERE clause contains the value of field ID in each iteration. For first record the value of
ID is 1, for second record 2, etc. Specifying the colon in front of the field name in
SQL statement specifies the usage of the variable.

Example of Update SQL statement, when table does not have primary index defined.

DELETE FROM [Table]

When no primary index is defined in the table, all records will be deleted from the table,
when the first record has been processed.

Get records and update them

In this case all records are acquired from the table and then updated. You can write a
custom value into field in the table as indication 'this records has been already printed'.
To configure this option, you have to select the table name, where the records reside
(table name), select the field that you want to update (update field), and enter the
value that will be stored in the field (update value). Internally, the variable
UpdateValue is used in the SQL statement to reference the current value of field
(update value).

While you can have a table without a primary key, it is strongly recommended that you
define a primary key. If the primary key exists the records will be updated one by one ,
when the particular record is processed in the actions.

www.nicelabel.com 54

WARNING: If the primary key does not exists, all records obtained in the trigger will be
updated at once. That's fine if there is no error processing the records. But if there is
an error processing some record, the Automation will stop processing any more
records. Because all records captured in this polling interval have already been
updated without being processed in actions, you can lose data. Therefore having a
primary key in a table is a good idea.

SQL Code Examples

NOTE: These SQL statements are read-only and are provided for reference only. To
provide the custom SQL statements, select the Get and manage records with
custom SQL detection method.

Example table.

ID ProductID CodeEAN ProductDesc AlreadyPrinted
1 CAS0006 8021228110014 CASONCELLI ALLA CARNE 250G Y
2 PAS501 8021228310001 BIGOLI 250G
3 PAS502GI 8021228310018 TAGLIATELLE 250G

Example of Update SQL statement, when table contains the primary index.

UPDATE [Table]
SET [AlreadyPrinted] = :UpdateValue
WHERE [ID] = :ID

The field ID in the table is defined as a primary index. The construct :ID in the
WHERE clause contains the value of field ID in each iteration. For first record the value of
ID is 1, for second record 2, etc. Specifying the colon in front of the field name in
SQL statement specifies the usage of the variable. The field UpdateValue is defined in
the trigger configuration in the edit field Update value.

Example of Update SQL statement, when table does not have primary index defined.

UPDATE [Table]
SET [AlreadyPrinted] = :UpdateValue

When no primary index is defined in the table, all records from the table will be updated,
when the first record has been processed.

Get and manage records with custom SQL

In this case the SQL statements for record extraction and field updates are entirely up to
you. To configure this option, you have to provide a custom SQL statement to acquire
records (search SQL statement) and custom SQL statement to update the records
after processing (update SQL statement). Click the Test button to test-execute your
SQL statements and see the result on-screen.

www.nicelabel.com 55

You can use values of table fields or values of trigger variables as parameters in the
WHERE clause in the SQL statement. You would precede the field or variable name with
the colon character (:). This instructs NiceLabel Automation to use the current value of
that field or variable.

SQL Code Examples

Example table.

ID ProductID CodeEAN ProductDesc AlreadyPrinted
1 CAS0006 8021228110014 CASONCELLI ALLA CARNE 250G Y
2 PAS501 8021228310001 BIGOLI 250G
3 PAS502GI 8021228310018 TAGLIATELLE 250G

Example of Search SQL statement.

To get the records that haven't been printed already, do the following. The field
AlreadyPrinted must not contain the value Y, and have blank or NULL value.

SELECT * FROM Table
WHERE AlreadyPrinted <> 'Y' or AlreadyPrinted is NULL

From the sample table above two records will be extracted, with ID values 2 and 3. The
first record has already been printed and will be ignored.

Example of Update SQL statement.

To mark the already printed records with the value Y in the AlreadyPrinted field, do
the following.

UPDATE [Table]
SET [AlreadyPrinted] = 'Y'
WHERE [ID] = :ID

You have to put colon (:) in front of the variable name in your SQL statement to identify it
as variable. You can use any field from the table for the parameters in the WHERE clause.
In the example, we are updating the AlreadyPrinted field only for the currently
processed record (value of field ID must be the same as the value from the current
record). In the similar way you would reference other fields in the record as
 :ProductID or :CodeEAN, or even reference variables defined inside this database
trigger.

To delete the current record from the table, do the following.

DELETE FROM [Table]
WHERE [ID] = :ID

Show SQL statement. Expand this section to see the generated SQL statement and
write your own statement, if you have selected the option Get and manage records with
custom SQL.

Previewing SQL Execution

www.nicelabel.com 56

To test the execution of the SQL sentences and see what the effect would be, click the Test
button in the toolbar of the SQL edit area. The Data Preview section will open in the right-hand
pane. Click the Execute button to start the SQL code. When you use values of table field in the
SQL statement (with colon (:) in front of the field name), you will have to provide the test values
for them.

NOTE: If you have Data Preview open and have just added some variables in the script, click
Test button twice (to close and open Data Preview section) to update the list of variables in
the preview.

 l Simulate execution. Specifies that all changes made to the database are ignored. The
database transaction is reverted so no updates are written to the database.

Execution

The options in Execution specify when the database updating will take place. The update type
depends on the Detection Options for the trigger.

 l Before processing actions. Specifies that records will be updated before the actions
defined for this trigger have started to execute.

 l After processing actions. Specifies that records will be updated after the actions
defined for this trigger have been executed. Usually you want to update the records after
they have been successfully processed.

NOTE: If necessary, you can also update the records while the actions are still executing. For
more information, see the topic .

Other

Options in the Feedback from the Print Engine section specify the communication with the
print engine.

TIP: The functionality from this topic is available in NiceLabel LMS Enterprise and NiceLabel
LMS Pro.

 l Supervised printing. Enables the synchronous printing mode. Use it whenever you want
to send the print job status back to the third party application. For more information, see
topic Synchronous Print Mode.

Options in the Data Processing section specify whether you want to trim the data so it fits into
variable or ignore missing label variables. By default, NiceLabel Automation will report errors and
break the printing process, if you try to save too long value into the label variable, or try to set
value to non-existing label variable.

 l Ignore excessive variable contents. Data values exceeding the length of the variable
as defined in the label designer will be truncated to fit into variable. This option is in effect
when setting variable values in filters, from command files and when setting values of
trigger variables to label variables of the same name.

www.nicelabel.com 57

EXAMPLE: The la bel v a r ia ble a ccept s 10 cha ra ct ers a t ma ximum. Wit h t his opt ion ena bled,
a ny v a lue longer t ha n 10 cha ra ct ers will be t runca t ed t o f irs t 10 cha ra ct ers , a ll cha ra ct ers
pa s t cha ra ct er number 10 will be ignored.

 l Ignore missing label variables. When you execute printing with command files (such as
JOB file), the printing process will ignore all variables that are specified in the command
file (using command SET), but are not defined in the label. There will be no error, when
trying to set value to non-existent label variable. Similar processing occurs when you
define assignment area in the filter to extract all name:value pairs, but you have less
variables defined in the label.

Options in the Scripting section specify the scripting possibilities.

 l Scripting language. Specifies the scripting language enabled for the trigger. All Execute
script actions that you use within a single trigger use the same scripting language.

Options in the Save Received Data section specify the commands available for the data
received by the trigger.

 l Save data received by the trigger to file. Enable this option to save the data received
by the trigger. The option Variable enables the variable file name. Select a variable that
contains path and file name.

 l On error save data received by the trigger to file. Enable this option to save the data
by into the trigger only if there the error occurs during the action execution. You might
want to enable this option to have the data that caused the problem ready the
troubleshooting at a later time.

WARNING: Make sure to enable the Supervised printing support, or NiceLabel
Automation will not be able to detect the error during the execution. For more
information, see topic Synchronous Print Mode.

NOTE: NiceLabel Automation already saves the received data into a temporary file
name, which is deleted right after the trigger execution completes. The internal
variable DataFileName points to that file name. For more information, see Internal
Variables.

Security
 l Lock and encrypt trigger. Enables the trigger protection. When enabled, the trigger is

locked and cannot be edited, and actions become encrypted. Only the user with a pass-
word can unlock the trigger and modify it.

6.2.4 TCP/IP Server Trigger
To learn more about triggers in general, see topic Understanding Triggers.

The TCP/IP trigger event occurs when data is received on the monitored socket (IP address and
port number).

www.nicelabel.com 58

Typical usage: The existing business system executes a transaction, which in effect sends
the data to NiceLabel Automation server on a specific socket. The contents of the data
might be structured in CSV, XML and other formats, or it can be structured in a legacy
format. In either way, NiceLabel Automation will read the data, parse values using filters and
print them on labels. For more information how to parse and extract data, see the topic
Understanding Filters.

General

NOTE: This trigger supports Internet Protocol version 6 (IPv6).

This section allows you to configure the most important file trigger settings.

 l Name. Specifies the unique name of the trigger. The names helps you distinguish
between different triggers when you configure them in Automation Builder and later run
them in Automation Manager.

 l Description. Provides a possibility to describe the functionality of this trigger. You can
use it to write short explanation what the trigger does.

 l Port. Specifies the port number where incoming data will be accepted on. Use the port
number that is not in use by some other application. If the selected port is in use, you
won't be able to start the trigger in Automation Manager. For more information about
security concerns, see the topic Securing Access to your Triggers.

NOTE: If your server has multi-homing enabled (more IP addresses on one or more
network cards), NiceLabel Automation will respond on the defined port on all
IP addresses.

 l Maximum number of concurrent connections. Specifies the maximum number of
accepted connections. That many concurrent clients can send data to the trigger sim-
ultaneously.

The options in the Execution Event section specify when the trigger should fire and start
executing actions.

 l On client disconnect. Specifies that trigger will fire after the client sends data and
closes the connection. This is a default setting.

NOTE: If you want to send the print job status back to the third party application as a
feedback, don't use this option. If the connection is left open, you can send feedback
using the action Send data to TCP/IP port with the parameter Reply to sender.

 l On number of characters received. Specifies that trigger fires when the required num-
ber of characters is received. In this case, the third party application can keep a con-
nection open and continuously sends data. Each chunk of data must be of the same size.

www.nicelabel.com 59

 l On sequence of characters received. Specifies that the trigger will fire every time
when the required sequence of characters is received. You would use this option if you
know that the 'end of data' is always identified by a unique set of characters. You can
insert special (binary) characters using the button next to the edit field.

 l Include in trigger data. The sequence of characters that is used to determine the
trigger event will not be stripped from the data, but will be included with the data.
The trigger will receive complete received data stream.

 l When nothing is received after the specified time interval. Specifies that the trigger
will fire after a required time interval passes since the last character has been received.

Execution
 l Allow connections from the following hosts. Specifies the list of IP addresses or host

names of the computers that are allowed to connect to the trigger. Put each entry in a
new line.

 l Deny connections from the following hosts. Specifies the list of IP addresses or host
names of the computers that are not allowed to connect to the trigger. Put each entry in
a new line.

 l Welcome message. Specifies the text message that is returned to the client each time it
connects to the TCP/IP trigger.

 l Answer message. Specifies the text message that is returned to the client each time the
actions execute. Use this option when the client doesn't disconnect upon data send and
expects the answer when action execution has ended. The answer message is hard-
coded and thus always the same.

 l Message encoding. Specifies the data encoding scheme, so the special characters can
be correctly processed. NiceLabel Automation can automatically detect the data
encoding, based on BOM header (text files), or encoding attribute (XML files).

Other

Options in the Feedback from the Print Engine section specify the communication with the
print engine.

TIP: The functionality from this topic is available in NiceLabel LMS Enterprise and NiceLabel
LMS Pro.

 l Supervised printing. Enables the synchronous printing mode. Use it whenever you want
to send the print job status back to the third party application. For more information, see
topic Synchronous Print Mode.

Options in the Data Processing section specify whether you want to trim the data so it fits into
variable or ignore missing label variables. By default, NiceLabel Automation will report errors and
break the printing process, if you try to save too long value into the label variable, or try to set
value to non-existing label variable.

www.nicelabel.com 60

 l Ignore excessive variable contents. Data values exceeding the length of the variable
as defined in the label designer will be truncated to fit into variable. This option is in effect
when setting variable values in filters, from command files and when setting values of
trigger variables to label variables of the same name.

EXAMPLE: The la bel v a r ia ble a ccept s 10 cha ra ct ers a t ma ximum. Wit h t his opt ion ena bled,
a ny v a lue longer t ha n 10 cha ra ct ers will be t runca t ed t o f irs t 10 cha ra ct ers , a ll cha ra ct ers
pa s t cha ra ct er number 10 will be ignored.

 l Ignore missing label variables. When you execute printing with command files (such as
JOB file), the printing process will ignore all variables that are specified in the command
file (using command SET), but are not defined in the label. There will be no error, when
trying to set value to non-existent label variable. Similar processing occurs when you
define assignment area in the filter to extract all name:value pairs, but you have less
variables defined in the label.

Options in the Scripting section specify the scripting possibilities.

 l Scripting language. Specifies the scripting language enabled for the trigger. All Execute
script actions that you use within a single trigger use the same scripting language.

Options in the Save Received Data section specify the commands available for the data
received by the trigger.

 l Save data received by the trigger to file. Enable this option to save the data received
by the trigger. The option Variable enables the variable file name. Select a variable that
contains path and file name.

 l On error save data received by the trigger to file. Enable this option to save the data
by into the trigger only if there the error occurs during the action execution. You might
want to enable this option to have the data that caused the problem ready the
troubleshooting at a later time.

WARNING: Make sure to enable the Supervised printing support, or NiceLabel
Automation will not be able to detect the error during the execution. For more
information, see topic Synchronous Print Mode.

NOTE: NiceLabel Automation already saves the received data into a temporary file
name, which is deleted right after the trigger execution completes. The internal
variable DataFileName points to that file name. For more information, see Internal
Variables.

Security
 l Lock and encrypt trigger. Enables the trigger protection. When enabled, the trigger is

locked and cannot be edited, and actions become encrypted. Only the user with a pass-
word can unlock the trigger and modify it.

www.nicelabel.com 61

6.2.5 HTTP Server Trigger

TIP: The functionality from this topic is available in NiceLabel LMS Enterprise and NiceLabel
LMS Pro.

To learn more about triggers in general, see topic Understanding Triggers.

The HTTP trigger event occurs when data is received on the monitored socket (IP address and
port number). Contrary to TCP/IP trigger the received data is not in a raw data stream, but must
include the standard HTTP header. The third party application must use the POST or
GET request methods and provide data in the message body or in the query string. It does not
matter which Internet media type (MIME Type, or Content-Type) you use in the message body.
NiceLabel Automation will receive the message and you can define a filter to extract required
data from the message content.

Typical usage: The existing business system executes a transaction, which in effect sends
the data to NiceLabel Automation server formatted as HTTP POST message on a specific
socket. The contents of the data might be structured in CSV, XML and other formats, or it
can be structured in a legacy format. In either way, NiceLabel Automation will read the data,
parse values using the filters and print extracted data on the labels. For more information
how to parse and extract data, see Understanding Filters.

Providing data

You can provide the data for HTTP trigger with any of the following methods. You can also
combine the methods if needed and use both in the same HTTP request.

Data in the query string

A query string is the part of a uniform resource locator (URL) that contains data to be passed to
the HTTP trigger.

A typical URL containing a query string is as follows:

http://server/path/?query_string

The question mark is used as a separator and is not part of the query string.

The query string is usually composed of a series of name:value pairs, where within each pair
the field name and value are separated by an equals sign (=). The series of pairs are separated
by the ampersand (&). So the typical query string would provide values for fields (variables) like
this:

field1=value1&field2=value2&field3=value3

The HTTP trigger has built-in support to extract values of all fields and store them to the
variables of the same name, so you don't have to define any filter to extract values from the
query string.

www.nicelabel.com 62

 l You don't have to define variables inside a trigger in order to populate them with values
from the query string. NiceLabel Automation will extract all variables in the query string
and send their values to the currently active label. If the variables of the same name exist
in the label, their values will be populated. If the variables do not exist in the label, the val-
ues will be ignored and no errors will be reported.

 l You would define the variables in the trigger, if you need their values inside some action
in this trigger. To get all values provided in the query string, just define the variables that
have the same names as fields in the query string. For the above example, you would
define trigger variables with names field1, field2 and field3.

You would usually use GET HTTP request method to provide the query string.

Data in the body of the HTTP request

You must use the POST request method to provide the message in the body of the
HTTP request.

You are free to send whatever data and data structure that you want in the body, provided that
you can handle the data with the NiceLabel Automation filters. The contents can be formatted
as XML, CSV, it can be plain text, it can even be binary data (Base64-encoded). Bare in mind that
you will have to parse the data with filters.

If you can influence the structure of the incoming message, use standardized structures, such as
XML or CSV, to simplify the filter configuration.

You would use POST HTTP request method to provide the data in the message body.

General

This section allows you to configure the most important file trigger settings.

 l Name. Specifies the unique name of the trigger. The names helps you distinguish
between different triggers when you configure them in Automation Builder and later run
them in Automation Manager.

 l Description. Provides a possibility to describe the functionality of this trigger. You can
use it to write short explanation what the trigger does.

Communication

NOTE: This trigger supports Internet Protocol version 6 (IPv6).

This section allows you to configure the mandatory port number and optional feedback options.
You can use the standard HTTP Response Codes to indicate success of the action execution.
For more advanced purposes you can also send the custom content back to the data-providing
application, may it be a simple string feedback, or binary data, such as label preview or print
stream.

The typical URL to connect to the HTTP trigger is as follows:

http://server:port/path/?query_string

www.nicelabel.com 63

 l Server. This is the FQDN or IP address of the machine, where NiceLabel Automation is
installed.

 l Port. Specifies the port number where incoming data will be accepted on. Use the port
number that is not in use by some other application. If the selected port is in use, you
won't be able to start the trigger in Automation Manager. For more information about
security concerns, see Securing Access to your Triggers.

NOTE: If your server has multi-homing enabled (more IP addresses on one or more
network cards), NiceLabel Automation will respond on the defined port on all
IP addresses.

 l Path. Specifies the optional path in the URL. This functionality enables NiceLabel Auto-
mation to expose multiple HTTP triggers on the same port. The client will use the triggers
through a single port in a REST like syntax, causing different triggers to be fired by a dif-
ferent URL. If you are not sure what to use, leave the default path (\).

TIP: This option is available in NiceLabel Automation Enterprise.

 l Secure connection (HTTPS). Enables the secure transport layer for your HTTP message
and prevents eavesdropping. For more information on how to set it up, see Using Secure
Transport Layer (HTTPS).

 l Query string. Specifies the name-value pairs in the URL. An optional parameter, the data
is usually provided in the body of the HTTP request.

 l Wait for trigger execution to finish. The HTTP protocol requires the receiver (in this
case NiceLabel Automation) to send a numeric response back to the sender indicating
the status of the received message. By default, NiceLabel Automation will response with
code 200, indicating that data was successfully received, but this tells nothing about the
success of the trigger actions.

This option specifies that trigger doesn't send the response immediately after data is
received, but waits until all actions have been executed and then sends the response
code indicating the success of the action execution. When this option is enabled, you can
send back the custom response type and data (e.g. the response to a HTTP request is
label preview in PDF format).

The available built-in HTTP response codes are:

HTTP Response Code Description
200 All actions executed successfully.
401 Unauthorized, wrong user name and password were specified.
500 There were errors during action execution.

NOTE: If you want to send feedback about the print process, make sure you enable
the synchronous print mode. For more information, see Synchronous Print Mode.

www.nicelabel.com 64

 l Maximum number of concurrent requests. Specifies the maximum number of con-
current inbound connections. That many concurrent clients can send data to the trigger
simultaneously. The number also depends on the hardware performance of your server.

 l Response type. Specifies the type of your response message. Frequently-used Internet
media types (also known as MIME types, or Content-types) are predefined in the drop
down box. If your media type is not available in the list, simply enter it yourself. The
response data will be sent outbound as a feedback, formatted in defined media type. Vari-
able enables the variable media type. If enabled, select or create a variable that contains
the media type.

NOTE: If you don't specify the Content-Type, NiceLabel Automation will use
application/octet-stream as a default one.

 l Response data. Defines content of the response message. Examples of what you can
send back as an HTTP response are custom error messages, label preview, generated
PDF files, print stream (spool) file, XML file with details from the print engine plus the label
preview (encoded as Base64 string). The possibilities are countless.

NOTE: If your output will consist of binary-only content (such as label preview or print
stream), make sure you select a proper media type, e.g. image/jpeg or
application/octet-stream.

 l Additional headers. Allow you to define custom MIME headers for the HTTP response
message.

Response header syntax and example are available in the HTTP Request action section.

TIP: With Response data and Additional headers, you can use fixed content, mix of
fixed and variable content, or variable content alone. To insert variable content, click
the button with arrow to the right of data area and insert variable from the list (or
create a new one) that contains the data you want to use. For more information, see
Using Compound Values.

Authentication
 l None. No authentication method is in use.

 l User. Specifies that incoming messages include user name and password. The trigger will
only accept HTTP messages with matching credentials. For more information about secur-
ity concerns, see Securing Access to your Triggers.

 l Application Group (defined in NiceLabel Control Center). As in case with User authen-
tication type, this option also specifies that the incoming messages include user name
and password. The trigger will only accept HTTP messages with adequate credentials for
NiceLabel Control Center users who belong to a specific application group.

 l Group. Multiple application groups can be defined on the NiceLabel Control Center
– to select which group is going to be allowed to access the HTTP Server Trigger,
use the Group drop-down list. The selected group and its users must be set as

www.nicelabel.com 65

active when the trigger is running.

NOTE: Group with a specified name must exist on NiceLabel Control Center
when the trigger is running. While working on the configuration in Automation
Builder, you can use any group name. Make sure you eventually define a final
name on NiceLabel Control Center and match it in the configuration before
deploying it.

TIP: The users are authenticated using their credentials as defined in NiceLabel
Control Center > Administration > Users and Groups. Refer to NiceLabel
Control Center User Guide for details on user management (section Users and
Groups).

Other

Options in the Feedback from the Print Engine section specify the communication with the
print engine.

TIP: The functionality from this topic is available in NiceLabel LMS Enterprise and NiceLabel
LMS Pro.

 l Supervised printing. Enables the synchronous printing mode. Use it whenever you want
to send the print job status back to the third party application. For more information, see
topic Synchronous Print Mode.

Options in the Data Processing section specify whether you want to trim the data so it fits into
variable or ignore missing label variables. By default, NiceLabel Automation will report errors and
break the printing process, if you try to save too long value into the label variable, or try to set
value to non-existing label variable.

 l Ignore excessive variable contents. Data values exceeding the length of the variable
as defined in the label designer will be truncated to fit into variable. This option is in effect
when setting variable values in filters, from command files and when setting values of
trigger variables to label variables of the same name.

EXAMPLE: The la bel v a r ia ble a ccept s 10 cha ra ct ers a t ma ximum. Wit h t his opt ion ena bled,
a ny v a lue longer t ha n 10 cha ra ct ers will be t runca t ed t o f irs t 10 cha ra ct ers , a ll cha ra ct ers
pa s t cha ra ct er number 10 will be ignored.

 l Ignore missing label variables. When you execute printing with command files (such as
JOB file), the printing process will ignore all variables that are specified in the command
file (using command SET), but are not defined in the label. There will be no error, when
trying to set value to non-existent label variable. Similar processing occurs when you
define assignment area in the filter to extract all name:value pairs, but you have less
variables defined in the label.

Options in the Scripting section specify the scripting possibilities.

www.nicelabel.com 66

 l Scripting language. Specifies the scripting language enabled for the trigger. All Execute
script actions that you use within a single trigger use the same scripting language.

Options in the Save Received Data section specify the commands available for the data
received by the trigger.

 l Save data received by the trigger to file. Enable this option to save the data received
by the trigger. The option Variable enables the variable file name. Select a variable that
contains path and file name.

 l On error save data received by the trigger to file. Enable this option to save the data
by into the trigger only if there the error occurs during the action execution. You might
want to enable this option to have the data that caused the problem ready the
troubleshooting at a later time.

WARNING: Make sure to enable the Supervised printing support, or NiceLabel
Automation will not be able to detect the error during the execution. For more
information, see topic Synchronous Print Mode.

NOTE: NiceLabel Automation already saves the received data into a temporary file
name, which is deleted right after the trigger execution completes. The internal
variable DataFileName points to that file name. For more information, see Internal
Variables.

Security
 l Lock and encrypt trigger. Enables the trigger protection. When enabled, the trigger is

locked and cannot be edited, and actions become encrypted. Only the user with a pass-
word can unlock the trigger and modify it.

6.2.6 Web Service Trigger

TIP: The functionality from this topic is available in NiceLabel LMS Enterprise.

To learn more about triggers in general, see topic Understanding Triggers.

The Web Service trigger event occurs when data is received on the monitored socket
(IP address and port number). The data must follow the SOAP notation (XML data encoded into
HTTP message). The Web Service interface is described in the WSDL document available with
each defined Web Service trigger.

The Web Service can provide a feedback about print job status, but you have to enable the
synchronous processing mode. For more information, see the topic Print Job Status Feedback.

Typically, Web Service would be used by programmers to integrate label printing in their
own applications. The existing business system executes a transaction, which in effect
sends the data to NiceLabel Automation server on a specific socket formatted as

www.nicelabel.com 67

SOAP message. The data can be provided in CSV, XML and other structured formats, or it
can be provided in some legacy format. In either way, NiceLabel Automation will read the
data, parse values using filters and print them on labels. For more information how to parse
and extract data, see the topic Understanding Filters.

General

This section allows you to configure the most important file trigger settings.

 l Name. Specifies the unique name of the trigger. The names helps you distinguish
between different triggers when you configure them in Automation Builder and later run
them in Automation Manager.

 l Description. Provides a possibility to describe the functionality of this trigger. You can
use it to write short explanation what the trigger does.

Communication

NOTE: This trigger supports Internet Protocol version 6 (IPv6).

This section allows you to configure the mandatory port number and optional feedback options.

 l Port. Specifies the port number where incoming data will be accepted on. Use the port
number that is not in use by some other application. If the selected port is in use, you
won't be able to start the trigger in Automation Manager. For more information about
security concerns, see the topic Securing Access to your Triggers.

NOTE: If your server has multi-homing enabled (more IP addresses on one or more
network cards), NiceLabel Automation will respond on the defined port on all
IP addresses.

 l Secure connection (HTTPS). Enables the secure transport layer for your HTTP message
and prevents eavesdropping. For more information how to set it up, see topic Using
Secure Transport Layer (HTTPS).

 l Maximum number of concurrent calls. Specifies the maximum number of accepted con-
nections. That many concurrent clients can send data to the trigger simultaneously.

 l Response data. Defines the custom response that can be used with ExecuteTrig-
gerWithResponse and ExecuteTriggerAndSetVariablesWithResponse methods.
The response data contains the content as provided in the text area. You can combine
fixed values, variable values and special characters. To insert (or create) variables and
special characters, click the arrow button to the right of the text area. The response can
contain binary data, such as image of label preview and print file (*.PRN).

Status Feedback

By design, Web Service trigger provides the feedback about the status of the created print job.
The trigger will accept the provided data and use it when executing defined actions. The action
execution can be supervised. The trigger will report the success status for every execution

www.nicelabel.com 68

event. To enable status reporting from the print process, you must enable the Synchronous
Print Mode.

There are the following methods (functions) exposed in the Web Service trigger:

 l ExecuteTrigger. This method accepts data into processing and provides the optional
status feedback. One of the input parameters enables or disables the feedback. If you
enable status reporting, the feedback will contain error ID and detailed description of the
error. If error ID equals 0, there was no problem creating print file. If error ID is greater
than 0, some error occurred during the print process. The Web Service response in this
method is not configurable and will always contain error ID and error description.

 l ExecuteTriggerWithResponse. This method accepts data into processing and provides
the custom status feedback. The Web Service response is configurable. You can send
back any data you want in any structure you might have. You can use binary data in the
response.

 l ExecuteTriggerAndSetVariables. Similar to ExecuteTrigger above, but it exposes addi-
tional inbound parameter that accepts the formatted list of name-value pairs. The trigger
will automatically parse the list, extract values and save the to the variables of the same
name, so you don't have to create any data-extraction filter yourself.

 l ExecuteTriggerAndSetVariablesWithResponse. Similar to ExecuteTrig-
gerWithResponse above, but it exposes additional inbound parameter that accepts the
formatted list of name-value pairs. The trigger will automatically parse the list, extract val-
ues and save the to the variables of the same name, so you don't have to create any data-
extraction filter yourself.

For more information about structure of the messages that you can send to one or the other
method, see chapter WSDL below.

WSDL

Specifies the style of the SOAP messages. It can be either Remote Procedure Call (RPC) or a
document style. Choose the style that is supported in your application providing data to
NiceLabel Automation.

The WSDL (Web Service Description Language) document defines the input and output
parameters of the Web Service.

If you define Web Service trigger on port 12345, deploy it in Automation Manager and then start
it, its WSDL will be available at:

http://localhost:12345

The WSDL exposes several methods that all provide data into the trigger. You will have to
choose the one that is most appropriate for what you have to achieve.

 l The methods that have WithResponse in their names allow you to send customized
responses, such as custom error messages, label previews, PDF files, print files
(*.PRN) and similar. The methods without WithResponse in their name will still provide the
feedback, but you cannot customize the response. The feedback will contain default error

www.nicelabel.com 69

messages.

 l The methods that have SetVariables in their names allow you to provide list of variables
in two predefined formats and their values will be extracted and mapped to the appro-
priate variables automatically. This saves you time because you don't have to set up any fil-
ter to do the extraction and mapping. For the methods without SetVariables in their
names you have to define the filter yourself.

The Web Service interface defines the following methods:

Method ExecuteTrigger

The main part of the definition is the following:

<wsdl:message name="WebSrviTrg_ExecuteTrigger_InputMessage">
 <wsdl:part name="text" type="xsd:string"/>
 <wsdl:part name="wait" type="xsd:boolean"/>
</wsdl:message>

<wsdl:message name="WebSrviTrg_ExecuteTrigger_OutputMessage"
 <wsdl:part name="ExecuteTriggerResult" type="xsd:int"/
 <wsdl:part name="errorText" type="xsd:string"/>
</wsdl:message>

There are two input variables (you provide their values):

 l text. This is the input string, which can be parsed by the filter defined in the con-
figuration. Usually the string is structured as CSV or XML to be easily parsed with a filter,
but you can use any other text format.

 l wait. This is Boolean field that specifies if you will wait for the print job status response
and if Web Service should provide feedback. For True use 1, for False use 0. Dependent
on the method type that you select, there is either a predefined response, or you can
send the customized response.

There are the following optional output variables (you receive their values, if you request them
by setting wait to 1):

 l ExecuteTriggerResult. The integer response will contain value 0 if there was no prob-
lems processing the data, and it will contain an integer greater than 0, when error(s) did
occur. The application executing the Web Service call to NiceLabel Automation can use
the response as error indicator.

 l errorText. This string value will contain the print job status response, if an error was
raised during the trigger processing.

NOTE: If there was an error during the trigger processing, this element is included in
the XML response message and its value contains the error description. However, if
there was no error, this element will not be included in the XML response.

Method ExecuteTriggerWithResponse

You would use this method when the trigger should send the custom response after it
completes the execution.

www.nicelabel.com 70

Some examples of what you can send back as the custom response: custom error messages,
label preview, generated PDF files, print stream file (spool file), XML file with details from the
print engine plus the label preview (encoded as Base64 string), the possibilities are endless.

The main part of the definition is the following:

<wsdl:message name="WebSrviTrg_ExecuteTriggerWithResponse_InputMessage">
 <wsdl:part name="text" type="xsd:string"/>
 <wsdl:part name="wait" type="xsd:boolean"/>
</wsdl:message>

<wsdl:message name="WebSrviTrg_ExecuteTriggerWithResponse_OutputMessage">
 <wsdl:part name="ExecuteTriggerWithResponseResult" type="xsd:int"/>
 <wsdl:part name="responseData" type="xsd:base64Binary"/>
 <wsdl:part name="errorText" type="xsd:string"/>
</wsdl:message>

There are two input variables (you provide their values):

 l text. This is the input string, which can be parsed by the filter defined in the con-
figuration. Usually the string is structured as CSV or XML to be easily parsed with a filter,
but you can use any other text format.

 l wait. This is Boolean field that specifies if you will wait for the print job status response
and if Web Service should provide feedback. For True use 1, for False use 0. Dependent
on the method type that you select, there is either a predefined response, or you can
send the customized response.

There are the following optional output variables (you receive their values, if you request them
by setting wait to 1):

 l ExecuteTriggerWithResponseResult. The integer response will contain value 0 if there
was no problems processing the data, and it will contain an integer greater than 0, when
error(s) did occur. The application executing the Web Service call to NiceLabel Auto-
mation can use the response as error indicator.

 l responseData. The custom response that you can define in the Web Service trigger con-
figuration. The response is base64-encoded data.

 l errorText. This string value will contain the print job status response, if an error was
raised during the trigger processing.

NOTE: If there was an error during the trigger processing, this element is included in
the XML response message and its value contains the error description. However, if
there was no error, this element will not be included in the XML response.

Method ExecuteTriggerAndSetVariables

The main part of the definition is the following:

<wsdl:message name="WebSrviTrg_ExecuteTriggerAndSetVariables_InputMessage">
 <wsdl:part name="text" type="xsd:string"/>
 <wsdl:part name="variableData" type="xsd:string"/>
 <wsdl:part name="wait" type="xsd:boolean"/>

www.nicelabel.com 71

</wsdl:message>
 <wsdl:message name="WebSrviTrg_ExecuteTriggerAndSetVariables_OutputMessage">
 <wsdl:part name="ExecuteTriggerAndSetVariablesResult" type="xsd:int"/>
 <wsdl:part name="errorText" type="xsd:string"/>
</wsdl:message>

There are three input variables (you provide their values):

 l text. This is the input string, which can be parsed by the filter defined in the con-
figuration. Usually the string is structured as CSV or XML to be easily parsed with a filter,
but you can use any other text format.

 l wait. This is Boolean field that specifies if you will wait for the print job status response
and if Web Service should provide feedback. For True use 1, for False use 0. Dependent
on the method type that you select, there is either a predefined response, or you can
send the customized response.

 l variableData. This is the string that contains the name:value pairs. The trigger will read all
pairs and assign provided values to the trigger variables of the same name. If the variable
doesn't exist in the trigger, that name:value pair is discarded. When you provide the list of
variables and their values in this method, you don't have to define any data extraction
with the filters. The trigger will do all the parsing for you.

The contents for the variableData can be provided in either of the two available
structures.

XML structure

The variables are provided within <Variables /> root element in the XML file. Variable
name is provided with the attribute name, the variable value is provided by the element
value.

<?xml version="1.0" encoding="utf-8"?>
<Variables>
 <variable name="Variable1">Value 1</variable>
 <variable name="Variable2">Value 2</variable>
 <variable name="Variable3">Value 3</variable>
</Variables>

NOTE: You will have to embed your XML data inside the CDATA section. CDATA,
meaning character data, is a section of element content that is marked for the parser
to interpret as only character data, not markup. All contents is used as character data,
for example <element>ABC</element> will be interpreted as
<element>ABC</element>. A CDATA section starts with the
sequence <![CDATA[and ends with the sequence]]>. Simply put your XML data
inside these sequences.

Delimited structure

The variables are provided in a text stream. Every name:value pair is provided in a
newline. Variable name is to the left of the equals character (=), variable value is to the

www.nicelabel.com 72

right.

Variable1="Value 1"
Variable2="Value 2"
Variable3="Value 3"

There are the following optional output variables (you receive their values, if you request them
by setting wait to 1):

 l ExecuteTriggerAndSetVariablesResult. The integer response will contain value 0 if
there was no problems processing the data, and it will contain an integer greater than 0,
when error(s) did occur. The application executing the Web Service call to NiceLabel Auto-
mation can use the response as error indicator.

 l errorText. This string value will contain the print job status response, if an error was
raised during the trigger processing.

NOTE: If there was an error during the trigger processing, this element is included in
the XML response message and its value contains the error description. However, if
there was no error, this element will not be included in the XML response.

Method ExecuteTriggerAndSetVariablesWithResponse

You would use this method when the trigger should send the custom response after it
completes the execution.

Some examples of what you can send back as the custom response: custom error messages,
label preview, generated PDF files, print stream file (spool file), XML file with details from the
print engine plus the label preview (encoded as Base64 string), the possibilities are endless.

The main part of the definition is the following:

<wsdl:message name="WebSrviTrg_ExecuteTriggerAndSetVariablesWithResponse_
InputMessage">
 <wsdl:part name="text" type="xsd:string"/>
 <wsdl:part name="variableData" type="xsd:string"/>
 <wsdl:part name="wait" type="xsd:boolean"/>
</wsdl:message>
<wsdl:message name="WebSrviTrg_ExecuteTriggerAndSetVariablesWithResponse_
OutputMessage">
 <wsdl:part name="ExecuteTriggerAndSetVariablesWithResponseResult"
type="xsd:int"/>
 <wsdl:part name="responseData" type="xsd:base64Binary"/>
 <wsdl:part name="errorText" type="xsd:string"/>
</wsdl:message>

There are three input variables (you provide their values):

 l text. This is the input string, which can be parsed by the filter defined in the con-
figuration. Usually the string is structured as CSV or XML to be easily parsed with a filter,
but you can use any other text format.

www.nicelabel.com 73

 l wait. This is Boolean field that specifies if you will wait for the print job status response
and if Web Service should provide feedback. For True use 1, for False use 0. Dependent
on the method type that you select, there is either a predefined response, or you can
send the customized response.

 l variableData. This is the string that contains the name:value pairs. The trigger will read all
pairs and assign provided values to the trigger variables of the same name. If the variable
doesn't exist in the trigger, that name:value pair is discarded. When you provide the list of
variables and their values in this method, you don't have to define any data extraction
with the filters. The trigger will do all the parsing for you.

The contents for the variableData can be provided in either of the two available
structures.

XML structure

The variables are provided within <Variables /> root element in the XML file. Variable
name is provided with the attribute name, the variable value is provided by the element
value.

<?xml version="1.0" encoding="utf-8"?>
<Variables>
 <variable name="Variable1">Value 1</variable>
 <variable name="Variable2">Value 2</variable>
 <variable name="Variable3">Value 3</variable>
</Variables>

NOTE: You will have to embed your XML data inside the CDATA section. CDATA,
meaning character data, is a section of element content that is marked for the parser
to interpret as only character data, not markup. All contents is used as character data,
for example <element>ABC</element> will be interpreted as
<element>ABC</element>. A CDATA section starts with the
sequence <![CDATA[and ends with the sequence]]>. Simply put your XML data
inside these sequences.

Delimited structure

The variables are provided in a text stream. Every name:value pair is provided in a
newline. Variable name is to the left of the equals character (=), variable value is to the
right.

Variable1="Value 1"
Variable2="Value 2"
Variable3="Value 3"

There are the following optional output variables (you receive their values, if you request them
by setting wait to 1):

 l ExecuteTriggerAndSetVariablesWithResponseResult. The integer response will con-
tain value 0 if there was no problems processing the data, and it will contain an integer
greater than 0, when error(s) did occur. The application executing the Web Service call to

www.nicelabel.com 74

NiceLabel Automation can use the response as error indicator.

 l responseData. The custom response that you can define in the Web Service trigger con-
figuration. The response is base64-encoded data.

 l errorText. This string value will contain the print job status response, if an error was
raised during the trigger processing.

NOTE: If there was an error during the trigger processing, this element is included in
the XML response message and its value contains the error description. However, if
there was no error, this element will not be included in the XML response.

Other

Options in the Feedback from the Print Engine section specify the communication with the
print engine.

TIP: The functionality from this topic is available in NiceLabel LMS Enterprise and NiceLabel
LMS Pro.

 l Supervised printing. Enables the synchronous printing mode. Use it whenever you want
to send the print job status back to the third party application. For more information, see
topic Synchronous Print Mode.

Options in the Data Processing section specify whether you want to trim the data so it fits into
variable or ignore missing label variables. By default, NiceLabel Automation will report errors and
break the printing process, if you try to save too long value into the label variable, or try to set
value to non-existing label variable.

 l Ignore excessive variable contents. Data values exceeding the length of the variable
as defined in the label designer will be truncated to fit into variable. This option is in effect
when setting variable values in filters, from command files and when setting values of
trigger variables to label variables of the same name.

EXAMPLE: The la bel v a r ia ble a ccept s 10 cha ra ct ers a t ma ximum. Wit h t his opt ion ena bled,
a ny v a lue longer t ha n 10 cha ra ct ers will be t runca t ed t o f irs t 10 cha ra ct ers , a ll cha ra ct ers
pa s t cha ra ct er number 10 will be ignored.

 l Ignore missing label variables. When you execute printing with command files (such as
JOB file), the printing process will ignore all variables that are specified in the command
file (using command SET), but are not defined in the label. There will be no error, when
trying to set value to non-existent label variable. Similar processing occurs when you
define assignment area in the filter to extract all name:value pairs, but you have less
variables defined in the label.

Options in the Scripting section specify the scripting possibilities.

 l Scripting language. Specifies the scripting language enabled for the trigger. All Execute
script actions that you use within a single trigger use the same scripting language.

www.nicelabel.com 75

Options in the Save Received Data section specify the commands available for the data
received by the trigger.

 l Save data received by the trigger to file. Enable this option to save the data received
by the trigger. The option Variable enables the variable file name. Select a variable that
contains path and file name.

 l On error save data received by the trigger to file. Enable this option to save the data
by into the trigger only if there the error occurs during the action execution. You might
want to enable this option to have the data that caused the problem ready the
troubleshooting at a later time.

WARNING: Make sure to enable the Supervised printing support, or NiceLabel
Automation will not be able to detect the error during the execution. For more
information, see topic Synchronous Print Mode.

NOTE: NiceLabel Automation already saves the received data into a temporary file
name, which is deleted right after the trigger execution completes. The internal
variable DataFileName points to that file name. For more information, see Internal
Variables.

Security
 l Lock and encrypt trigger. Enables the trigger protection. When enabled, the trigger is

locked and cannot be edited, and actions become encrypted. Only the user with a pass-
word can unlock the trigger and modify it.

6.3 Using Variables
6.3.1 Variables
Variables are used as containers for data values. You need variables to transfer values to the
label in Print Label action, or to use values in other data-manipulation actions. Typically, the
filter will extract values from the data streams received by trigger and send values into
variables. For more information, see the topic Understanding Filters.

Usually, you want to send the values of variables to the label template and print label. The
mechanism to send values of variables to labels uses the automated name mapping - value of
the variable defined in the trigger will be sent to the variable defined in the label of the same
name. You can define variables in one of three ways:

 l Import variables from label file. For the above explained automatic mapping it makes a
good practice to import your variables from the label each time. This action ensures that
variable names match and saves time. The imported variable doesn't inherit just the vari-
able name, but also supported variable properties, such as length and default value.

 l Manually define variables. When manually defining variables, you have to be extra

www.nicelabel.com 76

careful to use the same names as variables in the label. You would manually define the
variables that don't exist in the label, but you need them inside the trigger.

NOTE: An example would be variables, such as LabelName, PrinterName, Quantity
and similar variables that you need to remember the label name, printer name, quantity
or other meta-values assigned by the filter.

 l Enabling internal variables. Values for internal variables are assigned by NiceLabel Auto-
mation and are available as read-only values. For more information, see the topic Internal
Variables.

TIP: If you enable the assignment area (in Unstructured Text and XML filters) and dynamic
structure (in Structured Text filter), NiceLabel Automation will extract name:value pairs from
the trigger data and automatically send values to the variables of the same name that are
defined in the label. No manual variable mapping is necessary.

Properties
 l Name. Specifies the unique variable name. Names are not case sensitive. Although you

can use spaces in variable names, it's a better practice not to. Even more so if you use vari-
ables in scripts or in conditions on actions, because you will have to enclose them in
square brackets.

 l Allowed characters. Specifies the list of characters the value can occupy. You can select
between All (all characters are accepted), Numeric (only digits are accepted), and Binary
(all characters and control codes are accepted).

 l Limit variable length. Specifies the maximum number of characters the variable can
occupy.

 l Fixed length. Specifies that the value must occupy exactly as many characters as defined
by its length.

NOTE: You must limit variable length for certain objects on the label, such as bar code
EAN-13, which accepts 13 digits.

 l Value required. Specifies that the variable must contain a value

 l Default value. Specifies a default value. If the variable is not assigned with any value,
then default value will be always used.

6.3.2 Using Compound Values
Some objects in trigger configuration accept compound values. The contents can be a mixture
of fixed values, variables and special characters (control codes). The objects accepting
compound values are identified by a small arrow button to the right side of the object. You can
click the arrow button to insert either variable or special character.

www.nicelabel.com 77

 l Using fixed values. You can enter the fixed value for the variable.

This is fixed value.

 l Using fixed values and data from variables. You can also define the compound value,
combined out of values of variables and fixed values. The variable names must be
enclosed in square brackets []. You can enter variables manually, or insert them by
clicking the arrow button to the right. At processing time, the values of variables will be
merged together with fixed data and used as the content. For more information, see the
topic Tips and Tricks for Using Variables in Actions.
In this case the content will be merged from three variables and some fixed data.

[variable1] // This is fixed value [variable2][variable3]

 l Using special characters. You can also add special characters to the mix. You can enter
the special characters manually, or insert them. For more information, see the topic
Entering Special Characters (Control Codes).
In this case the value of variable1 will be merged with some fixed data and form-feed
binary character.

[variable1] Form feed will follow this fixed text <FF>

6.3.3 Internal Variables
Internal variables are predefined by NiceLabel Automation. Their values are assigned
automatically and are available in ready-only mode. The icon with lock symbol in front of the
variable name distinguish internal variables from user-defined variables. You can use internal
variables in your actions in the same way as you would use user-defined variables. The trigger
internal variables are internal to each trigger.

Internal variable Available
in trigger

Description

ActionLastErrorDesc All Provides the description of the error that occurred
last. You can use this value in a feedback to host sys-
tem, identifying the cause of the fault.

ActionLastErrorID All Provides the ID of the error that occurred last. This is
integer value. When value is 0, there was no error. You
can use this value in conditions, evaluating if there was
some error or not.

BytesOfReceivedData TCP/IP Provides the number of bytes received by the trigger.
ComputerName All Provides the name of the computer where the con-

figuration runs.
ConfigurationFileName All Provides the path and file name of the current con-

figuration (.MISX file).
ConfigurationFilePath All Provides the path of the current configuration file. Also

see description for ConfigurationFileName.

www.nicelabel.com 78

DataFileName All Provides the path and file name of the working copy of
received data. Each time the trigger accepts the data,
it makes a backup copy of it to the unique file name
identified by this variable.

Database Database Provides the database type as configured in the trig-
ger.

Date All Provides the current date in the format as specified by
system locale, such as 26.2.2013.

DateDay All Provides the current number of the day in a month,
such as 26.

DateMonth All Provides the current number of the month in the year,
such as 2.

DateYear All Provides the current number of the year, such as 2013.
DefaultPrinterName All Provides the name of printer driver, which is defined as

default.
DriverType Database Provides the name of the driver used to connect to the

selected database.
Hostname TCP/IP Provides the host name of device/computer con-

necting to the trigger.
HttpMethodName HTTP Provides the method name the user has provided in

the HTTP request, such as GET or POST.
HttpPath HTTP Provides the path defined in the HTTP trigger.
HttpQuery HTTP Provides the contents of the query string as received

by the HTTP trigger.
NumberOfRowsReturned Database Provides the number of rows that the trigger gets from

a database.
LocalIP TCP/IP Provides the local IP address on which the trigger

responded to. This is useful if you have multi-homing
machine with several network interface cards (NIC) and
want to determine to which IP address the client con-
nected to. This is useful for printer replacement scen-
arios.

PathDataFileName All Provides the path in the DataFileName variable,
without the file name. Also see description for
DataFileName.

PathTriggerFileName File Provides the path in the TriggerFileName variable,
without the file name. Also see description for Trig-
gerFileName.

Port TCP/IP,
HTTP,

Web Ser-
vice

Provides the port number as defined in the trigger.

www.nicelabel.com 79

RemoteHttpIp HTTP Provides the host name of device/computer con-
necting to the trigger.

RemoteIp Web Ser-
vice

Provides the host name of device/computer con-
necting to the trigger.

ShortConfigurationFileName

All Provides the file name of the configuration file, without
a path, Also see description for ConfigurationFileName.

ShortDataFileName All Provides the file name to the DataFileName variable,
without the path. Also see description for
DataFileName.

ShortTriggerFileName File Provides the file name to the TriggerFileName variable,
without the path. Also see description for Trig-
gerFileName.

SystemUserName All Provides the Windows name of the logged-in user.
TableName Database Provides the name of the table as used in the trigger.
Time All Provides the current time in the format as specified by

system locale, such as 15:18,
TimeHour All Provides the current hour value, such as 15.
TimeMinute All Provides the current minute value, such as 18.
TimeSecond All Provides the current second value, such as 25.
TriggerFileName File Provides the file name that triggered actions. This is

useful when you monitor set of files in the folder, so
you can identify which file exactly triggered actions.

TriggerName All Provides the name of the trigger as defined by the
user.

Username All Provides the NiceLabel Automation user name of the
currently logged in user. The variable has contents
only if the user login is enabled.

6.3.4 Global Variables
Global variables are a type of variable that can be used on different labels. Global variables are
defined outside of the label file and remember the last-used value. Global variables are typically
defined as global counters. Global variable will provide a unique value for every label requesting
a new value. File locking takes place ensuring uniqueness of each value.

Global variables are defined in the label designer, the NiceLabel Automation will only use it. The
source for global variables is configurable in the Options (File>Tools>Options).

By default, NiceLabel Automation is configured to use global variables from the local computer.
The default location is the following:

%PROGRAMDATA%\NiceLabel\Global Variables

The global variables are defined in the files GLOBAL.TDB and GLOBALS.TDB.SCH.

www.nicelabel.com 80

In multi-user environments make sure to configure all clients to use the same network-shared
source for global variables, or Control Center-based global variables.

NOTE: The definition and current value for global variables can be stored in the a file or in the
Control Center (for NiceLabel LMS Enterprise and NiceLabel LMS Pro products).

6.4 Using Actions
6.4.1 Actions
The Actions section specifies the list of actions that execute every time a trigger fires.

6.4.1.1 Defining Actions

To define an action, click the action icon in the Insert Action ribbon group. The main ribbon
contains commonly used actions. To see all available actions, click All Actions button. To see
available commands over the selected action, right-click it and select command from the list.

www.nicelabel.com 81

6.4.1.2 Nested Actions

Some actions cannot be used on their own. Their specific functionality requires them to be
nested below some other action. Use buttons in Action Order ribbon group to change action
placement. Each action is identified with the ID number that shows its position in the list,
including nesting. This ID number will be displayed in the error message so you can find the
problematic action easier.

NOTE: The Print Label action is a good example of such action. You have to position it under
the Open Label action, so it references the exact label to print.

6.4.1.3 Action Execution

The actions in the list execute once per trigger. Listed actions are executed from top to bottom,
so the listing order of actions is important.

There are two exceptions. The actions For Loop and Use Data Filter execute nested actions
for multiple times. For loop action executes for as many times as defined in its properties, and
the Use Data Filter for as many times as there are records in a data set returned from the
associated filter.

NiceLabel 2017 runs as service under a specified Windows user account and inherits security
permissions from the account. For more details, see the topic Running in Service Mode in
NiceLabel Automation User Guide.

6.4.1.4 Condit ional Actions

Each action can be set as a conditional action. Conditional action only runs if the provided
condition allows it to be run. Condition is a single line script (VBScript or Python). To define the
condition, click the Show execution and error handling options in action properties to expand
the possibilities.

www.nicelabel.com 82

In this case, the action executes only if the previous action has completed successfully, so the
internal variable ActionLastErrorID has value 0. To use such condition with internal
variables, you must first enable the internal variable.

6.4.1.5 Identifying Actions In Configuration Error State

If an action is not completely configured, it is marked with a red exclamation icon. Such actions
cannot execute. You can include such action in the Action list, but you will have to complete the
configuration, before you can start the trigger. If one of the nested actions is in error state, all
parent expansion arrows (to the left of the action name) are also colored red as an indicator of
sub-action error.

In this case, the Open Label action reports configuration error. There is no parameter specified
for the label name. The red exclamation icon pops up next to the erroneous parameter in the
action itself, in the action list, in the Actions tab, in the trigger tab, and in the
Configuration Items tab. This makes the issue easy to identify.

6.4.1.6 Disabling Actions

By default, every newly created action is enabled and executes if a trigger fires. You can disable
the actions that you don't need, but still want to keep the configuration. A shortcut to action
enabling & disabling is a check box on the right hand side of the action name in the list of
defined actions.

In this case, the Print Label action is still defined in the actions list, but has been disabled.
Currently, it is not needed and will be ignored during the processing, but you can easily re-
enable it at any time.

6.4.1.7 Copying Actions

You can copy an action and paste it back into the same or any other trigger. You can use
standard Windows keyboard shortcuts, or right-click the action.

Right-clicking the action displays the available contextual commands available for the currently
selected object.

www.nicelabel.com 83

Automation Builder also enables you to make a selection of multiple actions, and to perform
copy, paste and delete operations with them. To make a selection, Use Ctrl/Shift + Click on the
required actions.

NOTE: Multiple actions can only be selected under the same parent action, i.e. all selected
actions must be on the same level.

6.4.1.8 Navigating The Action List

Use your mouse to select the defined action and click the respective arrow button in
Action Order group in the ribbon. You can also use keyboard. Cursor keys move the selection in
the action list, Ctrl + cursors keys move the action position up and down, and also left and right
for nesting.

6.4.1.9 Describing The Actions

About group allows you to describe all NiceLabel 2017 actions.

 l Name: by default, action name is defined by its type and is therefore not unique. Define a
custom name to make it instantly recognizable among other actions, in logs and in poten-
tial error messages.

 l Description: user notes for the selected action. Description is displayed in actions
explorer.

 l Action Type: read-only field which displays the type of action.

www.nicelabel.com 84

6.4.2 General
6.4.2.1 Open Label

Open Label action specifies the label file that is going to be printed. When the action is
executed, the label template opens in memory cache. The label remains in the cache for as long
as the triggers or events use it.

There is no limit on the number of labels that can be opened concurrently. If the label is already
loaded and is requested again, NiceLabel Automation will first determine if a newer version is
available and approved for printing, then open it.

In this example, NiceLabel 2017 loads the label label.nlbl from folder
C:\ProjectA\Labels.

C:\ProjectA\Labels\label.nlbl

If the specified label cannot be found, NiceLabel 2017 tries to find it in alternative locations. For
more information, see topic.

About group identifies the selected action.

 l Name: allows you to define a custom action name. This makes actions easily recognizable
on the solution's list of actions. By default, action name is taken from its type.

 l Description: custom information about the action. Enter a description to explain purpose
and role of action in a solution.

 l Action type: read-only information about the selected action type.

Using Relative Paths

NiceLabel 2017 supports the use of relative paths for referencing your label file. The root folder
is always the folder where the configuration file (MISX) is stored.

With the following syntax, the label loads relatively from the location of the configuration file.
The label will be searched for in the folder ProjectA, which is two levels above the current
folder, and then into folder Labels.

..\..\ProjectA\Labels\label.nlbl

Settings group selects the label file.

www.nicelabel.com 85

 l Label name: specifies the label name. It can be hard-coded, and the same label will print
every time. The option Data source enables the file name to be dynamically defined.
Select or add a variable that contains the path and/or file name if a trigger is executed or
an event takes place.

TIP: Usually, the value to the variable is assigned by a filter.

NOTE: Use UNC syntax for network resources.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

6.4.2.2 Print Label

This action executes label printing. It must always be nested within the Open Label action.
Nesting allows it to obtain the reference to the label that is going to be printed. This further
allows you to keep multiple labels open at the same time, and enables you to specify which label
should be printed.

After issuing this action, the label gets printed using the printer driver that is defined in the
label template. If the defined printer driver is not found on the system, the label is printed using

www.nicelabel.com 86

the system default printer driver. You can override the printer driver selection via Set Printer
action.

To achieve high performance label printing, NiceLabel 2017 activates two settings by default:

 l Parallel processing. Multiple print processes are all carried out simultaneously. The num-
ber of background printing threads depends on the hardware; specifically on the pro-
cessor type. Each processor core can accommodate a single printing thread. This default
can be changed. For more information, see section Parallel Processing in NiceLabel Auto-
mation user guide.

 l Asynchronous mode. As soon as the trigger pre-processing completes and the instruc-
tions for the print engine are available, the printing thread takes it over in the back-
ground. The control is returned to the trigger so it can accept the next incoming data
stream as soon as possible. If synchronous mode is enabled, the control is not returned
to the trigger until the print process is finished. This can take a while, but the trigger
benefits from providing feedback back to data-providing application. For more inform-
ation, see the section Synchronous Mode in NiceLabel Automation user guide.

NOTE: Using Save error to variable option in Action Execution and Error Handling
does not yield any result in asynchronous mode, as the trigger does not receive
feedback from the print process. To capture the feedback from the print process,
enable synchronous mode first.

NOTE: If the Print Label action is nested under a For Loop action, Automation executes it in
session printing mode. This mode acts as a printing optimization mode that prints all labels in
a loop using a single print job file. For details, see Session Printing section in NiceLabel
Automation user guide.

About group identifies the selected action.

 l Name: allows you to define a custom action name. This makes actions easily recognizable
on the solution's list of actions. By default, action name is taken from its type.

 l Description: custom information about the action. Enter a description to explain purpose
and role of action in a solution.

 l Action type: read-only information about the selected action type.

Quantity group defines the number of labels to be printed using the active form.

 l Labels: sets the number of printed labels. Data source specifies or adds a variable that
defines the label print quantity dynamically.

NOTE: Variable value is usually assigned by the Use Data Filteraction and must be
integer.

All (unlimited quantity): depending on the label template design, the labels are printed in
various quantities.

Unlimited Quantity Printing Details

www.nicelabel.com 87

Typically, this option is used in two scenarios.

 1. Command the printer to continuously print the same label until it is switched off, or after it
receives a command to clear its memory buffer.

WARNING: This scenario requires NiceLabel printer driver to be installed and used for
label printing.

If printing a fixed label, just a single print job is sent to the printer, with the quantity set to
"unlimited". Label printers have a print command parameter which indicates "unlimited"
printing.

If the label is not fixed, but includes objects that change during the printing, such as
counters, the printed quantity is set to maximum quantity supported by the
printer. NiceLabel printer driver is aware of the printer quantity limit and print as many
labels as possible.

EXAMPLE: Ma ximum s upport ed pr int qua nt it y is 32,000. This is t he a mount of la bels t ha t a re
pr int a f t er s elect ing t he All (unl imited q uantity) opt ion.

 2. The trigger doesn't provide any data, but only acts as a signal for "event has happened".
The logic to acquire necessary data is included in the label. Usually, a connection to a
database is configured on the label, and at every trigger the label must connect to the
database, and acquire all records from the database. In this case, the All (unlimited
quantity) option is understood as "print all records from the database".

 l Variable quantity (defined from label variable): specifies a label variable that defines
the label quantity to be printed.

The trigger doesn't receive the number of labels to be print, so it passes the decision to
the label template. The label might contain a connection to a database, which provide the
label quantity, or there is another source of quantity information. A single label variable
must be defined as "variable quantity".

Advanced group defines label printing details. Click Show advanced print options to define
the Advanced print options:

This section specifies non-frequently used label quantity related settings.

 l Number of skipped labels: specifies the number of labels that are skipped on the first
page of labels. The sheet of labels might have been printed once already, but not
entirely. You can re-use the same sheet by offsetting the starting position. This option is
applicable, if you print labels to sheets of labels, not rolls of labels, so it's effective for
office printers and not for label printers.

 l Identical label copies: specifies the number of label copies to be printed for each unique
label. For fixed labels, this option produces the same result as the main Number of
Labels option. For variable labels, such as labels using counters, you can get the real label
copies.

 l Label sets: specifies how many times the entire label printing process should repeat.

www.nicelabel.com 88

EXAMPLE: Trigger or ev ent receiv e cont ent wit h 3 lines of C SV-f orma t t ed da t a , s o 3 la bels
a re expect ed t o be pr int ed (1, 2, 3) . I f y ou s et t his opt ion t o 3, t he pr int out is done in t he
f ollowing order : 1, 2, 3, 1, 2, 3, 1, 2, 3.

TIP: All Advanced group values can either be hard-coded, or dynamically provided by an
existing or a newly added variable.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

6.4.2.3 Run Oracle XML Command File

DESIGNER PRODUCT LEVEL INFO: The described features belongs to the Automation
Builder module and is available with NiceLabel LMS Enterprise and NiceLabel LMS Pro.

This action executes printing with data obtained from an Oracle XML-formatted file.

NiceLabel Automation internally supports XML files with "Oracle XML" structure, which are
defined by Oracle Warehouse Management software.

www.nicelabel.com 89

Use this action as a shortcut. It helps you execute Oracle XML files directly and without the need
to parse them using XML filter and mapping the values to variables.

To be able to use this action, the XML file must conform to Oracle XML specifications. For more
information, see section Oracle XML Specifications in NiceLabel Automation user guide.

Use UNC syntax for network resources. For more information, see section Access to Network
Shared Resources in NiceLabel Automation user guide.

How to receive a command file in a trigger and execute it

After a trigger receives the command file and you wish to execute it, complete the following
steps:

 1. In Automation Builder module, on Variables tab, click the Internal Variable button in the
ribbon.

 2. In the drop down list, enable the internal variable named DataFileName. This internal
variable provides path and file name of the file that contains the data received by the
trigger. In this case, its contents is command file. For more information, see topic Internal
Variables in the NiceLabel Automation user guide.

 3. In Actions tab, add the action to execute the command file, such as Run Oracle XML
Command File, Run Oracle XML Command File, or Run SAP AII XML Command File (last two
actions are available in Automation Builder).

For the action Run Command File, select the type of the command file in File type.

 4. Enable the option Variable.

 5. Select the variable named DataFileName from the list of available variables.

About group identifies the selected action.

 l Name: allows you to define a custom action name. This makes actions easily recognizable
on the solution's list of actions. By default, action name is taken from its type.

 l Description: custom information about the action. Enter a description to explain purpose
and role of action in a solution.

 l Action type: read-only information about the selected action type.

File group defines the Oracle XML command file to be used.

 l File name: selected Oracle XML command file. It can either be hard-coded or dynamically
defined using an existing or a newly created variable.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

www.nicelabel.com 90

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

6.4.2.4 Run SAP AII XML Command File

DESIGNER PRODUCT LEVEL INFO: The described features belong to the Automation
Builder module and are available with NiceLabel LMS Enterprise and NiceLabel LMS Pro.

This action executes printing with data from an SAP AII XML-formatted file.

NiceLabel Automation internally supports XML files with the "SAP AII XML" structure, which are
defined by SAP software.

Use this action as a shortcut. it helps you execute SAP AII XML files directly without any need to
parse them using XML filter and map values to variables. To be able to use this action, the XML
file must conform to SAP AII XML specifications. For more information, see section SAP AII XML
Specifications in NiceLabel Automation user guide.

Use UNC syntax for network resources. For more information, see section Access to Network
Shared Resources in NiceLabel Automation user guide.

How to receive a command file in a trigger and execute it

After a trigger receives the command file and you wish to execute it, complete the following
steps:

 1. In Automation Builder module, on Variables tab, click the Internal Variable button in the
ribbon.

www.nicelabel.com 91

 2. In the drop down list, enable the internal variable named DataFileName. This internal
variable provides path and file name of the file that contains the data received by the
trigger. In this case, its contents is command file. For more information, see topic Internal
Variables in the NiceLabel Automation user guide.

 3. In Actions tab, add the action to execute the command file, such as Run SAP AII XML
Command File, Run Oracle XML Command File, or Run SAP AII XML Command File (last two
actions are available in Automation Builder).

For the action Run Command File, select the type of the command file in File type.

 4. Enable the option Variable.

 5. Select the variable named DataFileName from the list of available variables.

About group identifies the selected action.

 l Name: allows you to define a custom action name. This makes actions easily recognizable
on the solution's list of actions. By default, action name is taken from its type.

 l Description: custom information about the action. Enter a description to explain purpose
and role of action in a solution.

 l Action type: read-only information about the selected action type.

File group defines the SAP AII XML command file to be used.

 l File name: selected SAP AII XML command file. It can either be hard-coded or dynam-
ically defined using an existing or a newly created variable.

Optional Parameters group allows defining the label name in case it is not included in the
XML file.

 l Label name: the selected label file that should be used in the command file. It can either
be hard-coded or dynamically defined using an existing or a newly created variable.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

www.nicelabel.com 92

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

6.4.2.5 Run Command File

This action executes commands that are included in a selected command file. All File type
options provide commands that NiceLabel 2017 executes in top-to-bottom order.

Command files usually provide data for a single label, but you can define files of any level of
complexity. For more information, see section Command File Types.

About group identifies the selected action.

 l Name: allows you to define a custom action name. This makes actions easily recognizable
on the solution's list of actions. By default, action name is taken from its type.

 l Description: custom information about the action. Enter a description to explain purpose
and role of action in a solution.

 l Action type: read-only information about the selected action type.

File group defines the type and name of the command file that is going to be executed (JOB,
XML or CSV).

 l File type. Specifies the type of the command file to be executed.

 l File name. Specifies the command file name.

File name can be hard-coded, and the same command file will execute every time. The
option Variable enables a variable file name. Select or create a variable that contains the
path and/or file name if a trigger is executed or an event takes place. Usually, the value to
the variable is assigned by a filter.

Use UNC syntax for network resources. For more information, see section Access to
Network Shared Resources in NiceLabel Automation user guide.

How to receive a command file in a trigger and execute it

After a trigger receives the command file and you wish to execute it, complete the following
steps:

 1. In Automation Builder module, on Variables tab, click the Internal Variable button in the
ribbon.

www.nicelabel.com 93

 2. In the drop down list, enable the internal variable named DataFileName. This internal
variable provides path and file name of the file that contains the data received by the
trigger. In this case, its contents is command file. For more information, see topic Internal
Variables in the NiceLabel Automation user guide.

 3. In Actions tab, add the action to execute the command file, such as Run Command File,
Run Oracle XML Command File, or Run SAP AII XML Command File (last two actions are
available in Automation Builder).

For the action Run Command File, select the type of the command file in File type.

 4. Enable the option Variable.

 5. Select the variable named DataFileName from the list of available variables.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

6.4.2.6 Send Custom Commands

This action executes the entered custom NiceLabel commands.

www.nicelabel.com 94

Always nest this action under the Open Label action. This enables referencing the label to
which the commands apply. For more information, see the topic Using Custom Commands in
NiceLabel Automation user guide.

NOTE: Majority of custom commands is available with individual actions, so in most cases,
custom commands are not required.

NOTE: Send Custom Commands action can be used to end the Session printing mode. This
mode acts as a printing optimization mode that prints all labels in a loop using a single print
job file. To end session printing, nest the Send Custom Commands action under the For
Loop action and use the SESSIONEND command. For details, see sections Session Printing
and Using Custom Commands inNiceLabel Automation user guide.

About group identifies the selected action.

 l Name: allows you to define a custom action name. This makes actions easily recognizable
on the solution's list of actions. By default, action name is taken from its type.

 l Description: custom information about the action. Enter a description to explain purpose
and role of action in a solution.

 l Action type: read-only information about the selected action type.

Script editor offers the following features:

 l Insert data source: inserts an existing or newly created variable into the script.

 l Script editor: opens the editor which makes scripting easier and more efficient.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

www.nicelabel.com 95

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

6.4.3 Printer
6.4.3.1 Set Printer

This action specifies the name of the printer to be used for printing the active label.

NOTE: This action overrides the printer selected in the label properties.

This action is useful when printing an identical label on multiple printers. Always nest this action
under the Open Label action to provide the label with the reference for the preferred printer.

This action reads the default settings (such as speed and darkness) from the selected printer
driver and applies them to the label. If you don't use the Set Printer action, the label gets
printed using the printer defined in the label template.

WARNING: Pay attention when switching the printers, e.g. from Zebra to SATO, or even from
one printer model to another model of the same brand. Printer settings might not be
compatible and the label printouts might not appear identical. Also, label design
optimizations for original printer, such as internal counters, and internal fonts, might not be
available on the newly selected printer.

About group identifies the selected action.

 l Name: allows you to define a custom action name. This makes actions easily recognizable
on the solution's list of actions. By default, action name is taken from its type.

 l Description: custom information about the action. Enter a description to explain purpose
and role of action in a solution.

 l Action type: read-only information about the selected action type.

Printer group specifies the printer name to be used for the current print job.

 l Printer name: select it from the list of locally installed printer drivers, or manually enter a
printer name. Select Data source to dynamically select the printer using a variable. If
enabled, select or create a variable that contains the printer name which is used if the
action is run.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

www.nicelabel.com 96

Execution options are:

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

6.4.3.2 Set Print Job Name

This action specifies the name of the print job file as it appears in the Windows Spooler. A
default print job name is the name of the used label file. This action overrides it.

NOTE: Always nest the action under the Open Label action, so it applies to the adequate
label file.

About group identifies the selected action.

 l Name: allows you to define a custom action name. This makes actions easily recognizable
on the solution's list of actions. By default, action name is taken from its type.

 l Description: custom information about the action. Enter a description to explain purpose
and role of action in a solution.

 l Action type: read-only information about the selected action type.

Print Job group defines the print job name.

 l Name: sets the print job name. It can be hard-coded, and the same name is used for each
print action. Variable enables a variable file name. Select or create a variable that

www.nicelabel.com 97

contains the path and/or file name if the event happens or a trigger fires.

NOTE: In Automation Builder module, the variable value is usually assigned by a filter.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

6.4.3.3 Redirect Printing To Fi le

This action diverts the print job to a file. Instead of sending the created print file to a printer port
as defined in the printer driver, the printout is redirected to a file. You can append data to an
existing file, or overwrite it.

This action enables you to capture printer commands in a separate file.

The action instructs Automation Builder module to redirect printing – as a result, the labels are
not going to be printed. Make sure the action is followed by the Print Label action.

NOTE: NiceLabel Automation runs as service under defined Windows user account. Make
sure this user account has privileges accessing the specified folder with read/write

www.nicelabel.com 98

permissions. For more information, see section Access to Network Shared Resources in the
NiceLabel Automation user guide.

Redirect Printing to File action is useful for printing several different labels (.NLBL files) to
a network printer while retaining the correct order of labels. If multiple .NLBL files are
printed from the same trigger, Automation Builder sends each label to the printer in a
separate print job, even if the target printer is the same for both labels. If a network printer
is used, job of another user can be inserted between two jobs the trigger must send
together. Using this action, you can append print data into the same file and send its
contents to the printer using the Send Data to Printer action.

About group identifies the selected action.

 l Name: allows you to define a custom action name. This makes actions easily recognizable
on the solution's list of actions. By default, action name is taken from its type.

 l Description: custom information about the action. Enter a description to explain purpose
and role of action in a solution.

 l Action type: read-only information about the selected action type.

File group of settings defines how the file selection for redirecting is done.

 l File name:specifies the file name. It can either be hard-coded or dynamically defined
using an existing or a newly created variable.

Use UNC syntax for network resources. For more information, see section Access to
Network Shared Resources in NiceLabel Automation user guide.

NOTE: When using this action, make sure your user account has sufficient privileges for
accessing the specified folder with read/write permissions.

File write mode group of settings selects how the file is treated in case of repeated redirects.

 l Overwrite the file: if the specified file already exists on the disk, it is going to be
overwritten.

 l Append data to the file: the job file is added to the existing data in the provided file.

Persistence group controls the continuity of the redirect action. It defines the number of Print
Label actions that are affected by the Redirect Printing to File action.

 l Apply to next print action: specifies for the print redirect to be applicable to the next
Print Label action only (single event).

 l Apply to all subsequent print actions: specifies for the print redirect to be applicable to
all Print Label action defined after the current Redirect Printing to File action.

NOTE: The action only redirects printing. Make sure it is followed by the Print Label action.

Action Execution and Error Handling

www.nicelabel.com 99

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

6.4.3.4 Set Print Parameter

This action allows you to fine tune the parameters that relate to the printer driver. These
include parameters such as speed and darkness for label printers, or paper tray for laser
printers.

Printer settings are applied to the current printout only and are not remembered during the
upcoming event.

If you use Set Printer action to change the printer name, make sure the Set Print
Parameter action is used right after. Before you can apply the DEVMODE structure to the
printer driver, first load the default driver settings. This is done by the Set Printer action.
The DEVMODE is only compatible with the DEwe

About group identifies the selected action.

 l Name: allows you to define a custom action name. This makes actions easily recognizable
on the solution's list of actions. By default, action name is taken from its type.

www.nicelabel.com 100

 l Description: custom information about the action. Enter a description to explain purpose
and role of action in a solution.

 l Action type: read-only information about the selected action type.

Print Parameters group allows action fine tuning before printing.

 l Paper bin: name of the paper bin that contains the label media. This option is usually
used with laser and ink jet printers with multiple paper bins. The provided name of the
paper bin must match the name of the bin in the printer driver. Check the printer driver
properties for more details.

 l Print speed: defines printing speed. This setting overrides the setting defined with label.
The provided value must be in the range of accepted values.

EXAMPLE: The f irs t pr int er model a ccept s a ra nge of v a lues f rom 0 t o 30, while t he s econd
pr int er model a ccept s v a lues f rom -15 t o 15. For more inf orma t ion, s ee pr int er dr iv er
propert ies .

 l Darkness: defines the darkness of the printed objects on the paper and overrides set-
ting from the label. The provided value must be in range of accepted values.

 l Print offset X: applies horizontal offset. The label printout will be repositioned by the spe-
cified number of dots in the horizontal direction. Negative offset can be defined.

 l Print offset Y: applies vertical offset. The label printout will be repositioned by the spe-
cified number of dots in the vertical direction. Negative offset can be defined.

TIP: All print parameters can either be hard-coded or dynamically defined using an existing or
a newly created variable.

Advanced group customizes the printer settings that are sent along with the print job.

Printer settings, such as printing speed, darkness, media type, offsets and similar, can be
defined as follows:

 l Defined in a label

 l Recalled from a printer driver

 l Recalled from a printer at print time

www.nicelabel.com 101

The supported methods depend on the printer driver and its capabilities. Printing mode (recall
settings from label or driver or printer) is configurable in the label design. You might need to
apply these printer settings at print time – they can vary with each printout.

EXAMPLE: A s ingle la bel s hould be pr int ed us ing a v a r iet y of pr int ers , but ea ch pr int er requires
s light ly dif f erent pa ra met ers . The pr int ers f rom v a r ious ma nuf a ct urers don' t us e t he s a me v a lues
t o s et t he pr int ing s peed or t empera t ure. Addit iona lly , s ome pr int ers require v ert ica l or hor izont a l
of f s et t o pr int t he la bel t o t he correct pos it ion. D ur ing t he t es t ing pha s e, y ou ca n det ermine t he
opt ima l s et t ings f or ev ery pr int er y ou int end t o us e a nd a pply t hem t o a s ingle la bel t empla t e jus t
bef ore pr int ing. This a ct ion will a pply t he corres ponding s et t ings t o ea ch def ined pr int er .

This action expects to receive the printer settings in a DEVMODE structure. This is a Windows
standard data structure with information about initialization and environment of a printer.

Printer settings option applies custom printer settings. The following inputs are available:

 l Fixed-data Base64-encoded DEVMODE. In this case, provide the printer's DEVMODE
encoded in Base64-encoded string directly into the edit field. If executed, the action con-
verts the Base64-encoded data back into binary form.

 l Variable-data Base64-encoded DEVMODE. In this case, the selected data source must
contain the Base64-encoded DEVMODE. Enable Data source and select the appropriate
variable from the list. If executed, the action converts the Base64-encoded data back into
the binary form.

 l Variable-data binary DEVMODE. In this case, the selected variable must contain the
DEVMODE in its native binary form. Enable Data source and select the appropriate vari-
able from the list. If executed, the action uses the DEVMODE as-is, without any con-
version.

NOTE: If the variable does not provide a binary DEVMODE, make sure that the
selected variable is defined as a binary variable in the configuration.

NOTE: Make sure the Set Printer action is defined in front of this action.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

www.nicelabel.com 102

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

6.4.3.5 Redirect Printing To PDF

This action diverts the print job to a PDF document. The created PDF document retains the
exact label dimensions as defined during label design process. The rendering quality of
graphics in the PDF matches the resolution of the target printer and desired printout size.

Print stream data can be appended to an existing file, or it may overwrite it.

The action instructs NiceLabel 2017 to redirect printing – as a result, the labels are not printed.
Make sure the action is followed by the Print Label action.

NOTE: NiceLabel Automation module runs as service under defined Windows user account.
Make sure this user account has privileges accessing the specified folder with read/write
permissions. For more information, see section Access to Network Shared Resources in
NiceLabel Automation user guide.

About group identifies the selected action.

 l Name: allows you to define a custom action name. This makes actions easily recognizable
on the solution's list of actions. By default, action name is taken from its type.

 l Description: custom information about the action. Enter a description to explain purpose
and role of action in a solution.

 l Action type: read-only information about the selected action type.

File group defines the redirect file.

 l File name: specifies the file name for diverting the print job to. If hard-coded, the printing
is redirected to the specified file every time. To define it dynamically, use an existing or
create a new variable.

 l Overwrite the file: if the specified file already exists on the disk, it is going to be
overwritten (selected by default).

www.nicelabel.com 103

 l Append data to the file: the job file is appended to the existing data in the provided file
(deselected by default).

Persistence group allows controlling the persistence of the redirect action. Define the number
of Print Label actions that are affected by the Redirect Printing to File action.

 l Apply to next print action: specifies for the print redirect to be applicable to the next
Print Label action only (single event).

 l Apply to all subsequent print actions: specifies for the print redirect to be applicable to
all Print Label action defined after the current Redirect Printing to File action.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

6.4.3.6 Printer Status

This action communicates with the printer to acquire its real-time state, and contacts the
Windows Spooler for additional information about the printer and its jobs.

As a result, the information about errors, spooler status, number of jobs in the spooler is
collected. This uncovers potential errors and makes them easy to identify.

www.nicelabel.com 104

Possible use case scenarios. (1) Verifying the printer status before printing. If the printer is
in error state, you print the label to a backup printer. (2) Counting the number of jobs waiting
in a spooler of main printer. If there are too many, you will print label to alternative printer.
(3) You will verify the printer status before printing. If the printer is in error state, you will not
print labels, but report the error back to the main system using any of the outbound actions,
such as Send Data to TCP/IP Port, HTTP Request, Execute SQL Statement, Web Service, or
as the trigger response.

Live Printer Status Prerequisites

To make live printer status monitoring possible, follow these instructions:

 l Use the NiceLabel Printer Driver to receive detailed status information. If using any other
printer driver, you can only monitor the parameters retrieved from the Windows Spooler.

 l The printer must be capable of reporting its live status. For the printer models supporting
bidirectional communication see NiceLabel Download web page.

 l Printer must be connected to an interface with support for bidirectional communication.

 l Bidirectional support must be enabled in Control Panel > Hardware and Sound >
Devices and Printers > driver > Printer Properties > Ports tab > Enable bid-
irectional support.

 l If using a network-connected label printer, make sure you are using Advanced
TCP/IP Port, not Standard TCP/IP Port. For more information, see Knowledge Base art-
icle KB189.

About group identifies the selected action.

 l Name: allows you to define a custom action name. This makes actions easily recognizable
on the solution's list of actions. By default, action name is taken from its type.

 l Description: custom information about the action. Enter a description to explain purpose
and role of action in a solution.

 l Action type: read-only information about the selected action type.

Printer group selects the printer.

 l Printer name: specifies the printer name to be used for the current print job.

You can select a printer from the list of locally installed printer drivers, or you can enter
any printer name. Data source enables variable printer name. When enabled, select or
create a variable that contains the printer name when a trigger is executed or an event
takes place. Usually, the variable value is assigned by a filter.

Data Mapping group sets the parameters that are returned as a result of the Printer Status
action.

www.nicelabel.com 105

http://www.nicelabel.com/downloads/printer-drivers
http://kb.nicelabel.com/index.php?t=faq&id=189
http://kb.nicelabel.com/index.php?t=faq&id=189

WARNING: Most of the following parameters are only supported with NiceLabelprinter
driver. If you are using any other printer driver, you can use only the spooler-related
parameters.

 l Printer status: specifies the printer live status formatted as a string.

If the printer reports multiple states, all states are merged into a single string, delimited
by comma ",". If there are no reported printer issues, this field is empty. Printer status
might be set to Offline, Out of labels or Ribbon near end. Since there is no standardized
reporting protocol, each printer vendor uses proprietary status messages.

 l Printer error: boolean (true/false) value of the printer error status.

 l Printer offline: boolean (true/false) value of the printer offline status.

 l Driver paused: boolean (true/false) value of the driver pause status.

 l NiceLabel driver: specifies boolean (true/false) value of the printer driver status.
Provides information if the selected driver is a NiceLabel driver.

 l Spooler status: specifies the spooler status in a string form – as reported by the Win-
dows system. The spooler can simultaneously report several statuses. In this case, the
statuses are merged using comma ",".

 l Spooler status ID: specifies spooler status formatted as a number – as reported by the
Windows system. The spooler can simultaneously report several statuses. In this case,
the returned status IDs contains all IDs as flags. For example, value 5 represents status
IDs 4 and 1, which translates to "Printer is in error, Printer is paused". Refer to the table
below.

TIP: The action returns a decimal value, the values in the table below are in hex format,
so you will have to do the conversion before parsing the response.

 l Table of spooler status IDs and matching descriptions

Spooler status ID (in hex) Spooler status descrip-
tion

0 No status.
1 Printer is paused.
2 Printer is printing.
4 Printer is in error.
8 Printer is not available.
10 Printer is out of paper.
20 Manual feed required.
40 Printer has a problem with

paper.
80 Printer is offline.

www.nicelabel.com 106

100 Active Input/Output state.
200 Printer is busy.
400 Paper jam.
800 Output bin is full.
2000 Printer is waiting.
4000 Printer is processing.
10000 Printer is warming up.
20000 Toner/Ink level is low.
40000 No toner left in the printer.
80000 Current page can not be

printed.
100000 User intervention is

required.
200000 Printer is out of memory.
400000 Door is open.
800000 Unknown error.
1000000 Printer is in power save

mode.

 l Number of jobs in the spooler: specifies the number of jobs that are in the spooler for
the selected printer.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n

www.nicelabel.com 107

order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

6.4.3.7 Store Label To Printer

This action saves label template in the printer memory. The action is a vital part of Store/Recall
printing mode, using which you first store a label template into the printer's memory and later
recall it. The non-changeable parts of label design are already stored in the printer, so you only
have to provide the data for variable label objects at print time. For more information, see
section Using Store/Recall Printing Mode in NiceLabel Automation user guide.

The required label data transfer time is greatly minimized as there is less information to be
sent. This action is commonly used for stand-alone printing scenarios, where the label is
stored to the printer or applicator in the production line and later recalled by some software
or hardware trigger, such as barcode scanner or photocell.

About group identifies the selected action.

 l Name: allows you to define a custom action name. This makes actions easily recognizable
on the solution's list of actions. By default, action name is taken from its type.

 l Description: custom information about the action. Enter a description to explain purpose
and role of action in a solution.

 l Action type: read-only information about the selected action type.

Advanced options for storing label to printer group allows you select a label and the
preferred storing variant.

 l Label name to be used on the printer: specifies the name to be used for storing the
label template in printer memory. Enter the name manually or enable Data source to
define the name dynamically using an existing or newly created variable.

WARNING: When storing the label to a printer, it is recommended to leave the label
name under the advanced options empty. This prevents label name conflicts during
the recall label process.

 l Store variant: defines printer memory location for stored label templates. Enter the loc-
ation manually or enable Data source to define the name dynamically using an existing or
newly created variable.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

www.nicelabel.com 108

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

6.4.4 Variables
6.4.4.1 Set Variable

This action assigns a new value to the selected variable.

Variables usually obtain their values using Use Data Filter action (available in Automation Builder)
which extracts fields from the received data and maps them to variables. You might also need to
set the variable values by yourself, usually for troubleshooting purposes. In Automation Builder,
the variable values are not remembered between multiple triggers, but are kept while the same
trigger is being processed.

About group identifies the selected action.

 l Name: allows you to define a custom action name. This makes actions easily recognizable
on the solution's list of actions. By default, action name is taken from its type.

 l Description: custom information about the action. Enter a description to explain purpose
and role of action in a solution.

 l Action type: read-only information about the selected action type.

Variable group defines the variable name and its value.

 l Name: name of variable that should store the value changed.

 l Value: value to be set to a variable. It can either be manually or dynamically defined using
an existing or a newly created variable.

www.nicelabel.com 109

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

6.4.4.2 Save Variable Data

This action saves values of a single or multiple variables in an associated data file.

In NiceLabel Automation module, this action allows data exchange between triggers. To read
the data back into the trigger, use action Load Variable Data.

TIP: The values are saved in a CSV file with the first line containing variable names. If the
variables contain multi-line values, the newline characters (CR/LF) are encoded as \n\r.

About group identifies the selected action.

 l Name: allows you to define a custom action name. This makes actions easily recognizable
on the solution's list of actions. By default, action name is taken from its type.

 l Description: custom information about the action. Enter a description to explain purpose
and role of action in a solution.

 l Action type: read-only information about the selected action type.

Settings group defines the file name.

www.nicelabel.com 110

 l File name: data file to save the variable data to. If the name is hard-coded, values are
saved into the same data file each time.

Use UNC syntax for network resources. For more information, see section Access to
Network Shared Resources in NiceLabel Automation user guide.

If file exists group offers additional options to save the values.

 l Overwrite the file: overwrites the existing data with new variable data. The old content
is lost.

 l Append data to the file: appends the variable values to the existing data files.

File Structure group defines the CSV variable data file parameters:

 l Delimiter: specifies the delimiter type (tab, semicolon, comma or custom character).
Delimiter is a character that separates the stored variable values.

 l Text qualifier: specifies the character that qualifies the stored content as text.

 l File encoding: specifies character encoding type to be used in the data file. Auto defines
the encoding automatically. If required, the preferred encoding type can be selected from
the drop-down list.

TIP: UTF-8 makes a good default selection.

 l Add names of variable in the first row: places the variable name in the first row of the
file.

Variables group defines the variables whose value should be read from the data file. Values of
the existing variables are overwritten with values from the file.

 l All variables: variable data of all variables from the data file is read.

 l Selected variables: variable data of listed variables is red from the data file.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

www.nicelabel.com 111

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

6.4.4.3 Load Variable Data

This action loads values of a single or multiple variables from the associated data file as saved by
the action Save Variable Data. Use this action to exchange the data between triggers. You can
load a particular variable or all variables that are stored in the data file.

About group identifies the selected action.

 l Name: allows you to define a custom action name. This makes actions easily recognizable
on the solution's list of actions. By default, action name is taken from its type.

 l Description: custom information about the action. Enter a description to explain purpose
and role of action in a solution.

 l Action type: read-only information about the selected action type.

Settings group defines the file name.

 l File name: specifies the file for the variable data to be loaded from. If the name is hard-
coded, the values are loaded from the same file each time.

Use UNC syntax for network resources. For more information, see section Access to
Network Shared Resources in NiceLabel Automation user guide.

File Structure group settings must reflect the structure of the saved file from the Save Variable
Data action.

 l Delimiter: specifies delimiter type (tab, semicolon, comma or custom character). Delim-
iter is a character that separates the values.

 l Text qualifier: specifies the character that qualifies content as text.

 l File encoding: specifies the character encoding type used in the data file. Auto defines
the encoding automatically. If needed, select the preferred encoding type from the drop-
down list.

TIP: UTF-8 makes a good default selection.

Variables group defines the variables whose values should be loaded from the data file.

www.nicelabel.com 112

 l All variables: specifies all defined variables in the data file to be read.

 l Selected variables: specifies selection of individual variables to be read from the data
file.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

6.4.4.4 String Manipulation

This action defines how the values of selected variables should be formatted.

The most popular string manipulation actions are: delete leading and trailing spaces, search and
replace characters, and delete opening and closing quotes.

This feature is often required is a trigger receives an unstructured data file or legacy data. in
such cases, the data needs to be parsed using the Unstructured Data filter. String Manipulation
action allows you to fine-tune the data value.

NOTE: If this action doesn't provide enough string manipulation power for a particular case,
use Execute Script action instead to manipulate your data using Visual Basic Script or
Python scripts.

www.nicelabel.com 113

About group identifies the selected action.

 l Name: allows you to define a custom action name. This makes actions easily recognizable
on the solution's list of actions. By default, action name is taken from its type.

 l Description: custom information about the action. Enter a description to explain purpose
and role of action in a solution.

 l Action type: read-only information about the selected action type.

Variables group defines the variables whose values need to be formatted.

 l All variables: specifies all the defined variables in a data file to be formatted.

 l Selected variables: specifies a selection of variables to be formatted from the data file.

Format Text group defines string manipulation functions that apply to the selected variables or
fields. Multiple functions can be used. The functions apply in the same order as seen in the
editor – from top to bottom.

 l Delete spaces at the beginning: deletes all space characters (decimal ASCII code 32)
from the beginning of the string.

 l Delete spaces at the end: deletes all space characters (decimal ASCII value 32) from the
end of a string.

 l Delete opening closing characters: deletes the first occurrence of the selected open-
ing and closing characters that is found in the string.

EXAMPLE: If us ing "{" as opening character and "}" as c los ing character , the input
s tr ing {{selection}} is conver ted to {selection}.

 l Search and replace: executes standard search and replace function upon the provided
values for find what and replace with. Regular expressions are supported.

NOTE: Several implementations of regular expressions are present. NiceLabel 2017
uses .NET Framework syntax for the regular expressions. For more information, see
Knowledge Base article KB250.

www.nicelabel.com 114

http://kb.nicelabel.com/index.php?t=faq&id=250

 l Replace non printable characters with space: replaces all control characters in the
string with "space" character (decimal ASCII code 32). Non printable characters are char-
acters with decimal ASCII values between 0–31 and 127–159.

 l Delete non printable characters: deletes all control characters in the string. Non print-
able characters are characters with decimal ASCII values between 0–31 and 127–159.

 l Decode special characters: decodes the characters (or control codes) that are not avail-
able on the keyboard, such as Carriage Return or Line Feed. NiceLabel 2017 uses a nota-
tion to encode such characters in human-readable form, such as <CR> for Carriage Return
and <LF> for Line Feed. This option converts special characters from NiceLabel syntax
into actual binary characters.

EXAMPLE: When you receive the data "<CR><LF>", [[[Undef ined var iab le
Var iab les .Edition-Des igner V7]]] uses it as p lain s tr ing of 8 characters . You wil l
have to enable this option to interpret and use the received data as two b inary
characters CR (Carr iage Return – ASCII code 13) and LF (Line Feed – ASCII code
10).

 l Search and delete everything before: finds the provided string and deletes all char-
acters in front of the defined string. The string can also be deleted.

 l Search and delete everything after: finds the provided string and deletes all characters
behind the defined string. The string can also be deleted.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

www.nicelabel.com 115

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

6.4.5 Batch Printing
6.4.5.1 For Loop

DESIGNER PRODUCT LEVEL INFO: Here described product feature is available in
NiceLabel LMS Enterprise.

This action executes all of the subordinate (nested) actions multiple times. All nested actions
are executed in a loop for as many times as defined by the difference between start value and
end value.

NOTE: For Loop action starts session printing mode – a printing optimization mode that
prints all labels in a loop using a single print job file. For details, see Session Printing section
in NiceLabel Automation user guide.

About group identifies the selected action.

 l Name: allows you to define a custom action name. This makes actions easily recognizable
on the solution's list of actions. By default, action name is taken from its type.

 l Description: custom information about the action. Enter a description to explain purpose
and role of action in a solution.

 l Action type: read-only information about the selected action type.

Loop Settings group includes the following options:

 l Start value: loop starting point reference. Select Data source to define the start value
dynamically using a variable value. Select or create a variable containing a numeric value
for start.

 l End value: ending point reference. Select Data source to define the start value

www.nicelabel.com 116

dynamically using a variable value. Select or create a variable containing a numeric value
for start.

TIP: Negative values are permitted for Start value and End value.

 l Save loop value to a variable: saves the current loop step value in an existing or a newly
created variable. The loop step value is allowed to contain any value between start and
end value. Save the value in order to reuse it in another action to identify the current
iteration.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

6.4.5.2 Use Data Fi lter

This action executes filter rules on the input data source. As a result, the action extracts fields
from input data and maps their values to the linked variables.

Use data filter action executes the selected filter and assigns the variables with respective
values.

www.nicelabel.com 117

 l Elements on lower level. The action can create sub-level elements, identified with "for
each line" or "for each data block in ...". When you see those, the filter will extract the
data not on the document level (with hard-coded field placement), but relatively from the
sub areas that contain repeatable sections. In this case make sure that you position your
actions below such elements. You have to nest the action under such elements.

 l Mapping variables to fields. The mapping between trigger variables and filter fields is
defined either manually, or is automated, dependent on how the filter is configured. If you
have manually defined fields in the filter, you also have to manually map fields to the cor-
responding variable.

It's a good practice to define fields using the same names as are names of the label
variables. In this case the button Auto map will map matching names automatically.

 l Testing the execution of filter. When the mapping of variables to fields is done, you can
test the execution of the filter. The result will be shown on-screen in table. Number of
lines in the table represent the number times actions will execute in the selected level.
The column names represent the variable names. The cells contain values as assigned to
the respective variable by the filter. The default preview file name is inherited from the fil-
ter definition, you can execute filter on any other file.

For more information, see sections Understanding Filters and topic Examples in NiceLabel
Automation user guide.

Filter group allows you to select which filter should be used.

 l Name: specifies the name of the filter you want to apply. It can either be hard-coded or
dynamically defined using an existing or a newly created variable. The list contains all fil-
ters defined in the current configuration. You can use the bottom three items in the list to
create a new filter.

NOTE: Selecting another filter removes all actions which are nested under this action. If you
want to keep the currently defined actions, move them outside of the Use Data Filter action.
If actions are accidentally lost, Undo your action and revert to the previous configuration.

Data Source group allows you to define the contents you want to send to the printer.

www.nicelabel.com 118

 l Use data received by the trigger: selects the trigger-received data to be used in a filter.
In this case, the action uses the original data received by the trigger and execute the fil-
ter rules upon it.

EXAMPLE: I f y ou us e a f ile t r igger , t he da t a repres ent s cont ent of t he monit ored f ile. I f y ou us e a
da t a ba s e t r igger , t he da t a is a da t a s et ret urned f rom t he da t a ba s e. I f y ou us e a TC P / I P t r igger , t he
da t a is ra w cont ent receiv ed v ia s ock et .

 l File name: defines path and file name of the file which contains the data upon which the
filter rules will be executed. The content of the specified file is used in a filter. The option
Data source enables the variable file name. You must select or create a variable that con-
tains the path and/or file name.

 l Custom: defines custom content to be parsed by the filter. You may use fixed content,
mix of fixed and variable content, or variable content alone. To insert variable content,
click the button with arrow to the right of data area and insert a variable from the list. For
more information, see section Using Compound Values in NiceLabel Automation User
Guide.

Data Preview field provides an overview of the filter execution process after the content of the
previewed file name is read and the selected filter is applied to it.

The rules in the filter extract fields. The table displays the result of the extraction. Each line in
the table represents data for a single label. Each column represents a variable.

To be able to observe result, configure the mapping of fields with matching variables.
Depending on the filter definition, you could map the variables to fields manually, or have it done
automatically.

 l Preview file name: specifies the file that contains the data that is going to be parsed
through the filter. The preview file is copied from the filter definition. If you change the
preview file name, the new file name is saved.

 l Open: selects another file upon which you want to execute filter rules.

 l Refresh: re-runs filter rules upon the contents of the preview file name. The Data Pre-
view field gets updated with the result.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

www.nicelabel.com 119

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

6.4.5.3 For Every Record

This action executes subordinate nested actions for multiple times. All of the nested actions are
executed in a loop for as many times as there are records in the form table with a connected
database.

About group identifies the selected action.

 l Name: allows you to define a custom action name. This makes actions easily recognizable
on the solution's list of actions. By default, action name is taken from its type.

 l Description: custom information about the action. Enter a description to explain purpose
and role of action in a solution.

 l Action type: read-only information about the selected action type.

Settings group selects the records.

 l Form table: form table that contains records for which an action should repeat.

 l Use all records: repeats an action for all records in a defined table.

 l Use selected record: repeats an action for the selected records only.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

www.nicelabel.com 120

Error handling options are:

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

6.4.6 Data & Connectivity
6.4.6.1 Open Document/Program

This action provides an interface with an external application and opens it using a command-
line.

External applications can execute additional processing and provide result back to the
NiceLabel 2017. This action allows it to bind with any 3rd party software that can execute some
additional data processing, or acquire data. External software can provide data response by
saving it to file, from where you can read it into variables.

You can feed the value of variable(s) to the program by listing them in the command-line in
square brackets.

C:\Applications\Processing.exe [variable1] [variable2]

About group identifies the selected action.

 l Name: allows you to define a custom action name. This makes actions easily recognizable
on the solution's list of actions. By default, action name is taken from its type.

 l Description: custom information about the action. Enter a description to explain purpose
and role of action in a solution.

 l Action type: read-only information about the selected action type.

File group defines the file to be opened.

www.nicelabel.com 121

 l File name: location and file name of the file or application to be opened.

The selected file name can be hard-coded, and the same file is going to be used every
time. If only a file name without path is defined, the folder with NiceLabel Automation
configuration file (.MISX) is used. You can use a relative reference to the file name, in
which the folder with .MISX file is used as the root folder.

Data source: enables variable file name. Select a variable that contains the path and/or
file name or combine several variables that create the file name. For more information
see section Using Compound Values in NiceLabel Automation User Guide.

NOTE: Use UNC syntax for network resources. For more information, see topic Access
to Network Shared Resources in NiceLabel Automation User Guide.

Execution Options group sets program opening details.

 l Hide window: renders the window of the opened program invisible. Because NiceLabel
2017 is run as a service application within its own session, it cannot interact with
desktop, even if it runs with the privileges of the currently logged user. Microsoft has pre-
vented this interaction in Windows Vista and newer operating systems for security reas-
ons.

 l Wait for completion: specifies for action execution to wait for this action to be com-
pleted before continuing with the next scheduled action.

TIP: Enable this option if the action that follows depends on the result of the external
application.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

www.nicelabel.com 122

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

6.4.6.2 Save Data To Fi le

This action saves variable value or other data streams (such as binary data) in a selected file.
The NiceLabel Automation service must have write access to the defined folder.

File group defines the file to be opened.

 l File name: location of the file to be opened within this action.

Path and file name can be hard-coded, and the same file is going to be used every time. If
only a file name without path is defined, the folder with NiceLabel Automation
configuration file (.MISX) is used. You can use a relative reference to the file name, in
which the folder with .MISX file is used as the root folder.

Data source: enables variable file name. Select a variable that contains the path and/or
file name or combine several variables that create the file name. For more information,
see section Using Compound Values in NiceLabel Automation User Guide.

If file exists group handles options in case of an already existing file.

 l Overwrite the file: overwrites existing data with new data. The old content is lost.

 l Append data to the file: appends variable values to the existing data files.

Content group defines which data is going to be written in the specified file.

 l Use data received by the trigger: original data as received by the trigger is going to be
saved in the file. Effectively, this option makes a copy of the incoming data.

 l Custom: saves content as provided in the text area. Fixed values, variable values and
special characters are permitted. To enter variables and special characters, click the
arrow button to the right of the text area. For more information, see section Combining
Values in an Object in NiceLabel Automation User Guide.

 l Encoding: encoding type for the sent data. Auto defines the encoding automatically. If
needed, select the preferred encoding type from the drop-down list.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

www.nicelabel.com 123

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

6.4.6.3 Read Data From File

This action reads content of the provided file name and saves it in a variable. Content of any file
type, including binary data can be read.

Usually, Automation Builder module receives data for label printing using a trigger. E.g. if a file
trigger is used, the content of trigger file is automatically read and can be parsed by filters.
However, you might want to bypass filters to obtain some external data. Once you execute this
action and have the data stored in a variable, you can use any of the available actions to use the
data.

This action is useful:

 l If you must combine data received by the trigger with data stored in a file.

WARNING: If you load data from binary files (such as bitmap image or print file), make sure the
variable to store the read content is defined as a binary variable.

 l When you want to exchange data between triggers. One triggers prepares data and
saves it to file (using the Save Data to File action), the other trigger reads the data.

File group defines the file to read the content from.

www.nicelabel.com 124

 l File name: location of the file to be read within this action.

Path and file name can be hard-coded, and the same file is going to be used every time. If
only a file name without path is defined, the folder with NiceLabel Automation
configuration file (.MISX) is used. You can use a relative reference to the file name, in
which the folder with .MISX file is used as the root folder.

Data source: enables variable file name. Select a variable that contains the path and/or
file name or combine several variables that create the file name. For more information
see section Using Compound Values in NiceLabel Automation User Guide.

NOTE: Use UNC syntax for network resources. For more information, see section
Access to Network Shared Resources in NiceLabel Automation User Guide.

Content group sets file content related details.

 l Variable: variable that stores the file content. At least one variable (existing or newly cre-
ated) should be defined.

 l Encoding: encoding type for the sent data. Auto defines the encoding automatically. If
needed, select the preferred encoding type from the drop-down list.

NOTE: Encoding cannot be selected if the data is read from a binary variable. In this
case, the variable contains the data as-is.

Retry on Failure group defines how the action execution should continue if the specified file
becomes inaccessible.

TIP: Automation Builder module might become unable to access the file, because it is locked
by another application. If an application still writes data to the selected file and keeps it
locked in exclusive mode, no other application can open it at the same time, not even for
reading. Other possible causes for action retries are: file doesn't exist (yet), folder does not
exist (yet), or the service user doesn't have the privileges to access the file.

 l Retry attempts: defines the number of retry attempts for accessing the file. If the value is
set to 0, no retries are made.

 l Retry interval: time interval between individual retries in milliseconds.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

www.nicelabel.com 125

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

6.4.6.4 Delete Fi le

DESIGNER PRODUCT LEVEL INFO: The described feature is available in NiceLabel
LMS Enterprise and NiceLabel LMS Pro.

This action deletes a selected file from a drive.

NiceLabel Automation module runs as service under a defined Windows user account. Make sure
that account has the permissions to delete the file in a specified folder.

About group identifies the selected action.

 l Name: allows you to define a custom action name. This makes actions easily recognizable
on the solution's list of actions. By default, action name is taken from its type.

 l Description: custom information about the action. Enter a description to explain purpose
and role of action in a solution.

 l Action type: read-only information about the selected action type.

File group sets the file related details.

 l File name: the name of the file to be deleted. File name can be hard-coded. Data source
dynamically defines the File name using an existing or newly created variable.

Path and file name can be hard-coded, and the same file is going to be used every time. If
only a file name without path is defined, the folder with NiceLabel Automation
configuration file (.MISX) is used. You can use a relative reference to the file name, in
which the folder with .MISX file is used as the root folder.

www.nicelabel.com 126

Data source option enables variable file name. Select or create a variable that contains
the path and/or file name or combine several variables that create the file name. For more
information see section Using Compound Values in NiceLabel Automation User Guide.

NOTE: Use UNC syntax for network resources. For more information, see section
Access to Network Shared Resources in NiceLabel Automation User Guide.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

6.4.6.5 Execute SQL Statement

This action sends SQL commands a connected SQL server and collects results. Use commands
SELECT, INSERT, UPDATE, and DELETE.

Use Execute SQL Statement action to achieve these two goals:

 l Obtain additional data from a database: In Automation Builder module, a trigger receives
data for label printing, but not all of the required values. For example, a trigger receives
values for Product ID and Description, but not for Price. We have to look up the
value for Price in the SQL database.

www.nicelabel.com 127

SQL code example:

SELECT Price FROM Products
WHERE ID = :[Product ID]

The ID is field in the database, Product ID is a variable defined in the trigger.

 l Update or delete records in a database: After a label is printed, update the database
record and send a signal to the system that the particular record has already been pro-
cessed.

SQL code example:

Set the table field AlreadyPrinted value to True for the currently processed
record.

UPDATE Products
SET AlreadyPrinted = True
WHERE ID = :[Product ID]

Or delete the current record from a database, because it's not needed anymore.

DELETE FROM Products
WHERE ID = :[Product ID]

The ID is field in the database, Product ID is a variable defined in the trigger.

NOTE: To use value of a variable inside an SQL statement, you have to insert colon (:) in front
of its name. This signals that a variable names follow.

About group identifies the selected action.

 l Name: allows you to define a custom action name. This makes actions easily recognizable
on the solution's list of actions. By default, action name is taken from its type.

 l Description: custom information about the action. Enter a description to explain purpose
and role of action in a solution.

 l Action type: read-only information about the selected action type.

Database Connection group defines the database connection that is used for the statement.

TIP: Before you can send an SQL sentence to a database, set up the database connection.
Click Define button and follow the on-screen instructions. You can connect to a data source
that can be controlled using SQL commands, so you cannot use text (CSV) or Excel files.

SQL Statement group defines an SQL statement or query to be executed.

TIP: Statements from Data Manipulation Language (DML) are allowed to execute queries
upon existing database tables.

www.nicelabel.com 128

Use standard SQL statements, such as SELECT, INSERT, DELETE and UPDATE, including joins,
function and keywords. The statements in DDL language that are used to create databases and
tables (CREATE DATABASE, CREATE TABLE), or to delete them (DROP TABLE) are not
permitted.

 l Test: opens Data Preview section. Simulate execution (selected by default) tests the
execution of SQL statements. Click Execute to run the simulation.

TIP: Data Preview section allows you to test the execution of your SQL statement
upon a live set of data. To protect the data from accidental updates, make sure the
option Simulate execution is enabled. The statements INSERT, DELETE and UPDATE
will execute. This enables you to gain feedback on how many records will be affected,
then all of the transactions will be reversed.

If you use trigger variables in the SQL statement, you will be able to enter their values for
the test execution.

 l Insert data source: inserts predefined or newly created variables into an SQL statement.

 l Export/Import: enables exporting and importing SQL statements to/from an external file.

 l Execution mode: specifies the explicit mode of SQL statement execution.

TIP: In cases of complex SQL queries, it becomes increasingly difficult to automatically
determine what is the supposed action. If the built-in logic has troubles identifying your
intent, manually select the main action.

 l Automatic: determines the action automatically.

 l Returns set of records (SELECT): receives the data set with records.

 l Does not return set of records (INSERT, DELETE, UPDATE): use this
option if executing a query that does not return the records. Either insert
new records, delete or update the existing records. The result is a status
response reporting the number of rows that were affected by your query.

Result group allows you to set how the SQL statement result should be stored, and to define
action iteration.

 l Save Data to Variable: selects or creates a variable to store the SQL statement result.
This option depends on the selected Execution mode.

 l Result of SELECT statement. After you execute a SELECT statement, it results in
a data set of records. You receive a CSV-formatted text content. The first line con-
tains field names returned in a result. The next lines contain records.

To extract the values from the returned data set and to use them in other
actions, define and execute the action Use Data Filter upon the contents of
this variable (this action is available in Automation Builder).

www.nicelabel.com 129

 l Result of INSERT, DELETE and UPDATE statements. If you use INSERT, DELETE
and UPDATE statements, the result is a number indicating the number of records
affected in the table.

 l Iterate for Every Record. If enabled, a new action For Every Record is automatically
added. All nested actions are repeated for each record that has been returned using the
SQL statement.

NOTE: Automatic mapping is enabled. For Every Record action cannot be deleted.

Retry on failure group allows you to configure the action to continually retry establishing the
connection to a database server in case the first attempt is unsuccessful. If the action fails to
connect within the defined number of attempts, en error is raised.

 l Retry attempts: specifies the number of tries to connect to the database server.

 l Retry interval: specifies the duration of time between individual retry attempts.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

www.nicelabel.com 130

6.4.6.6 Send Data To TCP/IP Port

DESIGNER PRODUCT LEVEL INFO: The described feature is available in NiceLabel
LMS Enterprise and NiceLabel LMS Pro.

This action sends data to any external device which accepts TCP/IP connection on a predefined
port number.

Send Data to TCP/IP Port establishes connection with a device, sends the data and
terminates the connection. The connection and communication is governed by the client –
server handshake that occurs when initiating or terminating the TCP connection.

About group identifies the selected action.

 l Name: allows you to define a custom action name. This makes actions easily recognizable
on the solution's list of actions. By default, action name is taken from its type.

 l Description: custom information about the action. Enter a description to explain purpose
and role of action in a solution.

 l Action type: read-only information about the selected action type.

Connection Settings group sets connection details.

 l Destination (IP address:port): destination address and port of the TCP/IP server. Hard-
code the connection parameters and use fixed host name or IP address or use variable
connection parameters by clicking the right arrow and selecting a predefined variable.
For more information, see section Combining Values in an Object in NiceLabel
Automation user guide.

EXAMPLE: I f t he v a r ia ble hostname prov ides t he TC P / I P s erv er na me a nd t he v a r ia ble port
prov ides t he port number, ent er t he f ollowing pa ra met er f or t he des t ina t ion:
[hostname]:[port]

 l Disconnect delay: prolongs the connection with the target socket for the defined time
intervals after the data has been delivered. Certain devices require more time to process
the data. Insert the delay value manually or click the arrows to increase or decrease it.

 l Save data reply in a variable: selects or creates a variable that stores the server reply.
Any data received from the TCP/IP server after passing the "disconnect delay" is stored in
this variable.

Content group defines the content to be sent to a TCP/IP server.

TIP: Use fixed content, mix of fixed and variable content, or variable content alone. To enter
variable content, click the button with arrow to the right of data area and insert a variable
from the list. For more information, see section Combining Values in an Object in NiceLabel
Automation user guide.

www.nicelabel.com 131

 l Data: content to be sent outbound.

 l Encoding: encoding type for the sent data. Auto defines the encoding automatically. If
needed, select the preferred encoding type from the drop-down list.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

6.4.6.7 Send Data To Serial Port

This action sends data to a serial port. Use it to communicate with external serial-port devices.

TIP: Make sure the port settings match on both ends – in the configured action and on the
serial-port device. Serial port can be used by a single application in the machine. To
successfully use the port from this action, no other application may use the port at the same
time, not even any printer driver.

About group identifies the selected action.

 l Name: allows you to define a custom action name. This makes actions easily recognizable
on the solution's list of actions. By default, action name is taken from its type.

www.nicelabel.com 132

 l Description: custom information about the action. Enter a description to explain purpose
and role of action in a solution.

 l Action type: read-only information about the selected action type.

Port group defines the serial port.

 l Port name: name of the port to which the external device connects to. This can either be
a hardware COM port or a virtual COM port.

Port Settings group defines additional port connection settings.

 l Bits per second: speed rate used by the external device to communicate with the PC.
The usual alias used with the setting is "baud rate". Select the value from the drop-down
menu.

 l Data bits: number of data bits in each character. 8 data bits are almost universally used in
newer devices. Select the value from the drop-down menu.

 l Parity: method of detecting errors in a transmission. The most common parity setting, is
"none", with error detection handled by a communication protocol (flow control). Select
the value from the drop-down menu.

 l Stop bits: halts the bits sent at the end of every character allowing the receiving signal
hardware to detect the end of a character and to resynchronize with the character
stream. Electronic devices usually use a single stop bit. Select the value from the drop-
down menu.

 l Flow control: serial port may use interface signals to pause and resume the data trans-
mission.

Content group defines the content to be sent to serial port.

TIP: Fixed content, mix of fixed and variable content, or variable content alone are permitted.
To enter variable content, click the button with arrow to the right of data area and insert a
variable from the list. For more information, see section Combining Values in an Object in
NiceLabel Automation user guide.

 l Data: content to be sent outbound.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

www.nicelabel.com 133

Error handling options are:

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

6.4.6.8 Read Data From Serial Port

This action collects data received via serial port (RS-232) and saves it in a selected variable. Use
this action to communicate with external serial port devices.

About group identifies the selected action.

 l Name: allows you to define a custom action name. This makes actions easily recognizable
on the solution's list of actions. By default, action name is taken from its type.

 l Description: custom information about the action. Enter a description to explain purpose
and role of action in a solution.

 l Action type: read-only information about the selected action type.

Port group defines the serial port.

 l Port name: name of the port to which an external device connects to. This can either be
a hardware COM port or a virtual COM port.

Port Settings group defines additional port connection settings.

 l Bits per second: speed rate used by the an external device to communicate with the PC.
The usual alias used with the setting is "baud rate".

 l Data bits: specifies the number of data bits in each character. 8 data bits are almost uni-
versally used in newer devices.

 l Parity: specifies the method of detecting errors in a transmission. The most common par-
ity setting, is "none", with error detection handled by a communication protocol (flow con-
trol).

 l Stop bits: halts the bits sent at the end of every character allowing the receiving signal
hardware to detect the end of a character and to resynchronize with the character
stream. Electronic devices usually use a single stop bit.

www.nicelabel.com 134

 l Flow control: serial port may use interface signals to pause and resume the data trans-
mission.

EXAMPLE: A s low dev ice might need t o ha nds ha k e wit h t he s er ia l port t o indica t e t ha t da t a s hould
be pa us ed while t he dev ice proces s es receiv ed da t a .

Options group includes the following settings:

 l Read delay: optional delay when reading data from serial port. After the delay, the entire
content of the serial port buffer is read. Enter the delay manually or click the arrows to
increase or decrease the value.

 l Send initialization data: specifies the string that is sent to the selected serial port
before the data is read. This option enables the action to initialize the device to be able
to provide the data. The option can also be used for sending a specific question to the
device, and to receive a specific answer. Click the arrow button to enter special char-
acters.

Data Extraction group defines how the defined parts of received data are extracted.

 l Start position: starting position for data extraction.

 l End position: ending position for data extraction.

Result group defines a variable for data storing.

 l Save data to variable: select or create a variable to store the received data.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n

www.nicelabel.com 135

order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

6.4.6.9 Send Data To Printer

This action sends data to a selected printer. Use it to send pre-generated printer streams to
any available printer.

NiceLabel Automation module uses the installed printer driver in pass-through mode just to be
able to send data to the target port, such as LPT, COM, TCP/IP or USB port, to which the printer
is connected.

Possible scenario. Data received by the trigger must be printed out on the same network
printer, but on different label templates (.NLBL label files). The printer can accept data from
various workstations and will usually print the jobs in the received order. Automation Builder
module will send each label template in a separate print job, making it possible for another
workstation to insert its job between the jobs created in our own Automation Builder
module. Instead of sending each job separately to the printer, merge all label jobs (using the
action Redirect Printing to File) and send a single "big" print job to the printer.

About group identifies the selected action.

 l Name: allows you to define a custom action name. This makes actions easily recognizable
on the solution's list of actions. By default, action name is taken from its type.

 l Description: custom information about the action. Enter a description to explain purpose
and role of action in a solution.

 l Action type: read-only information about the selected action type.

Printer group selects the printer.

 l Printer name: name of the printer to send the data to. Select the printer from the drop-
down list of locally installed printer drivers, enter a custom printer name, or define it
dynamically using an existing or newly created variable.

Data Source group defines the content to be sent to printer.

 l Use data received by the trigger: trigger-received data it used. In this case, you want
the received printer stream to be used as an input to the filter. Your goal is to redirect it
to a printer without any modification. The same result can be achieved by enabling the
internal variable DataFileName and using the contents of the file it refers to. For more
information, see section Using Compound Values in NiceLabel Automation user guide.

 l File name: path and file name of the file containing a printer stream. Content of the spe-
cified file is sent to a printer. Select Data source to define the file name dynamically using
a variable value.

www.nicelabel.com 136

 l Variable: variable (existing or new) that contains the printer stream.

 l Custom: defines custom content to be sent to a printer. Fixed content, mix of fixed and
variable content, or variable content alone are permitted. To enter variable content, click
the button with arrow to the right of data area and insert a variable from the list. For more
information, see section Combining Values in an Object in NiceLabel 2017 user guide.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

6.4.6.10 HTTP Request

This action sends data to the destination Web server using the selected HTTP method. HTTP
and HTTPS URI schemes are allowed.

HTTP works as a request-response protocol in client-server computing model. With this action,
NiceLabel 2017 takes a role of a client, communicating with a remote server. This action submits
a selected HTTP request message to a server. The server return a response message, which
can contain completion status information about the request and may also contain requested
content in its body.

About group identifies the selected action.

www.nicelabel.com 137

 l Name: allows you to define a custom action name. This makes actions easily recognizable
on the solution's list of actions. By default, action name is taken from its type.

 l Description: custom information about the action. Enter a description to explain purpose
and role of action in a solution.

 l Action type: read-only information about the selected action type.

Connection Settings group sets connection parameters.

NOTE: This action supports Internet Protocol version 6 (IPv6).

 l Destination: address, port and destination (path) of the Web server.

TIP: If a Web server runs on default port 80, skip the port number. Hard-code the
connection parameters and use a fixed host name or IP address. Use a variable value
to define this option dynamically. For more information, see section Using Compound
Values in NiceLabel Automation user guide.

EXAMPLE: I f t he v a r ia ble hostname prov ides t he Web s erv er na me a nd t he v a r ia ble port
prov ides t he port number, y ou ca n ent er t he f ollowing f or t he des t ina t ion:
[hostname]:[port]

 l Request method: available request methods.

 l Timeout: timeout duration (in ms) during which the server connection should be estab-
lished and response received.

 l Save status reply in a variable: variable to store the status code received from the
server.

TIP: Status code in range 2XX is a success code. Common "OK" response is code 200.
Codes 5XX are server errors.

 l Save data reply in a variable: variable to store the data received from the server.

Authentication group enables you to secure the Web server connection.

 l Enable basic authentication: allows you to enter the required credentials to connect to
the Web server. User name and password can either be fixed or provided using a vari-
able.

HTTP Basic authentication (BA) uses static standard HTTP headers. The BA mechanism
provides no confidentiality protection for the transmitted credentials. They are merely
encoded with Base64 in transit, but are not encrypted or hashed in any way. Basic
Authentication should be used over HTTPS.

 l Show password: unmasks the password characters.

Content group defines the contents to be sent to a Web server.

www.nicelabel.com 138

 l Data: content to be sent outbound. Fixed content, mix of fixed and variable content, or
variable content alone are permitted. To enter variable content, click the button with
arrow to the right of data area and insert variable from the list. For more information, see
section Combining Values in an Object in NiceLabel 2017 user guide.

 l Encoding: encoding type for the sent data.

TIP: Auto defines the encoding automatically. If needed, select the preferred encoding
type from the drop-down list.

 l Type: Content-Type property of the HTTP message. If no type is selected, the default
application/x-www-form-urlencoded is used. If an appropriate type is not listed,
define a custom one or set a variable that would define it dynamically.

Additional HTTP Headers are requested by certain HTTP servers (especially for REST
services).

 l Additional headers: hard coded headers or headers obtained from variable values. To
access the variables, click the small arrow button to the right hand side of the text area.
For more information, see section Combining Values in an Object in NiceLabel 2017 user
guide.

Certain HTTP servers (especially for REST services) require custom HTTP headers to be
included in the message. This section allows you to provide the required HTTP header.

HTTP headers must be entered using the following syntax:

header field name: header field value

For example, to use the header field names Accept, User-Agent and Content-Type,
you could use the following syntax:

Accept: application/json; charset=utf-8
User-Agent: Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/31.0.1650.63 Safari/537.36
Content-Type: application/json; charset=UTF-8

You can hard code the header field names, or you can obtain their values from trigger
variables. Use as many custom header fields as you want, just make sure that each
header field is placed in a new line.

NOTE: The entered HTTP headers override the already defined headers elsewhere in
the action properties, such as Content-Type.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

www.nicelabel.com 139

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

6.4.6.11 Web Service

Web Service is a method of communication between two electronic devices or software
instances. Web Service is defined as a data exchange standard. It uses XML format to tag the
data, SOAP protocol is used to transfer the data, and WSDL language is used to describe the
available services.

This action connects to a remote Web service and executes the methods on it. Methods can be
described as actions that are published on the Web Service. The action sends inbound values
to the selected method in the remote Web service, collects the result and saves it in selected
variables.

After importing the WSDL and adding a reference to the Web Service, its methods are listed in
the Method combo box.

NOTE: You can transfer simple types over the Web Service, such as string, integer, boolean,
but not the complex types. The WSDL must contain single binding only.

You plan to print product labels. Your trigger would receive only a segment of the required
data. E.g. the trigger receives the value for Product ID and Description variables, but
not the Price. The price information is available in a separate database, which is accessible
over Web service call. Web service defines the function using a WSDL definition. For
example, function input is Product ID and its output is Price. The Web Service action

www.nicelabel.com 140

sends Product ID to the Web service. It executes and makes an internal look up in its
database and provide the matching Price as the result. The action saves the result in a
variable, which can be used on the label.

About group identifies the selected action.

 l Name: allows you to define a custom action name. This makes actions easily recognizable
on the solution's list of actions. By default, action name is taken from its type.

 l Description: custom information about the action. Enter a description to explain purpose
and role of action in a solution.

 l Action type: read-only information about the selected action type.

Web Service Definition group includes the following settings:

NOTE: This action supports Internet Protocol version 6 (IPv6).

 l WSDL: location of WSDL definition.

WSDL is usually provided by the Web service. Typically, you would enter the link to WSDL
and click Import to read the definition. If facing troubles while retrieving the WSDL from
online resource, save the WSDL to a file and enter the path with file name to load the
methods from it. NiceLabel 2017 automatically detects if the remote Web Service uses a
document or RPC syntax, and whether it communicates appropriately or not.

 l Address: address at which the Web Service is published.

Initially, this information is retrieved from the WSDL, but can be updated before the action
is executed. This is helpful for split development / test / production environments, where
the same list of actions is used, but with different names of servers on which the Web
Services run.

Fixed content, mix of fixed and variable content, or variable content alone are permitted.
To enter variable content, click the button with arrow to the right hand side of data area
and insert variable from the list. For more information, see section Combining Values in
an Object in NiceLabel 2017 user guide.

 l Method: methods (functions) that are available for the selected Web service. The list is
automatically populated by the WSDL definition.

 l Parameters: input and output variables for the selected method (function).

Inbound parameters expect an input. For testing and troubleshooting reasons, you can
enter a fixed value and see the preview result on-screen. Typically, you would select a
variable for inbound parameter. Value of that variable will be used as input parameter. The
outbound parameter provides the result from the function. You must select the variable
that will store the result.

 l Timeout: timeout after which the connection to a server is established.

www.nicelabel.com 141

Authentication enables basic user authentication. This option defines user credentials that are
necessary to establish an outbound call to a remote web service.

 l Enable basic authentication: enables defining the Username and Password that can be
entered manually or defined by variable values. Select Data sources to select or create
the variables.

 l Show password: uncovers the masked Username and Password characters.

Details about security concerns, are available in section Securing Access to your Triggers
in NiceLabel Automation user guide.

Data Preview field allows you to perform a test Web service execution.

 l Execute button executes a Web service call.

It sends values of inbound parameters to the Web service and provides the result in the
outbound parameter. Use this functionality to test the execution of a Web service. You
can enter values for inbound parameters and see the result on-screen. When satisfied
with execution, replace the entered fixed value for inbound parameter with a variable
from the list.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables

www.nicelabel.com 142

ActionLastErrorId and ActionLastErrorDesc.

6.4.7 Other
6.4.7.1 Get Label Information

This action returns structural information about the associated label file. It provides information
about the label dimensions, printer driver and lists all label variables, and their main properties.

The Get Label Information action returns the original information as saved in the label file.
Additionally, it also provides information after the print process has been simulated. The
simulation ensures that all labels variables get the value as they would have during a normal
print. Also, the label height information provides correct dimensions in case you define the label
as a variable-height label (in this case, the label size depends on the amount of data to be
printed). The action returns the dimensions for a label size, not for a page size.

The action saves label structure information in a selected variable. You can then send the data
back to the system using the HTTP Request action (or a similar outbound data connectivity
action), or send it back in trigger response, if you use a bidirectional trigger.

NOTE: This action must be nested under the Open Label action.

Variable group selects or creates a variable that stores the structural information about a label.

 l Name: specifies the variable name. Select or create a variable which stores the XML-
formatted label information.

 l If you want to use the information from the XML inside this trigger, you can define
the and execute it with Use Data Filter action (Automation Builder only).

 l If you want to return the XML data as a response in your HTTP or Web Service trig-
ger, use this variable directly in the Response data field of the trigger con-
figuration page.

 l If you want to save the XML data to a file, use the Save Data to File action.

Additional settings group allows you to enable the use of provisional values.

 l Use provisional values: replaces missing data source values with provisional values.

TIP: See section Variable in NiceLabel 2017 Designer user guide for detailed
description of provisional values.

Sample Label Information XML

www.nicelabel.com 143

The sample below presents a structural view of the label elements and their attributes as they
are returned.

<?xml version="1.0" encoding="UTF-8"?>
<Label>
 <Original>
 <Width>25000</Width>
 <Height>179670</Height>
 <PrinterName>QLS 3001 Xe</Printer>
 </Original>
 <Current>
 <Width>25000</Width>
 <Height>15120</Height>
 <PrinterName>QLS 3001 Xe</Printer>
 </Current>
 <Variables>
 <Variable>
 <Name>barcode</Name>
 <Description></Description>
 <DefaultValue></DefaultValue>
 <Format>All</Format>
 <CurrentValue></CurrentValue>
 <IncrementType>None</IncrementType>
 <IncrementStep>0</IncrementStep>
 <IncrementCount>0</IncrementCount>
 <Length>100</Length>
 </Variable>
 </Variables>
</Format>

Label Information XML Specification

This section contains a description of the XML file structure as returned by the Get Label
Information action.

NOTE: All measurement values are expressed in the 1/1000 mm units. For example width of
25000 is 25 mm.

 l <Label>: this is a root element.

 l <Original>: specifies label dimensions and printer name as stored in the label file.

 l Width: this element contains the original label width.

 l Height: this element contains the original label height.

 l PrinterName: this element contains the printer name for which the label has been
created for.

 l Current: specifies label dimensions and printer name after the simulated print has been
completed.

 l Width: this element contains the actual label width.

 l Height: this element contains the actual label height. If a label is defined as a vari-
able-height label, it can increase along with label objects. For example, Text Box

www.nicelabel.com 144

and RTF object sizes may increase in vertical direction and cause the label to
expand as well.

 l PrinterName: this element contains printer name that will be used for printing.

EXAMPLE: A pr int er dif f erent f rom t he or igina l one is going t o be us ed if t he or igina l
pr int er dr iv er is not ins t a lled on t his comput er , or if t he pr int er ha s been cha nged
us ing t he Set P r int er a ct ion.

 l <Variables> and <Variable>: the element Variables contains a list of all prompt label
variables, each defined in a separate Variable element. The prompt variables are the
ones listed in the print dialog box when you print label from NiceLabel 2017. If there are
no prompt variables defined in the label, the element Variables is empty.

 l Name: contains variable name.

 l Description: contains variable description.

 l DefaultValue: contains default value as defined for the variable during the label
design process.

 l Format: contains the acceptable type of variable content (characters).

 l IsPrompted: contains information whether or not the variable is prompted at print
time or not.

 l PromptText: contains text that prompts the user for value input.

 l CurrentValue: contains the actual value that is used for printing.

 l IncrementType: contains information, if the variable is defined as a counter or not.
If identified as a counter, it tells what kind of counter it is.

 l IncrementStep: contains information about the counter step. Counter value incre-
ments/decrements for this value on the next label.

 l IncrementCount: contains information about the point of counter value incre-
menting/decrementing. Usually, the counter changes value on every label, but that
can be changed.

 l Length: contains maximum number of stored characters in a variable.

XML Schema Definition (XSD) for Label Specification XML

<?xml version="1.0" encoding="utf-8"?>
<xs:schema id="Format" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Label">
 <xs:complexType>
 <xs:all>
 <xs:element name="Original">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Width" type="xs:decimal"
minOccurs="1" />
 <xs:element name="Height" type="xs:decimal"
minOccurs="1" />
 <xs:element name="PrinterName" type="xs:string"

www.nicelabel.com 145

minOccurs="1" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Current">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Width" type="xs:decimal"
minOccurs="1" />
 <xs:element name="Height" type="xs:decimal"
minOccurs="1" />
 <xs:element name="PrinterName" type="xs:string"
minOccurs="1" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Variables">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Variable" minOccurs="0"
maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Name" type="xs:string"
minOccurs="1" />
 <xs:element name="Description"
type="xs:string" minOccurs="1" />
 <xs:element name="DefaultValue"
type="xs:string" minOccurs="1" />
 <xs:element name="Format"
type="xs:string" minOccurs="1" />
 <xs:element name="CurrentValue"
type="xs:string" minOccurs="1" />
 <xs:element name="IncrementType"
type="xs:string" minOccurs="1" />
 <xs:element name="IncrementStep"
type="xs:integer" minOccurs="1" />
 <xs:element name="IncrementCount"
type="xs:integer" minOccurs="1" />
 <xs:element name="Length"
type="xs:string" minOccurs="1" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:all>
 </xs:complexType>
 </xs:element>
</xs:schema>

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

www.nicelabel.com 146

Execution options are:

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

6.4.7.2 Execute Script

This action enhances the software functionality by using custom VBScript or Python scripts.
Use this function if the built-in actions don't meet your data manipulation requirements.

Scripts can include the trigger variables – both internal variables and the variables defined or
imported from labels.

Make sure that Windows account under which the service runs has the privileges to execute
the commands in the script. For more information, see the topic .

NOTE: The script type is configured per trigger in the trigger properties. All Execute Script
actions within a single trigger must be of the same type.

About group identifies the selected action.

www.nicelabel.com 147

 l Name: allows you to define a custom action name. This makes actions easily recognizable
on the solution's list of actions. By default, action name is taken from its type.

 l Description: custom information about the action. Enter a description to explain purpose
and role of action in a solution.

 l Action type: read-only information about the selected action type.

Script editor offers the following features:

 l Insert data source: inserts an existing or newly created variable into the script.

 l Verify: validates the entered script syntax.

 l Script editor: opens the editor which makes scripting easier and more efficient.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

6.4.7.2.1 Script Editor

NiceLabel 2017 provides a script editor which makes your Python or VBScript scripting easier,
error-free and time efficient.

www.nicelabel.com 148

Editor Ribbon includes commonly used commands which are distributed over multiple
functional groups.

 l Clipboard group offers Cut, Copy, Paste and Delete commands.

 l Undo Redo group allows undoing or repeating script editing actions.

 l File group allows loading and saving scripts in a file.

 l Load from file: loads a script from an external previously saved textual file.

 l Save to file: stores the currently edited script in a textual file.

 l Editing group allows finding and replacing strings in a script.

 l Find: locates the entered string in the script.

 l Replace: replaces string in the script.

 l Insert group: Data Source command inserts existing or newly defined data sources into
the script.

 l Script group: Validate script command validates of the entered script's syntax.

Available scripting elements contain all available script items which can be used when building
a script. Double-click the element or click the Insert button to insert the element at cursor
position into the script.

Element description provides basic information about the inserted script element.

Error list includes the errors which are reported after the Validate script command is run.

6.4.7.3 Message (Configuration)

This action writes a custom entry into the log file.

www.nicelabel.com 149

Usually, the log file contains application-generated strings and error descriptions. Use this
action to write a custom string. This is useful for configuration troubleshooting and debugging
so you can track values of the selected variables.

EXAMPLE: To conf igure t he logging of cus t om mes s a ge in t he log pa ne of Aut oma t ion B uilder (while
t es t ing t he conf igura t ion) or in t he log pa ne of Aut oma t ion Ma na ger (a f t er t he t r igger ha s been
deploy ed a nd s t a rt ed) , s ee t he s creen s hot s below.

Content group defines caption and message content.

 l Caption: specifies the custom message title. Data source option enables the title to be
dynamically defined. Select or create a variable that contains the title after a trigger is
executed.

 l Message: specifies contents of the custom message. Data source option enables the
message content to be dynamically defined.

TIP: Dynamic content is usually prepared in advance in another action and later used
here.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

www.nicelabel.com 150

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

6.4.7.4 Verify License

This action reads the activated license and executes the actions nested below this action only
if a certain license type is used.

TIP: Verify License action provides protection of your trigger configuration from being run on
unauthorized machines.

NOTE: License key that activates software can also encode the Solution ID. This is the
unique number that identifies the solution provider that sold the NiceLabel 2017 license.

If the configured Solution ID matches the Solution ID encoded in the license, the target machine
is permitted to run nested actions, effectively limiting execution to licenses sold by the solution
provider.

The triggers can be further encrypted and locked so only authorized users are allowed to open
the configuration. For more information, see section Protecting Trigger Configuration in
NiceLabel Automation user guide.

About group identifies the selected action.

 l Name: allows you to define a custom action name. This makes actions easily recognizable
on the solution's list of actions. By default, action name is taken from its type.

 l Description: custom information about the action. Enter a description to explain purpose
and role of action in a solution.

 l Action type: read-only information about the selected action type.

License Information group allows you to select the license ID.

 l License ID: defines the ID number of the licenses that are allowed to run the nested
actions.

www.nicelabel.com 151

 l If the entered value is not the License ID that is encoded in the license, the nested
actions is not executed.

 l If the entered value is set to 0, the actions execute if a valid license is found.

NOTE: Digital Partner UID can also be used as License ID. This option is available for
members of NiceLabel Digital Partner Program.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

6.4.7.5 Try

This action allows you to:

 l monitor errors while the actions are being executed

 l run an alternative set of actions, if an error occurs

Try action creates Do and On error placeholders for actions. All actions that should be execute
if a trigger fires, must be placed inside the Do placeholder. If no error is detected when
executing actions from Do placeholder, these are the only actions that ever execute. However,

www.nicelabel.com 152

http://www.nicelabel.com/partners/digital

if an error does happen, the execution of actions from Do placeholder stops and the execution
switches over to actions from On error placeholder.

EXAMPLE: I f a ny a ct ion in t he D o pla ceholder f a ils , t he a ct ion execut ion s t ops a nd res umes wit h
t he a ct ions in t he On Error pla ceholder . I f Try would be pla ced on it s own, t ha t would t ermina t e t he
t r igger execut ion. I n our ca s e, Try is nes t ed under t he For loop a ct ion. Norma lly , a ny error in D o
pla ceholder would a ls o s t op execut ing t he For loop a ct ion, ev en if t here a re s t ill f urt her s t eps unt il
t he For loop is complet e. I n t his ca s e, t he Sa v e D a t a t o File a ct ion does not execut e a s well. B y
def a ult , ea ch error brea k s t he ent ire t r igger proces s ing.

H owev er, y ou ca n a ls o cont inue wit h t he execut ion of t he next it era t ion in t he For loop a ct ion. To
ma k e t his ha ppen, ena ble t he I gnore f a ilure opt ion in t he Try a ct ion. I f t he da t a f rom t he current
s t ep in For Loop ca us es a n error in t he D o pla ceholder , t he a ct ions f rom On Error execut e. Af t er
t ha t , t he Sa v e D a t a t o File in lev el 2 execut e a nd t hen t he For loop a ct ion cont inues t o execut e in
t he next it era t ion.

This action provides for an easy error detection and execution of "feedback" or "reporting"
actions. For example, if an error happens during trigger processing, you can send out a
warning. For more information, see section Print Job Status Feedback in NiceLabel
Automation user guide.

About group identifies the selected action.

 l Name: allows you to define a custom action name. This makes actions easily recognizable
on the solution's list of actions. By default, action name is taken from its type.

 l Description: custom information about the action. Enter a description to explain purpose
and role of action in a solution.

 l Action type: read-only information about the selected action type.

Action Execution and Error Handling

www.nicelabel.com 153

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

6.4.7.6 XML Transform

DESIGNER PRODUCT LEVEL INFO: The described feature is available in NiceLabel
LMS Enterprise.

This action transforms an XML document into another document using the provided
transformation rules. The rules must be provided by a .XSLT definition in a file, or by another
variable source.

The action allows you to convert complex XML documents into XML documents with a more
manageable structure. XSLT stands for XSL Transformations. XSL stands for Extensible
Stylesheet Language, and works as a stylesheet language for XML documents.

XML Transform action stores the converted XML document in the selected variable. The
original file is left intact on the disk. If you want to save the converted XML document, use action
Save Data to File.

www.nicelabel.com 154

Typically, you would use the action to simplify XML documents provided by the host
application. Defining XML filter for the complex XML document might take a while, or in
some cases the XML is just too complex to be handled. As alternative, you would define the
rules to convert XML into structure that can be easily handled by the XML filter, or even
skipping the need for a filter altogether. You can convert XML document into natively-
supported XML, such as Oracle XML and then simply executing it using the Run Oracle XML
Command File action.

TIP: Example for this action is installed with the product. To open it, go to Help > Sample
Files > XML Transformations and run the XML Transformations.misx configuration. Details
are available in the Readme file.

About group identifies the selected action.

 l Name: allows you to define a custom action name. This makes actions easily recognizable
on the solution's list of actions. By default, action name is taken from its type.

 l Description: custom information about the action. Enter a description to explain purpose
and role of action in a solution.

 l Action type: read-only information about the selected action type.

Data Source group defines the XML data to be transformed.

 l Use data received by the trigger: defines that the trigger-received data it used. The
same result can be achieved by enabling the internal variable DataFileName and using
the contents of file it refers to. For more information, see section Using Compound Val-
ues in NiceLabel Automation user guide.

 l File name: defines the path and file name of the file containing the XML file to be trans-
formed. Contents of the specified file is used. Data source enables the file name to be
defined dynamically. Select or create a variable that contains the path and/or file name.
The action opens the specified file and applies transformation on file contents, which
must be XML- formatted.

 l Variable: selects or creates the variable that contains printer stream. The contents of
selected variable is used and it must contain XML structure.

Transformation Rules Data Source (XSLT) group defines the transformation rules (.XSLT
document) that are going to be applied to the XML document.

 l File name: defines path and file name of the file containing the transformation rules
(.XSLT).

 l Custom: defines custom contents. You can use fixed content, mix of fixed and variable
content, or variable content alone. To insert a variable content, click the button with
arrow to the right of data area and insert variable from the list. For more information, see
section Using Compound Values in NiceLabel Automation user guide.

Save Result to Variable group defines the variable to store the transformed file.

www.nicelabel.com 155

 l Variable: selects or creates a variable that is going to contain the result of the trans-
formation process. E.g. if you use the rules that convert complex XML into simpler XML,
the content of the selected variable is a simple XML file.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

6.4.7.7 Group

This action configures multiple actions within the same container. All actions placed below the
Group action belong to the same group and are going to be executes together.

This action provides the following benefits:

 l Better organization and displaying of action workflow. You can expand or collapse the
Group action and display the nested actions only when needed. This helps keep the con-
figuration area cleaner.

 l Defining conditional execution. You can define a condition in the Group action just
once, not individually for each action. If the condition is met, all actions inside the Group
are executed. This can save a lot of configuration time and can reduce the number of con-

www.nicelabel.com 156

figuration errors. Group action provides a good method to define IF..THEN execution rules
for multiple actions.

About group identifies the selected action.

 l Name: allows you to define a custom action name. This makes actions easily recognizable
on the solution's list of actions. By default, action name is taken from its type.

 l Description: custom information about the action. Enter a description to explain purpose
and role of action in a solution.

 l Action type: read-only information about the selected action type.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

6.4.7.8 Log Event

This action logs an event to NiceLabel Control Center for history and troubleshooting purposes.

NOTE: To make Log event action active, make sure that print job logging to NiceLabel
Control Center is enabled.

About group identifies the selected action.

www.nicelabel.com 157

 l Name: allows you to define a custom action name. This makes actions easily recognizable
on the solution's list of actions. By default, action name is taken from its type.

 l Description: custom information about the action. Enter a description to explain purpose
and role of action in a solution.

 l Action type: read-only information about the selected action type.

Event Data group provides information about the logged event.

 l Information: basic description of the event that will be included in the NiceLabel Control
Center event log. Up to 255 characters are allowed in this area.

 l Details: detailed description of the event to be logged in the NiceLabel Control Center.
Up to 2000 characters are allowed in this area.

TIP: The descriptions entered in Information and Details fields allows you to filter out the
events in Control Center All Activities History. When working with Control Center, go to
History > All Activities > Define filter. For more details, read the Control Center User
Guide.

Action Execution and Error Handling

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables

www.nicelabel.com 158

https://www.nicelabel.com/resources/files/doc/installation-guide/ig-Control_Center_Installation_Guide-en.pdf
https://www.nicelabel.com/resources/files/doc/installation-guide/ig-Control_Center_Installation_Guide-en.pdf

ActionLastErrorId and ActionLastErrorDesc.

6.4.7.9 Preview Label

This action executes the print process and provides label image preview. By default, the
preview is saved to disk as JPEG image, but you can choose other image format. You can also
control the size of the created preview image. The action generates preview for a single label.

Once you have the label preview created in a file, you can send the file to a third party
application using one of the outbound actions, such as Send Data to HTTP, Send Data to Serial
Port, Send Data to TCP/IP Port, or use it as response message from bidirectional triggers, such
as and Web Service Trigger. The third party application can take the image and show is as label
preview to the user.

About group identifies the selected action.

 l Name: allows you to define a custom action name. This makes actions easily recognizable
on the solution's list of actions. By default, action name is taken from its type.

 l Description: custom information about the action. Enter a description to explain purpose
and role of action in a solution.

 l Action type: read-only information about the selected action type.

Preview group defines the file to be previewed and its details.

 l File name: specifies the path and file name. If hard-coded, the same file is used every
time. If you only use the file name without path, the folder with configuration file (.MISX) is
used. You can use a relative reference to the file name, where folder with .MISX file is
used as root folder. Data source option enables variable file name. Select or create a vari-
able that contains the path and/or file name after a trigger is executed. Usually, the value
to the variable is assigned by a filter.

 l Image type: specifies the image type which is used for saving the label preview.

 l Preview label back side (2-sided labels): enables preview of the back label. This is use-
ful, if you use double-sided labels and want to preview the label's back side.

EXAMPLE: For exa mple, if y our la bel t empla t e def ines dimens ion a s 4" × 3" a nd t he la bel pr int er
res olut ion is s et t o 200 D P I , t he res ult ing prev iew ima ge ha s dimens ions of 800 × 600 pixels . Widt h
equa ls 4 inches t imes 200 D P I , which res ult s in 800 pixels . H eight equa ls 3 inches t imes 200 D P I ,
which res ult s in 600 pixels .

Additional settings group allows you to enable the use of provisional values.

 l Use provisional values: replaces missing data source values with provisional values and
displays them in the label preview.

TIP: Provisional value defines a custom placeholder variable value in an object while
designing labels or forms. In a label object, the provisional value is replaced by the real
variable value at print time.

Action Execution and Error Handling

www.nicelabel.com 159

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

6.4.7.10 Create Label Variant

This action allows you to create a review-ready variant of an existing label. Label objects in such
variant have locked data source values. Their content is defined by the current value of the
applicable data source.

The purpose of creating a review-ready variant of a label with “locked” data sources is to make
the label suitable for approval process where data and template need to be approved together.
Instead of viewing a label without defined content for included objects, the approver approves a
variant with values defined. This allows him to quickly see and approve the final label layout with
actual values used for printing.

TIP: Label approval process is applicable to labels that are stored in Control Center
Document Storage. You can apply various approval workflow types for the stored labels and
label variants. Approval workflow selection depends on the requirements of your business
environment. See NiceLabel 2017 Control Center User Guide for more details.

About group identifies the selected action.

www.nicelabel.com 160

 l Name: allows you to define a custom action name. This makes actions easily recognizable
on the solution's list of actions. By default, action name is taken from its type.

 l Description: custom information about the action. Enter a description to explain purpose
and role of action in a solution.

 l Action type: read-only information about the selected action type.

Settings group defines the label file to be converted and the output file (variant).

 l Label name: the name of the label file to be converted into a review-ready variant with
locked data source values. Data source dynamically defines the Label name using an
existing or newly created variable.

 l Print time data sources: this option allows you to define data sources for which the
value will be provided at the actual print time. If a data source is listed in this field, its value
is not locked and can be provided at print time. Typical examples are data sources for pro-
duction values like lot, expiry date, etc.

TIP: Insert only data source names without square brackets, separated by commas or
listed in a column using Enter key.

 l Output file name: the name of the label variant file that is going to be ready for review.
Data source dynamically defines the Label name using an existing or newly created vari-
able.

There are several rules that apply to the review-ready label variant:

 1. Data source values are locked by default. To exclude the data sourced from being locked,
list them in Print time data sources field to keep them active on the review-ready label.
You will be able to define their value at print time.

 2. Counter variables, functions, database fields and global variables are converted to non-
prompted variables.

 3. Graphics are embedded.

 4. The destination label variant stored in NiceLabel Control Center Document Storage is
automatically checked in. Original Label name and Print time data sources are used as
check in comment.

 5. Label variants can be opened in NiceLabel 2017 Designer in a locked state.

 6. Label files generated with this action cannot be imported.

 7. If such label variant is stored to the printer, the recall command can only provide value for
print time data sources.

 8. If using NiceLabel Control Center, label preview in Document Storage allows editing of
print time data sources.

 9. Current time and current date variables cannot be set as Print time data sources on the
review-ready label variant.

Action Execution and Error Handling

www.nicelabel.com 161

Each action in can be set as a conditional action. Conditional actions only run when the defined
conditions allow them to be run. To define these conditions, click Show execution and error
handling options.

Execution options are:

 l Enabled. Specifies if the action is enabled or disabled. Only enabled actions will execute.
This functionality may be used while testing a form.

 l Condition. Defines one-line programming expression that must provide a Boolean value
(true or false). When the result of the expression is true, the action will execute.
Condition offers a way to avoid executing actions every time.

Error handling options are:

 l Ignore failure: specifies whether an error should be ignored or not. With Ignore failure
option enabled, the execution of actions continues even if the current action fails.

NOTE: Nested actions that depend on the current action do not execute in case of a
failure. The execution of actions continues with the next action on the same level as
the current action. The error is logged, but does not break the execution of the action.

EXAMPLE: At t he end of pr int ing, y ou might wa nt t o s end t he s t a t us upda t e t o a n ext erna l
a pplica t ion us ing H T T P Req ues t a ct ion. I f t he pr int ing a ct ion f a ils , a ct ion proces s ing s t ops . I n
order t o execut e t he report ing ev en a f t er t he f a iled pr int a ct ion, t he Print Lab el a ct ion mus t ha v e
t he opt ion Ig no re fai lure ena bled.

 l Save error to variable: enables the user to define the Data Source (variable) to save
the error to. The same cause of error is also saved to internal variables ActionLastEr-
rorId and ActionLastErrorDesc.

6.5 Testing Triggers
6.5.1 Testing Triggers
When you have the configuration of the trigger done, that's only half of the job done. Before
deploying the trigger you must thoroughly test is for its intended operation upon incoming data
and verify the execution of actions.

You can test your configuration while you are still working on it in Automation Builder. Some
actions have built-in test capabilities so you can focus on the execution of individual action. You
can also test every triggers with Run Preview command. However, the final test should always
be done in the real environment, providing real data and using real triggers, where you monitor
trigger execution in Automation Manager.

Testing execution of the individual actions

Some of the actions have preview functionality allowing you to change the input parameters
and see the result of the action on-screen.

www.nicelabel.com 162

 l Use Data Filter. The action will show live preview of the parsed data. The rules from the
selected filter are applied to the selected input data file and result shown in the table. If
you use sub- or assignment areas, you can see the preview for every level of filter defin-
ition.

 l Execute SQL Statement. The action will show preview of the execution of defined SQL
statement. You can see the data set resulting from the SELECT statement and number of
rows affected by the UPDATE, INSERT and DELETE statements. The preview execution is
transaction-safe and you can roll-back all changes. You can change the input query para-
meters and see how they influence the result.

 l Web Service. The action will show preview of the execution of selected method (func-
tion) from Web Service. You can change the input parameters and see how they influence
the result.

 l Execute script. The action will check for syntax errors in the provided script, and also
execute it. You can change the input parameters and see how they influence the script
execution.

Testing the execution of trigger and displaying label preview on-screen

To test the trigger from the ground up, use the built-in Run Preview functionality. You can run
preview for every trigger, no matter its type. The trigger won't fire upon changes of the
monitored event, only trigger started in the Automation Manager can do it. Instead, the trigger
will execute actions based on the data saved in a file. You have to make sure you have file that
contains sample data that trigger will accept in real-time deployment.

The trigger will execute all defined actions, including data filtering, and display label preview(s)
on-screen. The preview will simulate the printing process to every detail. The labels would print
with the same composition and contents as they are previewed. This includes the number of
labels and their contents. You will learn about how many print jobs are produced, how many
labels are in each job and preview of each label. You can navigate from one label to the next in
the selected print job.

The Log pane displays the same information as would be displayed in the Automation Manager.
Expand the log entries to see full detail.

NOTE: When you run the preview, all action defined for the selected trigger will run, not just
the action. Be careful, when you use actions that will modify the data, such as , or , because
their execution is irreversible.

To preview the labels, do the following:

 1. Open the trigger configuration.

 2. Make sure the trigger configuration is saved.

 3. Click the button Run Preview in Preview group in the ribbon.

 4. Browse for the data file providing the typical contents that trigger will accept.

 5. See the result in a Preview tab.

Testing deployment on pre-production server

www.nicelabel.com 163

It makes a good practice to deploy the configuration to Automation Manager on a pre-
production server, before the deployment on the production server. Testing in pre-production
environment might identify additional configuration problems not detected when testing the
trigger in the Automation Builder alone. The performance can also be stress-tested by adding
the load to the trigger and see how it performs. The testing will provide the important
information about the available throughput and identify weak points. Based on the conclusions
you can then implement various system optimization techniques, such as optimizing label
design to produce smaller print streams, and optimizing the overall flow of data from the
existing application into NiceLabel Automation.

Important differences between real testing and previewing in Automation Builder

While previewing the trigger on-screen in Automation Builder provides a quick method of
trigger testing, you must not rely on it alone. There can be execution differences between
previewing and running the trigger for real when you use 64-bit Windows.

Even if you have your configuration working in Automation Builder, make sure to run in for real
using the Service as well.

 l When you run command Run Preview, the configuration will execute in Automation
Builder, which always runs as 32-bit application. Previewing your trigger in Automation
Builder will only test execution on 32-bit platform.

 l When you run triggers for real, the configuration will execute in Service, which will run as
32-bit application on 32-bit Windows, and will run as 64-bit application on 64-bit Win-
dows. For more information see the topic Running in Service Mode.

 l The problems might arise when trigger processing is affected by platform differences
(32-bit vs 64-bit):

 l Database access. 64-bit applications require 64-bit database drivers, and 32-bit
applications require 32-bit drivers. To run configuration from Automation Builder
and in the Service, you need 32-bit and 64-bit database drivers to access your
database. For more information, see topic Accessing Databases.

 l UNC syntax for network files. The service account cannot access network
shared files with mapped drive letter. You have to use UNC syntax for network files.
For example, use \\server\share\files\label.nlbl and not G:\-
files\label.nlbl, where G: is mapped to\\server\share. For more inform-
ation see the topic Access to Network Shared Resources.

 l If your NiceLabel Automation Service runs under a different user account that you are
using for Automation Builder, the accounts might not have the same security privileges. If
you can open the label in Automation Builder, the user account for the Service might not
be able to access it. To run Automation Builder under the same user account as
the Service, see Using the Same User Account to Configure and to Run Triggers.

www.nicelabel.com 164

6.6 Protecting Trigger Configuration From
Editing
The trigger configuration can be protected using two methods.

 l Locking trigger. Using this method you lock the trigger configuration file and protect it
with a password. Without the password nobody can edit the trigger. Enable the option
Lock and encrypt trigger in trigger Settings -> Security.

 l Setting access permissions. Using this method you rely on the user permissions as are
defined in the NiceLabel Automation Options. You can enable user groups and assign dif-
ferent roles to each group. If the group is assigned with the edit privileges, all members of
the group can edit triggers. This method requires that you enable user login. You can use
Windows users from local groups or active directory, or you can define NiceLabel Auto-
mationusers. See User rights and access in Configuration.

6.7 Configuring Firewall For Network Triggers
Network trigger is a trigger that runs using the TCP/IP protocol. In Automation, such triggers are
TCP/IP trigger, HTTP trigger and Web Service trigger. These provide network services and are
bound to the network interface card, its IP address, and the configured port number. After you
deploy and start network triggers in Automation Manager, they start listening to the inbound
traffic port.

Firewalls protect computers form unauthorized attempts of incoming connections. NiceLabel
installer makes sure that inbound communication streams established to all ports owned by the
Automation Service are allowed in Windows Firewall.

WARNING: Automation Service owns ports configured for TCP/IP triggers, but not ports
defined for HTTP trigger and Web Service trigger. These ports are bound to ID 4
(SYSTEM) process and not to the Automation Service process.

Configure the firewall to allow communication on ports configured for HTTP and Web Service
triggers. To create an inbound rule, do the following:

 1. On the computer that is running NiceLabel Automation, in Start menu, select Control
Panel, select System and Security, and select Windows Firewall.

 2. In the navigation pane, select Advanced settings.

 3. In the Windows Firewall with Advanced Security window, in the navigation pane, select
Inbound Rules, and then in the Actions pane, select New Rule.

 4. On the Rule Type page, select Port, and click Next.

 5. On the Protocol and Ports page, select Specific local ports, and enter the port number
on which your HTTP or Web Service trigger runs.

 6. Click Next.

www.nicelabel.com 165

 7. On the Actions page, select Allow the connection, and click Next.

 8. On the Profile page, select the profiles, and click Next.

 9. On the Name page, enter a name for the rule, and click Finish.

Similar steps must be taken with other firewall software.

6.8 Using Secure Transport Layer (HTTPS)

TIP: The functionality from this topic is available in NiceLabel LMS Enterprise.

You can protect the inbound traffic to the HTTP Server Trigger and Web Service Trigger by
enabling the HTTPS support. HTTPS secures the transmission of the messages exchanged
over the network. The communication security uses X.509 certificates to encrypt the data
flowing between the parties. Your information remains confidential from prying eyes because
just the client and the NiceLabel Automation can decrypt the traffic. Even if some unauthorized
user does eavesdrop on the communication he would fail to understand the meaning of the
messages, because the traffic appears as a stream of random bytes.

It makes a good security practice to encrypt the communication in cases, such as:

 l You work with the sensitive and confidential data that must not be exposed to 3rd party
users.

 l The message must pass through networks that are outside of your control. For example,
this happens when you send data to Automation over the internet, and not from the local
network.

Enabling the secure transport layer (HTTPS)

To enable secure transport for your trigger, do the following.

In the Windows system:

 1. Obtain the X.509 certificate from the issuer of the digital certificates (certificate authority
- CA). You need a certificate type for the 'server authentication'.

NOTE: If you will self-generate the certificate, make sure to import the CA certificate in
the Trusted Authority store, so the CA signature can be verified on the server
certificate.

 2. Install the X.509 certificate in the system, where NiceLabel Automation is installed. Make
sure the certificate is visible to the user account under which you run NiceLabel Auto-
mation service. It is a good practice to install the certificate in the local computer store,
not the current user store. This will allow NiceLabel Automation to use the certificate
even if it is not running under your current logged-in user account.

www.nicelabel.com 166

 1. Open a Command Prompt window.

 2. Type mmc and press the ENTER key (make sure you are running it with the admin-
istrative privileges).

 3. On the File menu, click Add/Remove Snap In.

 4. In the Add Standalone Snap-in dialog box, select Certificates.

 5. Click Add.

 6. In the Certificates snap-in dialog box, select Computer account and click Next.

 7. In the Select Computer dialog box, click Finish.

 8. On the Add/Remove Snap-in dialog box, click OK.

 9. In the Console Root window, expand Certificates>Personal.

 10. Right-click Certificates folder and select All Tasks>Import.

 11. Follow the wizard to import the certificate.

 3. Retrieve the thumbprint of a certificate you have just imported.

 1. While still in the MMC double-click the certificate.

 2. In the Certificate dialog box, click the Details tab.

 3. Scroll through the list of fields and click Thumbprint.

 4. Copy the hexadecimal characters from the box. Remove the spaces between the
hexadecimal numbers. For example, the thumbprint "a9 09 50 2d d8 2a e4 14 33 e6
f8 38 86 b0 0d 42 77 a3 2a 7b" should be specified as "a909502d-
d82ae41433e6f83886b00d4277a32a7b" in code. This is certhash required in the
next step.

 4. Bind the certificate to the IP address and port where the trigger is running. This action
will enable the certificate on the selected port number.

Open the Command Prompt (make sure you are running it with the administrative
privileges) and run the following command:

netsh http add sslcert ipport=0.0.0.0:56000
certhash=7866c25377554ca0cb53bcdfd5ee23ce895bdfa2 appid={A6BF8805-1D22-
42C2-9D74-3366EA463245}

where:

 l ipport is the IP address-port pair, where the trigger is running. Leave the
IP address at 0.0.0.0 (local computer), but change the port number to match port
number in the trigger configuration.

 l certhash is the thumbprint (SHA hash) of the certificate. This has is 20 bytes long
and specified as a hex string.

www.nicelabel.com 167

 l appid is GUID of the owning application. You can use any GUID here, even the one
from the sample above.

In the trigger configuration:

 1. In your HTTP or Web Service trigger enable the option Secure connection (HTTPS).

 2. Reload the configuration in the Automation Manager.

Disabling the secure transport layer (HTTPS)

In the Windows system:

 1. Unbind the certificate from the IP address-port pair. Run the following command in the
Command Prompt (make sure you are running it with the administrative privileges):

netsh http delete sslcert ipport=0.0.0.0:56000

where:

 l ipport is the IP address-port pair, where the trigger is running and where you
bound the certificate

In the trigger configuration:

 1. In your HTTP or Web Service trigger disable the option Secure connection (HTTPS).

 2. Reload the configuration in the Automation Manager.

www.nicelabel.com 168

7 Running and Managing
Triggers
7.1 Deploying Configuration
When you have configured and tested the triggers in the Automation Builder, you have to
deploy configuration to the NiceLabel Automation service and start the triggers. At that time
the triggers become live and start monitoring defined events.

To deploy the configuration, use any of the following methods.

Deploy from Automation Builder
 1. Start Automation Builder.

 2. Load the configuration.

 3. Go to Configuration Items tab.

 4. Click the Deploy Configuration button in the Deploy ribbon group.
The configuration will be loaded inside the Automation Manager running on the same
machine.

 5. Start the triggers you want to make active.

If this configuration was already loaded, deployment will force its reload, keeping the active
status of the triggers.

Deploy from Automation Manager
 1. Start Automation Manager.

 2. Go to Triggers tab.

 3. Click +Add button and browse for the configuration on the disk.

 4. Start the triggers you want to make active.

Deploy from command-line

To deploy the configuration C:\Project\Configuration.MISX and run the trigger within
named CSVTrigger, do the following:

NiceLabelAutomationManager.exe ADD c:\Project\Configuration.MISX
NiceLabelAutomationManager.exe START c:\Project\Configuration.MISX CSVTrigger

For more information, see the topic Controlling the Service with Command-line Parameters.

www.nicelabel.com 169

7.2 Event Logging Options

WARNING: Some functionality in this topic requires purchase of NiceLabel LMS products.

NiceLabel Automation will log events to various destinations, dependent on its deployment
scenario. The first two logging features are available with every NiceLabel Automation product.

 l Logging to log database. Logging to internal log database is always enabled and logs all
events and all details. When viewing the logged information you can use filter to display
events matching the rules. For more information, see the topic Using Event Log.
The data is stored in the SQLite database. This is temporary log repository, the events
are removed from the database on a weekly basis. The housekeeping interval is con-
figurable in Options. The records of old events will be deleted from the database, but data-
base won't be compacted (vacuumed), so it might still occupy the disk space. To compact
it, use some 3rd party SQLite management software.

 l Logging to Windows Application Event Log. Important events are saved to the Win-
dows Application Event Log in case the NiceLabel Automation could not start , so you
have a secondary resource for logged events.

 l Logging to Control Center. Logging to Control Center is available in NiceLabel
LMS Enterprise and NiceLabel LMS Pro products. Control Center is Web-based
management console recording all events from one or more NiceLabel Automation
servers. The data is stored in the Microsoft SQL Server database. You can search in the
collected data and the application also supports automated alerts in case of certain
event, printer management, document storage, revision control system (versioning),
workflows and label reprint.

NOTE: For more information see Control Center user guide.

7.3 Managing Triggers
The application Automation Manager is the management part of the NiceLabel Automation
software. If you use Automation Builder for configuring the triggers, you will use Automation
Manager to deploy and run them in production environment. The application allows you to load
triggers from different configurations, see their live status, start/stop them and see execution
details in the log file.

You can change the view on the loaded configurations and their triggers. The last view is
remembered and is applied when you run Automation Manager the next time. When you enable
view by status, triggers from all open configurations that are in that status will be displayed
together. When you enable view by configurations, triggers from the selected configuration
will be displayed together, no matter what their status is. The trigger status is color-coded in
the trigger icon for easier identification.

www.nicelabel.com 170

The displayed trigger details will change in real time as the trigger events are detected. You can
see the information, such as trigger name, type of trigger, how many events have already been
processed, how many errors were detected and the time that passed since the last event. If
you hover your mouse above the number of already processed triggers, you will see the number
of trigger events waiting to be processed.

NOTE: The loaded configuration is cached in memory. If you make a change to the
configuration in Automation Builder, the Automation Manager will not automatically apply it.
To apply the change, you have to reload the configuration.

Loading configuration

To load the configuration, click the +Add button and browse for the configuration file (.MISX).
The triggers from the configuration will load in suspended state. You have to start triggers to
make them active. For more information, see the topic Deploying Configuration.

The list of loaded configurations and status for each trigger is remembered. If the server is
restarted from whatever reason, NiceLabel Automation Service will restore the trigger state
from before the restart.

Configuration reload and removal

When you update the configuration in Automation Builder and save it, the changes will not be
automatically applied in the Automation Manager. To reload the configuration, right-click the
configuration name, then select Reload Configuration. All triggers will be reloaded. If you have
file caching enabled, the reload will force synchronization off all files used by the triggers.

Starting / stopping triggers

When you load triggers from a configuration, their default state is stopped. To start the trigger,
click the Start button in the trigger area. To stop the trigger, click the Stop button. You can
select more triggers from the same configuration and start / stop all of them simultaneously.

You can also control starting/stopping from a command-line. For more information, see the topic
Controlling the Service with Command-line Parameters.

Handling trigger conflicts

Triggers can be in errors because of the following situations. You cannot start such trigger until
you resolve the problem.

 l Trigger not configured correctly or completely. In this case, the trigger is not con-
figured, mandatory properties are not defined, or actions defined for this printer are not
configured. You cannot start such trigger.

 l Trigger configuration overlaps with another trigger. Two triggers cannot monitor the
same event.

EXAMPLE: Two f ile t r iggers ca nnot monit or t he s a me f ile, t wo H TTP t r iggers ca nnot a ccept da t a on
t he s a me port . I f t r igger conf igura t ion ov er la ps wit h a not her t r igger , t he s econd t r igger will not run,
beca us e t he ev ent is a lrea dy ca pt ured by t he f irs t t r igger . For more inf orma t ion, s ee Log pa ne f or
t ha t t r igger .

www.nicelabel.com 171

Resetting the error status

When the trigger execution causes an error, the trigger icon will change to red color, trigger has
error status and the event details are logged to logging database. Even if all next events
complete successfully, the trigger will remain in error state until you confirm that you
understand the error and want to clear the status. To acknowledge the error, click the icon next
to the error counter in the trigger details.

Using notification pane

The notification pane is the area above the list of triggers in the Triggers tab where important
messages will display. The notification area will display application status messages, such as
"Trial mode" or "Trial mode expired", or warning messages, such as "Tracing has been enabled".

Viewing Logged data

Every trigger activity is logged in the database, including trigger start/stop events, successful
execution of action and errors encountered during processing. Click the Log button to see
logged events just for the selected trigger. For more information, see the topic Using Event
Log.

7.4 Using Event Log
All activities in NiceLabel Automation software are logged to a database for history and
troubleshooting. When you click the Log button in the Triggers tab, then events for that
particular trigger will display. The log pane will display information for all events that comply with
the defined filter.

Logging data is useful for troubleshooting. If the trigger or action cannot be executed, the
application records an error description in the log file that helps you identify and resolve the
problem.

NOTE: The default data retention time is 7 days and is configurable in the options. To
minimize log database size on busy systems you might want to reduce the retention period.

Filtering events

The configurable filters:

 l Configuration and triggers. Specifies which events to display, events from the selected
trigger, or events from all triggers from the selected configuration.

 l Logged period. Specifies the time frame in which the events occurred. Default is Last 5
minutes.

 l Event level. Specifies the type (importance) of the events you want to display. Error is
type of event that will break the execution. Warning is type of event where errors hap-
pen, but are configured to be ignored. Information is type of event that logs all non-erro-
neous information. The log level is configurable in the Options.

www.nicelabel.com 172

 l Filter by text. You can display all events that contain the provided string. Use this option
for troubleshooting busy triggers. The filter will be applied to the trigger description field.

Clearing the log database

You can clear the log from Automation Builder. To clear the log database, click Clear Log button.

WARNING: Use with caution, there is no turning back. This will remove ALL logged events
from the database, and is applied to all triggers not just to the current trigger.

www.nicelabel.com 173

8 Performance and Feedback
Options
8.1 Parallel Processing

TIP: The functionality from this topic is available in NiceLabel LMS Enterprise and NiceLabel
LMS Pro.

NiceLabel Automation product line has been developed to support parallel processing both for
the inbound and outbound processing. This ensures the maximum efficiency on any system,
where the software has been installed to. NiceLabel Automation can execute many tasks
simultaneously , while still preserving the order in which the triggers came in. The throughput of
label jobs is greatly dependent on the hardware where the software runs.

Inbound Parallel Processing

You can run many triggers on the same machine and they all will respond to changes in the
monitored events simultaneously. Each trigger remembers the data from its unprocessed
events in the queue list. This list will buffer incoming data in case that none of the print
processes is available at that moment. As soon as one print process becomes available, the first
job is taken from queue using FIFO (First In, First Out) principle. This ensures the correct order
of processing the inbound data. However, it does not ensure the FIFO principle for printing. See
the next paragraph.

NOTE: It's not just that you can run many triggers in parallel. Each trigger can also allow
concurrent connections. TCP/IP, HTTP, and Web Service triggers all accept concurrent
connections from many clients. Also, file trigger can be configured to monitor a set of files in
a folder, configurable by file mask.

Outbound Parallel Processing

Usually the result of the trigger is label print process. You want use data received by the trigger
and print it on the labels. NiceLabel Automation service runs print processes (aka "print
engines") in parallel in the background. Modern processors have two or more independent
central processing units called "cores". Multiple cores can run multiple instructions at the same
time, increasing overall speed of processing, in case NiceLabel Automation they will increase of
print job processing, and ultimately the label printing performance.

By default, each NiceLabel Automation product will run print process in a separate thread on
every core that is available in the machine. The more powerful CPU you have, the more
throughput is available. This maximizes the usage of the available CPU power. The software
installs with reasonable defaults where every available core accommodates one thread for print
processing, and under normal circumstances you never have to make any change. If you need to
make a change, see the topic Changing Multi-threaded Printing Defaults.

www.nicelabel.com 174

When you have many print processes available, the data from the first event can be printed by
one print process, while the data from the second event could be printed by a different print
process simultaneously, if a second print process is available at that time. If the second event
did not provide much data, the print process might provide the data for the printer faster than
the first print process, breaking the order. In such case, data from the second event could print
before data from the first event. To ensure FIFO principle also for the printing, see the topic
Synchronous Print Mode.

8.2 Caching Files
To improve the time-to-first label and performance in general NiceLabel Automation supports
file caching. When you load the labels, images and database data from network shares, you
might experience delays printing your labels. NiceLabel Automation must fetch all required files
before the printing process can begin.

There are two levels of caching that complement each other.

 l Memory cache. The memory cache consists of keeping the already used files in memory.
The labels that have been used at least once are loaded in the memory cache. When the
trigger requests print of the same label, the label is immediately available for printing pro-
cess. The memory cache is enabled by default. The contents of the memory cache will be
cleared for a particular configuration, when you remove or reload that configuration. The
label file is checked for changes for each Open Label action. If there is newer label avail-
able, it will be loaded automatically, replacing the old version in the cache.

NOTE: When a label is not in use for 8 hours, it is offloaded from the memory cache.

 l Persistent cache. The persistent cache stores data to disk and is intended for inter-
mediate term storage of files. Caching is managed per file object. When a file is being
requested from the network share, the service first verifies if the file is already present in
cache and uses it. If file is not in the cache, it will be fetched from the network share and
cached for future use. The cache service continuously updates the cache contents with
new versions of files. You can configure the time intervals for version checking in
Options.

Prolonging the Time Period for Label Offloading

After the label is first used, it is loaded in the memory cache and available for instant printing the
next time it is required. The memory cache housekeeping process will remove all labels that
haven't been in use for 8 hours.

To prolong the time interval in which the label will be offloaded from the memory cache, do the
following:

 1. Navigate to the NiceLabel Automation System folder.

%PROGRAMDATA%\NiceLabel\NiceLabel 2017

 2. Make a backup copy of the file product.config.

www.nicelabel.com 175

 3. Open product.config in a text editor. The file has an XML structure.

 4. Add the element Common/FileUpdater/PurgeAge.

 5. This parameter defines a number of seconds in which to keep the label in the memory
cache. NiceLabel Automation keeps a track of the time when each label was used for
printing the last time. When that time frame reaches the defined threshold, it is unloaded
from memory.

NOTE: Default value: 28800 (8 hours). The maximum value is 2147483647.

The file should have the following contents:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <Common>
 <FileUpdater>
 <PurgeAge>28800</PurgeAge>
 </FileUpdater>
 </Common>
...
</configuration>

 6. When you save the file, NiceLabel Automation Service will automatically apply the setting.

Enabling Persistent Cache

TIP: The functionality from this topic is available in NiceLabel LMS Enterprise.

To enable and configure the persistent cache, open the Option, select NiceLabel Automation
and enable Cache remote files.

 l Refresh cache files. Defines the time interval in minutes in which the files in the cache
will be synchronized with the files in the original folder. This is the time interval that you
allow the system to use the old version of the file.

 l Remove cache files when older than. Defines the time interval in days that will be used
to remove all files in cache that haven't been accessed that long.

NiceLabel Automation will use the following local folder to cache remote files:

%PROGRAMDATA%\NiceLabel\NiceLabel 2017\FileCache

NOTE: File caching supports label and picture file formats. After you enable file caching,
restart Automation service to make the changes take effect.

Forcing Reload of the Cache Content

NiceLabel Automation will automatically refresh the cache content upon the defined time
interval (default value is 5 minutes).

To manually force reloading of cache, do the following:

www.nicelabel.com 176

 1. Open Automation Manager.

 2. Locate the configuration containing the trigger, for which you want to force-reload labels.

 3. Right-click the configuration.

 4. Select Reload Configuration.

8.3 Error Handling
When an error occurs during the execution of some action, NiceLabel Automation will stop
executing all actions in the trigger. If you have some actions defined after the current action,
they will not be executed.

For example, the actions are defined as shown in the screenshot. If the action Set Printer fails,
because the invalid name or inaccessible printer was provided, the actions Print Label and
HTTP Request will not be executed. The action processing will stop at Set Printer, Automation
Manager will show the trigger in an error state and the trigger status feedback (if enabled) will
be in the terms of "wrong printer specified / printer not accessible".

However, in this particular case you don't want to use synchronous feedback (sent automatically
when enabled in the trigger supporting synchronous feedback). The status feedback must be
provided asynchronously with the action HTTP Request after the print job was created (or not).
When the print process has completed you want to update some application with the its status.
You will send a HTTP formatted message to that application.

In this case the HTTP Request action must be executed regardless of success of all the actions
in the list above it. You have to enable the option Ignore failure for all actions that are above
the HTTP Request action. The option is available in the action's Execution and error handling
options.

www.nicelabel.com 177

If a particular action fails, NiceLabel Automation will start executing the next action in the
previous level of hierarchy.

EXAMPLE: I f t he a ct ion Set Printer in lev el 1.1 f a ils , t he execut ion will not cont inue wit h a ct ion Print
Lab el in lev el 1.2 beca us e it w ill lik ely f a il a s well, but will cont inue wit h t he a ct ion H T T P Req ues t in
lev el 2, beca us e it is t he next a ct ion in t he higher-lev el hiera rchy .

The same logic can be implemented for looping actions, such as Use Data Filter, Loop and For
Each Record, where you iterate through all members in the list. If processing of one member
fails from whatever reason, by default NiceLabel Automation will stop processing all other
members and report an error. If you enable Ignore failure option, the processing of the failed
member will stop, but NiceLabel Automation will continue with the next member. At the end the
error is reported anyway.

8.4 Synchronous Print Mode

TIP: The functionality from this topic is available in NiceLabel LMS Enterprise and NiceLabel
LMS Pro.

Asynchronous Print Mode
The default NiceLabel Automation operation mode is the asynchronous mode. It's a form of
printing, when a trigger sends the data for printing and then closes a connection to the print
subsystem. The trigger does not wait for the result of the print process and will not receive any
feedback. Immediately after data is sent, the trigger is ready to accept a new incoming data
stream. Asynchronous mode boosts the trigger performance and increases the number of
triggers that can be processed in a time frame. Each print process has a buffer in front of it,
where the trigger feeds the print requests into. The buffer will accommodate for the trigger
spikes and make sure no data is lost.

If the error occurs during processing, it will still be logged in Automation Manager (and NiceLabel
Control Center, if you use it), but the trigger itself is not aware of it. When using asynchronous
print mode, you cannot define conditional actions that would execute, if the trigger execution is
in error.

www.nicelabel.com 178

Synchronous Print Mode
On the contrary, the synchronous mode doesn't break a connection to the print process. In this
mode the trigger sends the data for printing and keeps the connection to the print subsystem
established as long as it is busy execution actions. When the print process completes
(successfully or with some error), the trigger will receive feedback about the status. You can use
this information inside the actions that are defined in the same trigger and make decision to
execute some other actions in case error occurred. You can also send the print job status back
to the data-issuing application. For more information, see the topic Print Job Status Feedback.

EXAMPLE: Y ou ca n report t he pr int ing s t a t us t o t he ER P a pplica t ion t ha t prov ided t he da t a .

You will use synchronous mode when you want to receive status feedback inside the trigger, or
when you want to ensure FIFO printing mode (the data received in the trigger events is printed
in the same order in which it was received).

NOTE: When the trigger runs in the synchronous print mode, it will communicate with one
print process only. Enabling synchronous print mode ensures the FIFO method of
manipulating events in the outbound direction (printing). The multi-core processing by
default cannot ensure the printing order.

Enabling the Synchronous Print Mode

The synchronous mode is definable per-trigger. To enable synchronous mode in a trigger, do
the following:

 1. Open the properties of the trigger.

 2. Go to Settings tab.

 3. Select the Other option.

 4. In section Feedback from the Print Engine, enable the option Supervised printing.

8.5 Print Job Status Feedback

TIP: The functionality from this topic is not all available in every NiceLabel Automation
product.

The application providing data for label printing into NiceLabel Automation might expect to
receive information about print job status. The feedback can be as simple as "All OK" in case of
successful print job generation, or detailed error description in case of any problem. From
performance reasons NiceLabel Automation disables feedback possibility by default. This will

www.nicelabel.com 179

ensure high-throughput printing as trigger doesn't care about the execution of the print
process. The errors will be logged to log database, but the trigger will not handle them.

You can also use this method to send feedback about other data the trigger can collect, such as
status of the network printers, number of jobs in the printer spooler, list of labels in a folder, list
of variables in the specified label file, and many more.

NOTE: To enable the feedback support from the print engine, you have to enable
synchronous print mode. For more information, see the topic Synchronous Print Mode.

You can provide the status feedback in one of two methods.

The trigger provides feedback about print job status (Synchronous feedback)

Some triggers have built-in feedback possibility by design. When synchronous print mode is
enabled, the trigger is internally aware of the job status. The client can send the data into
trigger, keep the connection open and wait for the feedback. To use this feedback method, you
must use the trigger supporting it.

When the error happens in any of the actions, the internal variable LastActionErrorDesc will
contain the detailed error message. You can send its value as-is or customize it.

For more information, see details of the respective trigger.

 l Web Service Trigger. This trigger supports feedback by design. The WSDL (Web
Service Description Language) document describes details about the Web Service inter-
face and how to enable feedback. You can use the default reply that will send back the
error description in case the print action failed. Or, you can customize the response and
send back content of any variable. The variable itself can contain any data, including label
preview or label print job (binary data).

 l HTTP Server Trigger. This trigger supports feedback by design. NiceLabel Automation will
use the standard HTTP response codes to indicate the print job status. You can cus-
tomize the HTTP response and send back content of any variable. The variable itself can
contain any data, including label preview or label print job (binary data).

 l TCP/IP Server Trigger. This trigger supports feedback, but not automatically. In this case
you must configure the data-providing client not to break the connection once the data is
sent. When print process completes, the next action in the list can be with the setting
Reply to sender. You can feedback over the established still-open connection.

The action provides the feedback about print job status (Asynchronous feedback)

For triggers that don't natively support feedback or if you want to send feedback messages
during the trigger processing, you can define an action that will send feedback to some
destination. In this case, the data-providing application can close the connection as soon as the
trigger data is delivered.

EXAMPLE: Y ou us ed TC P / I P t r igger t o ca pt ure da t a . The client dropped connect ion immedia t ely
a f t er it s ent t he da t a wa s s ent , s o we ca nnot reply ov er t he s a me connect ion. I n s uch ca s es , y ou
ca n us e s ome ot her cha nnel t o s end f eedba ck . Y ou ca n conf igure a ny of t he out bound-connect iv it y
a ct ions , s uch a s , , , a nd ot her . Y ou would pla ce s uch a ct ion under t he a ct ion.

www.nicelabel.com 180

If you want to send feedback only for specific status, such as "error occurred", you can use the
following methods.

 l Using condition on action. The print job status is exposed in two internal variables
(LastActionErrorID and LastActionErrorDesc). First one will contain the error ID
or will contain value 0 in case of no errors. The second one contains the detailed error
message. You can use values of these variables in conditions on actions that you want to
execute in case of errors. For example, you would use the action HTTP Request after
printing and send feedback just in case some error occurred. You would do the following:

 1. Open trigger properties.

 2. In ribbon group Variable, click the Internal Variables button and enable variable
LastActionErrorID.

 3. Go to Actions tab.

 4. Add the action Send Data to HTTP.

 5. Inside action's properties expand the Show execution and error handling
options.

 6. For Condition, enter the following. The action with this condition will execute only
when error occurred and LastErrorActionID contains the error ID (any value
greater than 0). By default, the conditions runs using VB Script syntax.

LastErrorActionID > 0

 7. You will also have to enable the option Ignore failure on each action you expect to
fail. This will instruct Automation not to stop executing actions entirely, but
continue with the next action in the same hierarchical level.

NOTE: For more information see topic Error Handling.

 l Using action Try. Action Try eliminates need for coding conditions. The action provides
you with two placeholders. Placeholder Do will contain the actions that you want to run. If
any error occurs when running them, the execution will break and actions in the On error
placeholder will be executed. You would use outbound-connectivity actions in this place-
holder, to provide a print job status feedback. For more information, see the topic .

8.6 Using Store/Recall Printing Mode
Store and Recall printing mode optimizes the printing process. It increases printer response by
reducing the amount of data that needs to be sent during repetitive printing tasks.

With store and recall mode activated, NiceLabel Automation does not need to resend the
complete label data for each printout. Instead, the labels (templates) are stored in the printer
memory. Fixed objects are stored as such, while placeholders are defined for the variable
objects. The NiceLabel Automation only sends data for the label's variable objects and recall
commands. The printer applies the received data in the placeholders on the stored label and

www.nicelabel.com 181

prints the label (by recalling it from the memory). Typically, a few bytes of data are sent to the
printer, compared to a few kilobytes as would be the case during normal printing.

The action consists of two processes:

 l Store label. During this process, the application creates a description of the label tem-
plate formatted in the selected printer's command language. When done, the application
sends the created command file to the printer memory and stores it. You can store label
from the label designer or from NiceLabel Automation using the action .

NOTE: The label must have the store and recall printing mode defined in its properties
before you can store it to printer.

 l Recall (print) label. A label stored in the printer memory is printed out immediately.
Using the recall process, NiceLabel Automation creates another command file to instruct
the printer which label from its memory should be printed. The actual amount of data sent
to the printer depends on the current situation. For fixed labels without any variable con-
tents, the recall command file only contains the recall label command. For variable labels
that contain variable fields, the command file includes the values for these variables and
the recall label command.

To recall a label from NiceLabel Automation just use one of the usual printing actions.
When executed, the action analyzes the label and enables the appropriate printing mode:
normal print or recall print, as defined in the label.

WARNING: Before activating this mode, make sure the appropriate printer driver is selected
for the label printer. Not all label printers have the ability to use the store and recall printing
mode. The printer driver for which the label was created in the label designer must also be
installed on the machine where NiceLabel Automation is running.

8.7 High-availability (Failover) Cluster

TIP: The functionality from this topic is available in NiceLabel LMS Enterprise.

NiceLabel Automation supports Microsoft high-availability (fail-over) cluster. A fail-over cluster is
a group of independent computers that work together to increase the availability of label
printing through NiceLabel Automation. The clustered servers (called nodes) are connected by
physical cables and by software. If one or more of the cluster nodes fail, other nodes begin to
provide service (a process known as fail-over). In addition, the clustered roles are proactively
monitored to verify that they are working properly. If they are not working, they are restarted or
moved to another node. The clients providing data will connect to the IP address belonging to
the cluster, not node IP addresses.

To enable NiceLabel Automation for high-availability, you must do the following:

 l Set up Microsoft Failover Clustering feature in your Windows Servers.

 l Install NiceLabel Automation on each node.

www.nicelabel.com 182

 l Enable the failover cluster support in NiceLabel Automation properties on each node.

Do the following:

 1. Open File>Tools>Options.

 2. Select Cluster Support section.

 3. Enable Failover Cluster Support.

 4. Browse for the folder, located outside of both nodes, but still accessible with full
access privileges to NiceLabel Automation software. The important system files
that both nodes need will be copies to this folder.

 l Configure the cluster to start NiceLabel Automation on the second node in case the mas-
ter node is down.

8.8 Load-balancing Cluster

TIP: The functionality from this topic is available in NiceLabel LMS Enterprise.

NiceLabel Automation supports Microsoft load-balancing cluster. A load-balancing cluster is a
group of independent computers that work together to increase the high-availability and
scalability of label printing through NiceLabel Automation. The clustered servers (called nodes)
are connected by physical cables and by software. The incoming requests for label printing are
distributed among all nodes in a cluster. The clients providing data will connect to the IP
address belonging to the cluster, not node IP addresses.

NOTE: You can use the TCP/IP-based triggers with the load-balancing cluster, this includes
TCP/IP Server Trigger, HTTP Server Trigger and Web Service Trigger.

To enable NiceLabel Automation for load-balancing, you must do the following:

 l Set up Microsoft Load-balancing Clustering feature in your Windows Servers.

 l Install NiceLabel Automation on each node.

 l Load the same configuration files in Automation Manager on each node.

www.nicelabel.com 183

9 Understanding Data
Structures
9.1 Understanding Data Structures
This chapter demonstrates the basic data structure that are frequently used in automation
scenarios. We have to read the structures, extract the values of interest and print them on the
label. Each of the mentioned samples is used in the sample configurations that install with the
software. For more information, see the topic Examples.

 l Text Database

 l Compound CSV

 l Binary Files

 l Legacy Data

 l Command Files

 l XML Data

9.2 Binary Files
Binary files are files that don't contain plain text only, but include binary characters, such as
control codes (characters below ASCII code 32). The Unstructured Data Filter has support for
binary characters. You can use binary characters to define fields positions, and you can also use
binary characters for field values.

Typical example would be data export from legacy system, where data for each label is delimited
with a Form Feed character <FF>.

Example
In this case trigger captures the print stream. The yellow-highlighted data section must be
extracted from the stream and sent to a different printer. The filter is configured to search for
<FF> as field-end position.

<ESC>%-12345X@PJL USTATUSOFF
@PJL INFO STATUS
@PJL USTATUS DEVICE=ON
<ESC>%-12345X<ESC>%-12345X

^^02^L
^^02^O0270
D11
H15

www.nicelabel.com 184

PE
SE
Q0001
131100000300070001-001-001
1e42055007500500001001019
1322000001502859
W
E
<FF><ESC>%-12345X<ESC>%-12345X@PJL USTATUSOFF
<ESC>%-12345X

For more information, see the topic Examples.

9.3 Command Files
Command files are plain text files containing commands that will be executed one at a time from
top to bottom. NiceLabel Automation supports native command files, as well as Oracle and
SAP XML command files. For more information see the topics Command Files Specifications,
Oracle XML Specifications and SAP AII XML Specifications.

Example
The label label2.nlbl will print to CAB A3 203DPI printer.

LABEL "label2.nlbl"
SET code="12345"
SET article="FUSILLI"
SET ean="383860026501"
SET weight="1,0 kg"
PRINTER "CAB A3 203DPI"
PRINT 1

For more information, see the topic Examples.

9.4 Compound CSV
Compound CSV is a text file containing the CSV structure as well as multi-line header in other
structure. The contents cannot be parsed with one filter alone. You have to configure two filters,
one Structured Text Filter for fields in CSV section and one Unstructured Data Filter for fields in
the header section. In actions you would define two actions and execute both filters on the
received data.

Example
The data from line 3 until the end of document has CSV structure and is parsed by Structured
Text filter. The data in first two lines doesn't have any particular structure and is parsed by
Unstructured Data filter.

OPT PEPPQPF0 NL004002 ;F75-T EP77319022891-001-001
OP T2 zg2lbprt .p 34.1.7.7 G OLF+ la bel pr int
" pr int er" ;" la bel" ;" lbl_qt y " ;" f _logo" ;" f _f ield_1" ;" f _f ield_2" ;" f _f ield_3"
"Pro d uctio n01"; "lab el . nlb l"; "1"; "lo g o -nicelab el . p ng "; "ABC S1161P"; "Po s t: "; "1"
"Pro d uctio n01"; "lab el . nlb l"; "1"; "lo g o -nicelab el . p ng "; "ABC S1162P"; "Po s t: "; "2"
"Pro d uctio n01"; "lab el . nlb l"; "1"; "lo g o -nicelab el . p ng "; "ABC S1163P"; "Po s t: "; "3"

www.nicelabel.com 185

"Pro d uctio n01"; "lab el . nlb l"; "1"; "lo g o -nicelab el . p ng "; "ABC S1164P"; "Po s t: "; "4"
"Pro d uctio n01"; "lab el . nlb l"; "1"; "lo g o -nicelab el . p ng "; "ABC S1165P"; "Po s t: "; "5"

For more information, see the topic Examples.

9.5 Legacy Data
Legacy data is unstructured or semi-structured export from legacy applications. This is not
CSV or XML structure of data, so you must use Unstructured Data Filter and define the positions
of fields of interest. The filter will extract field values so you can print them on labels.

Example
There is no rule about the structure. Each field must be configured manually.

 H AWLEY AN N IE ER 12345678 AB C X Y Z
 9876543210
 P R E OP 07/ 11/ 12 F 27/06/47 St . Ken H os pit a l 3

 G 015 134 557 564 9 A- 08/ 11/ 12 LD B S F- P B 1
 G 015 134 654 234 0 A- 08/ 11/ 12 LD B S F- P B 2
 G 015 134 324 563 C A- 08/ 11/ 12 LD B S F- P B 3

 Ant ibody Screen: Nega t iv e
 St ore Sa mple :
 SAMP LE VALI D FOR 24 H OUR S, NO TR ANSFUSI ON H I STOR Y SUP P LI ED

 07/ 11/ 12 B ,31.0001245.E O R h(D) P os P H O
 R LUH B T

For more information, see the topic Examples.

9.6 Text Database
Text database in an alias for text file with structured fields, such as CSV (comma separated file),
or file with fixed-width fields. In either case, you can click the Import Data Structure button and
follow the wizard to import the fields. If you have data file with delimited structure and number of
fields vary from one copy to another, you can enable the Dynamic structure feature and let
NiceLabel Automation handle the data extraction and mapping to variables automatically. For
more information, see the topic Enabling Dynamic Structure.

www.nicelabel.com 186

Example
 l File with delimited fields. The first line in the file can contain field names that filter can

import.

Product_ID;Code_EAN;Product_desc;Package
CAS006;8021228110014;CASONCELLI ALLA CARNE 250G;6
PAS501;8021228310001;BIGOLI 250G;6
PAS502GI;8021228310018;TAGLIATELLE 250G;6
PAS503GI;8021228310025;TAGLIOLINI 250G;6
PAS504;8021228310032;CAPELLI D'ANGELO 250G;6

 l File with fixed-width fields.

CAS006 8021228110014 CASONCELLI ALLA CARNE 250G 6
PAS501 8021228310001 BIGOLI 250G 6
PAS502GI 8021228310018 TAGLIATELLE 250G 6
PAS503GI 8021228310025 TAGLIOLINI 250G 6
PAS504 8021228310032 CAPELLI D'ANGELO 250G 6

For more information, see the topic Examples.

9.7 XML Data

TIP: The functionality from this topic is available in NiceLabel LMS Enterprise and NiceLabel
LMS Pro.

XML stands for eXtensible Markup Language. XML tags are not predefined, you are free to
define your own tags that will describe your data. XML is designed to be self-descriptive.

XML structure is defined by elements, attributes (and their values), and text (element text).

Examples
Oracle XML

Processing of Oracle XML is built-into the software. You don't have to configure any filters to
extract data, just run the built-in action . For more information on the XML structure, see the
topic Oracle XML Specifications.

<?xml v ers ion=" 1.0" s t a nda lone=" no" ?>
<la bels _FOR MAT=" cas e. nlb l " _P R I NTER NAME=" Pro d uctio n01" _QUANTI TY =" 1" >
 <la bel>
 <v a r ia ble na me=" C ASEI D " >0000000123</ v a r ia ble>
 <v a r ia ble na me=" C AR TONTY P E" / >
 <v a r ia ble na me=" OR D ER KEY " >0000000534</ v a r ia ble>
 <v a r ia ble na me=" B UY ER P O" / >
 <v a r ia ble na me=" R OUTE" ></ v a r ia ble>
 <v a r ia ble na me=" C ONTAI NER D ETAI LI D " >0000004212</ v a r ia ble>
 <v a r ia ble na me=" SER I ALR EFER ENC E" >0</ v a r ia ble>
 <v a r ia ble na me=" FI LTER VALUE" >0</ v a r ia ble>
 <v a r ia ble na me=" I ND I C ATOR D I G I T" >0</ v a r ia ble>
 <v a r ia ble na me=" D ATE" >11/19/2012 10: 59: 03</ v a r ia ble>
 </ la bel>
</ la bels >

www.nicelabel.com 187

General XML

If the XML structure in not natively supported in the software, you will have to define the
XML filter and define rules to extract data. For more information, see the topic Understanding
Filters.

<?xml v ers ion=" 1.0" encoding=" ut f -8" ?>
<a s x:a ba p xmlns :a s x=" ht t p:/ / www.s a p.com/ a ba pxml" v ers ion=" 1.0" >
 <a s x:v a lues >
 <NI C ELAB EL_JOB >
 <TI MESTAMP >20130221100527. 788134</ TI MESTAMP >
 <USER >PG RI</ USER >
 <I T_LAB EL_D ATA>
 <LB L_NAME>g o o d s _receip t. nlb l</ LB L_NAME>
 <LB L_P R I NTER >Pro d uctio n01</ LB L_P R I NTER >
 <LB L_QUANTI TY >1</ LB L_QUANTI TY >
 <MAKTX >MASS ON E</ MAKTX >
 <MATNR >28345</ MATNR >
 <MEI NS>KG </ MEI NS>
 <WD ATU>19. 01. 2012</ WD ATU>
 <QUANTI TY >1</ QUANTI TY >
 <EX I D V>012345678901234560</ EX I D V>
 </ I T_LAB EL_D ATA>
 </ NI C ELAB EL_JOB >
 </ a s x:v a lues >
</ a s x:a ba p>

NiceLabel XML

Processing of NiceLabelXML is built-into the software. You don't have to configure any filters to
extract the data, just run the built-in action . For more information on the XML structure, see the
topic XML Command File.

<nice_comma nds >
 <la bel na me=" lab el1. nlb l " >

 <s es s ion_print _job pr int er=" C AB A3 203DPI" s k ip=0 job_na me=" jo b name 1" pr int _t o_
f ile=" fi lename 1" >
 <s es s ion qua nt it y =" 10" >
 <v a r ia ble na me=" v a r ia ble na me 1" >variab le value 1</ v a r ia ble>
 </ s es s ion>
 </ s es s ion_print _job>

 <pr int _job pr int er=" Zeb ra R-402” qua nt it y =" 10" s k ip=0 ident ica l_copies =1 number_of _s et s =1 job_
na me=" jo b name 2" pr int _t o_f ile=" fi lename 2" >
 <v a r ia ble na me=" v a r ia ble1" >1</ v a r ia ble>
 <v a r ia ble na me=" v a r ia ble2" >2</ v a r ia ble>
 <v a r ia ble na me=" v a r ia ble3" >3</ v a r ia ble>
 </ pr int _job>
 </ la bel>
</ nice_comma nds >

For more hands-on information on how to work with XML data, see the topic Examples.

www.nicelabel.com 188

10 Reference and
Troubleshooting
10.1 Command File Types
10.1.1 Command Files Specifications
Command files contain instructions for the print process and are expressed with the NiceLabel
commands. Commands are executed one at a time from the beginning until the end of the file.
The files support Unicode formatting, so you can include the multi-lingual contents. Command
files come in three different flavors.

10.1.2 CSV Command File
The commands available in the CSV command files are a subset of NiceLabel commands. You
can use the following commands: LABEL, SET, PORT, PRINTER and PRINT.

The CSV stands for Comma Separated Values. This is the text file where values are delimited by
the comma (,) character. The text file can contain Unicode value (important for multi-language
data). Each line in the CSV command file contains the commands for one label print action.

The first row in the CSV command file must contain the commands and variable names. The
order of commands and names is not important, but all records in the same data stream must
follow the same structure. Variable name-value pairs are extracted automatically and sent to
the referenced label. If the variable with the name from CSV does not exist on the label, no error
message is displayed.

Sample CSV Command File
The sample presents the structural view on the fields that you can use in the CSV command file.

@Label,@Printer,@Quantity,@Skip,@IdenticalCopies,NumberOfSets,@Port,Product_ID,
Product_Name
label1.nlbl, CAB A3 203 DPI, 100, , , , , 100A, Product 1
label2.nlbl, Zebra R-402, 20, , , , , 200A, Product 2

CSV Commands Specification

The commands in the first line of data must be expressed with at (@) character. The fields
without @ at the beginning are names of variables, and they will be extracted with their values
as name-value pairs.

 l @Label. Specifies the label name to use. It's a good practice include label path and file-
name. Make sure the service user can access file. For more information, see the topic
Access to Network Shared Resources in NiceLabel Automation user guide. A required
field.

www.nicelabel.com 189

 l @Printer. Specifies the printer to use. It overrides the printer defined in the label. Make
sure the service user can access the printer. For more information, see the topic Access
to Network Shared Resources. Optional field.

 l @Quantity. Specifies the number of labels to print. Possible values: numeric value,
VARIABLE or UNLIMITED. For more information, see the topic in NiceLabel Automation
user guide. A required field.

 l @Skip. Specifies the number of labels to skip at the beginning of the first printed page.
This feature is useful if you want to re-use the partially printed sheet of labels. Optional
field.

 l @IdenticalCopies. Specifies the number of label copies that should be printed for each
unique label. This feature is useful when printing labels with data from database or when
you use counters, and you need label copies. Optional field.

 l @NumberOfSets. specifies the number of times the printing process should repeat.
Each label set defines the occurrence of the printing process. Optional field.

 l @Port. Specified the port name for the printer. You can override the default port as spe-
cified in the printer driver. You can also use it to redirect printing to file. Optional field.

 l Other field names. All other fields define names of variables from the label. The field con-
tents will be saved to the variable of the same name as its value.

10.1.3 JOB Command File
JOB command file is text file containing NiceLabelcommands. The commands execute in order
from the top to bottom. The commands usually start with LABEL (to open label), then SET (to set
variable value) and finally PRINT (to print label). For more information about the available
commands, see the topic Using Custom Commands.

Sample JOB Command File
This JOB file will open label2.nlbl, set variables and print one label. Because no PRINTER
command is used to redirect printing, the label will print using the printer name as defined in the
label.

LABEL "label2.nlbl"
SET code="12345"
SET article="FUSILLI"
SET ean="383860026501"
SET weight="1,0 kg"
PRINT 1

10.1.4 XML Command File
The commands available in the XML Command files are subset of NiceLabel commands. You can
use the following commands: LOGIN, LABEL, SET, PORT, PRINTER, SESSIONEND,
SESSIONSTART and SESSIONPRINT. The syntax differs a little bit when used in XML file.

The root element in the XML Command file is <Nice_Commands>. The next element that must
follow is <Label>, and it specifies the label to use. To start label printing there are two

www.nicelabel.com 190

methods: print labels normally using the element <Print_Job>, or print labels in session using
the element <Session_Print_Job>. You can also change the printer to which the labels will
print, and you can set the variable value.

Sample XML Command File
The sample presents the structural view on the elements and their attributes as you can use
them in the XML command file.

<nice_commands>
 <label name="label1.nlbl">

 <session_print_job printer="CAB A3 203DPI" skip=0 job_
name="job name 1" print_to_file="filename 1">
 <session quantity="10">
 <variable name="variable name 1" >variable value 1</variable>
 </session>
 </session_print_job>

 <print_job printer="Zebra R-402” quantity="10" skip=0 identical_
copies=1 number_of_sets=1 job_name="job name 2" print_to_file="filename 2">
 <variable name="variable1" >1</variable>
 <variable name="variable2" >2</variable>
 <variable name="variable3" >3</variable>
 </print_job>
 </label>
</nice_commands>

XML Commands Specification

This section contains the description of the XML Command file structure. There are several
elements that contain attributes. Some attributes are required, other are optional. Some
attributes can occupy pre-defined values only, for other you can specify the custom values.

 l <Nice_Commands>. This is a root element.

 l <Label>. Specifies the label file to open. If the label is already opened, it won't be opened
again. The label file must be accessible from this computer. For more information, see the
topic Access to Network Shared Resources. This element can occur several times within
the command file.

 l Name. This attribute contains the label name. You can include the path to the label
name. Required.

 l <Print_Job>. The element that contains data for one label job. This element can occur
several times within the command file.

 l Printer. Use this attribute to override the printer defined in the label. The printer
must be accessible from this computer. For more information, see the topic Access
to Network Shared Resources. Optional.

 l Quantity. Use this attribute to specify the number of labels to print. Possible val-
ues: numeric value, VARIABLE or UNLIMITED. For more information on parameters,
see the topic Print Label. Required.

www.nicelabel.com 191

 l Skip. Use this attribute to specify how many labels to skip at the beginning. This
feature is useful if you print sheet of labels to laser printer, but the sheet is partial
already printed. For more information, see the topic . Optional.

 l Job_name. Use this attribute to specify the name of your job file. The specified
name is visible in the print spooler. For more information, see the topic . Optional.

 l Print_to_file. Use this attribute to specify the file name where you want to save
the printer commands. For more information, see the topic Redirect Printing to
File. Optional.

 l Identical_copies. use this attribute to specify the number of copies you need for
each label. For more information, see the topic Print Label. Optional.

 l <Session_Print_Job>. The element that contains commands and data for one or more
sessions. The element can contain one or more <Session> elements. It considers ses-
sion print rules. You can use this element several times within the command file. For avail-
able attributes look up the attributes for the element <Print_Job>. All of them are valid,
you just cannot use the quantity attribute. See the description of the element <Ses-
sion> to find out how to specify label quantity in session printing.

 l <Session>. The element that contains data for one session. When printing in session, all
labels are encoded into a single print job and are sent to the printer as one job.

 l Quantity. Use this attribute to specify the number of labels to print. Possible val-
ues: numeric value, string VARIABLE, or string UNLIMITED. For more information on
parameters, see the topic . Required.

 l <Variable>. The element that sets the value of variables on the label. This element can
occur several times within the command file.

 l Name. The attribute contains the variable name. Required.

XML Schema Definition (XSD) for XML Command File

<?xml version="1.0" encoding="utf-8"?>
<xs:schema targetNamespace="http://tempuri.org/XMLSchema.xsd" elementFormDefault=
"qualified" xmlns="http://tempuri.org/XMLSchema.xsd" xmlns:mstns="http://tempuri.
org/XMLSchema.xsd" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="nice_commands">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="label" maxOccurs="unbounded" minOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="print_job" maxOccurs="unbounded" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="database" maxOccurs="unbounded" minOccurs="
0">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="name" type="xs:string" use="requi
red" />
 </xs:extension>

www.nicelabel.com 192

 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="table" maxOccurs="unbounded" minOccurs="0">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="name" type="xs:string" use="requi
red" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="variable" maxOccurs="unbounded" minOccurs="
0">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="name" type="xs:string" use="requi
red" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="quantity" type="xs:string" use="required"
 />
 <xs:attribute name="printer" type="xs:string" use="optional" />
 <xs:attribute name="skip" type="xs:integer" use="optional" />
 <xs:attribute name="identical_
copies" type="xs:integer" use="optional" />
 <xs:attribute name="number_of_
sets" type="xs:integer" use="optional" />
 <xs:attribute name="job_
name" type="xs:string" use="optional" />
 <xs:attribute name="print_to_
file" type="xs:string" use="optional" />
 <xs:attribute name="print_to_file_
append" type="xs:boolean" use="optional" />
 <xs:attribute name="clear_variable_
values" type="xs:boolean" use="optional" />
 </xs:complexType>
 </xs:element>
 <xs:element name="session_print_
job" maxOccurs="unbounded" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="database" maxOccurs="unbounded" minOccurs="
0">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="name" type="xs:string" use="requi
red" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="table" maxOccurs="unbounded" minOccurs="0">

www.nicelabel.com 193

 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="name" type="xs:string" use="requi
red" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="session" minOccurs="1" maxOccurs="unbounde
d">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="variable" minOccurs="0" maxOccurs="un
bounded">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="name" type="xs:string" use=
"required" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="quantity" type="xs:string" use="requi
red" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="printer" type="xs:string" use="optional" />
 <xs:attribute name="skip" type="xs:integer" use="optional" />
 <xs:attribute name="job_
name" type="xs:string" use="optional" />
 <xs:attribute name="print_to_
file" type="xs:string" use="optional" />
 <xs:attribute name="print_to_file_
append" type="xs:boolean" use="optional" />
 <xs:attribute name="clear_variable_
values" type="xs:boolean" use="optional" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required" />
 <xs:attribute name="close" type="xs:boolean" use="optional" />
 <xs:attribute name="clear_variable_
values" type="xs:boolean" use="optional" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="quit" type="xs:boolean" use="required" />
 </xs:complexType>
 </xs:element>
</xs:schema>

www.nicelabel.com 194

10.1.5 Oracle XML Specifications
Oracle defined the XML format so that the XML contents can be understood, parsed and then
printed as a label. A XML Document Type Definition (DTD) defines the XML tags that will be
used in the XML file. Oracle will generate XML files according to this DTD and the 3rd party
software will translate the XML according to this DTD.

To execute such command file, use the Run Oracle XML Command File action.

XML DTD
The following is the XML DTD that is used in forming the XML for both the synchronous and
asynchronous XML formats, it defines the elements that will be used in the XML file, a list of
their attributes and the next level elements.

<!ELEMENT labels (label)*>
<!ATTLIST labels _FORMAT CDATA #IMPLIED>
<!ATTLIST labels _JOBNAME CDATA #IMPLIED>
<!ATTLIST labels _QUANTITY CDATA #IMPLIED>
<!ATTLIST labels _PRINTERNAME CDATA #IMPLIED>
<!ELEMENT label (variable)*>
<!ATTLIST label _FORMAT CDATA #IMPLIED>
<!ATTLIST label _JOBNAME CDATA #IMPLIED>
<!ATTLIST label _QUANTITY CDATA #IMPLIED>
<!ATTLIST label _PRINTERNAME CDATA #IMPLIED>
<!ELEMENT variable (#PCDATA)>
<!ATTLIST variable name CDATA #IMPLIED>

Sample Oracle XML
This is the Oracle XML providing data for one label (there is just one <label> element).

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE labels SYSTEM "label.dtd">
<labels _FORMAT ="Serial.nlbl" _QUANTITY="1" _PRINTERNAME="" _JOBNAME="Serial">
 <label>
 <variable name= "item">O Ring</variable>
 <variable name= "revision">V1</variable>
 <variable name= "lot">123</variable>
 <variable name= "serial_number">12345</variable>
 <variable name= "lot_status">123</variable>
 <variable name= "serial_number_status">Active</variable>
 <variable name= "organization">A1</variable>
 </label>
</labels>

When executing this sample Oracle XML file the label serial.nlbl will print with the following
variable values.

Variable name Variable value
item O Ring
revision V1
lot 123
serial_number 12345

www.nicelabel.com 195

lot_status 123
serial_number_status Active
organization A1

The label will print in 1 copy, with the spooler jobname Serial. The printer name is not
specified in the XML file, so the label will print to the printer as defined in the label template.

10.1.6 SAP AII XML Specifications
NiceLabel Automation can present itself as RFID device controller, capable of encoding RFID
tags and printing labels. For more information about SAP AII XML specifications, see the
document SAP Auto-ID Infrastructure Device Controller Interface from SAP web page.

To execute such command file, use the Run SAP AII XML Command File action.

Sample SAP AII XML
This is the SAP AII XML providing data for one label (there is just one <label> element).

<?xml version="1.0" encoding="UTF-8"?>
<Command xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="Command.xsd">
 <WriteTagData readerID="DEVICE ID">
 <Item>
 <FieldList format="c:\SAP Demo\SAP label.nlbl" jobName="Writer_
Device20040929165746" quantity="1">
 <Field name="EPC">00037000657330</Field>
 <Field name="EPC_TYPE">SGTIN-96</Field>
 <Field name="EPC_
URN">urn:autoid:tag:sgtin:3.5.0037000.065774.8</Field>
 <Field name="PRODUCT">Product</Field>
 <Field name="PRODUCT_DESCRIPTION">Product description</Field>
 </FieldList>
 </Item>
 </WriteTagData>
</Command>

When executing this sample SAP AI XML file the label c:\SAP Demo\SAP label.nlbl will
print with the following variable values.

Variable name Variable value
EPC 00037000657330
EPC_TYPE SGTIN-96
EPC urn:autoid:tag:sgtin:3.5.0037000.065774.8
PRODUCT Product
PRODUCT_DESCRIPTION Product description

The label will print in 1 copy, with the spooler job name Writer_Device2004092916574. The
printer name is not specified in the XML file, so the label will print to the printer as defined in the
label template.

www.nicelabel.com 196

10.2 Custom Commands
10.2.1 Using Custom Commands
NiceLabel commands are used in command files to control label printing. NiceLabel Automation
executes the command within command files from top to bottom. For more information, see the
topic Command Files Specifications.

You can use the specific custom command, when it is available in your NiceLabel Automation
product as an action.

NOTE: For example, you can use SETPRINTPARAM, if you can see the action Set Print
Parameter (product level Pro and Enterprise).

NiceLabel Commands Specification

COMMENT

;

When developing command file it is good practice to document your commands. This will help
you decode what the script really performs, when you will look at the code after some time. Use
semicolon (;) on the beginning of the line. Everything following the semicolon will be treated as
comment and will not be processed.

CLEARVARIABLEVALUES

CLEARVARIABLEVALUES

This command resets variable values to their default values.

CREATEFILE

CREATEFILE <file name> [, <contents>]

This command will create a text file. You can use it to signal to some third party application that
print process has begun or has ended, dependent on the location where you put the command.
Use UNC syntax for network resources. For more information, see the topic Access to Network
Shared Resources.

DELETEFILE

DELETEFILE <file name>

Deletes the specified file. Use UNC syntax for network resources. For more information, see the
topic Access to Network Shared Resources.

EXPORTLABEL

www.nicelabel.com 197

EXPORTLABEL ExportFileName [, ExportVariant]

The command is implemented to automate the "Export to printer" command that is available in
the label designer. The label is exported directly to the printer and stored in the memory for off-
line printing. The user can recall the label with keyboard on the printer or sending a command
file to the printer. The same functionality is available also with the action .

NOTE: To specify the label for exporting, use the command LABEL first.

 l ExportFileName. The parameter is mandatory and defines the file name of a generated
printer commands.

 l ExportVariant. Some printers support multiple export variants. When manually exporting,
the user can select the export variant in the dialog. With the EXPORTLABEL command
you must specify which export variant you want to use. The variants are visible in the label
designer, when you enable the Store/Recall printing mode.

The first variant in the list has the value 0. The second variant has the value 1, etc.

If you do not specify any variant type, value 0 is used as default.

For more information about off-line printing, see topic Using Store/Recall Printing Mode.

IGNOREERROR

IGNOREERROR <on> [,<off>]

Specifies that the error occurring in the JOB file will not terminate the print process, if the
following errors occur:

 l Incorrect variable name is used

 l Incorrect value is sent to the variable

 l Label does not exist / is not accessible

 l Printer does not exist / is not accessible

LABEL

LABEL <label name> [,<printer_name>]

The command opens the label to print. If the label is already loaded, it will not be re-opened. You
can include the path name. Enclose the label name in double quotes, if the name or path
contains spaces. Use UNC syntax for network resources. For more information, see the topic
Access to Network Shared Resources.

The optional printer_name specifies the printer, for which the label will be opened. Use this
setting if you want to override the printer name that is saved in the label template. If the driver
for the provided printer name is not installed or not available, the command will raise an error.

MESSAGEBOX

www.nicelabel.com 198

MESSAGEBOX <message> [,<caption>]

Logs the custom message into the trigger log. If the message contains space characters or
commas, you have to enclose the text in double quotes (").

PORT

PORT <file name> [, APPEND]

This command overrides port as defined in the printer driver and redirect printing to a file. If file
path or file name contain spaces, enclose the value in double quotes ("). Use UNC syntax for
network resources. For more information, see the topic Access to Network Shared Resources.

The parameter APPEND is optional. By default the file will be overwritten. Use this parameter to
append data into the existing file.

Once you use a command PORT in the JOB file it will be valid until the next PORT command, or
until the end of file (whichever comes first). If you use PRINTER command after the PORT
command has been executed, the PORT setting will overwrite the port defined for the selected
printer. If you want to use the actual port that is defined for the selected printer, you have to use
another PORT command with empty value, such as PORT = "".

PRINT

PRINT <quantity> [,<skip> [,<identical label copies> [,number of label sets]]]

This command starts the print process.

 l Quantity. Specifies the number of labels to print.

 l <number>. Specified number of labels will print.

 l VARIABLE. Specifies that some label variable is defined as variable quantity and
will contain the number labels to print. The label will determine how many labels to
print.

 l UNLIMITED. If you use a database to acquire values for objects, unlimited printing
will print as many labels as there are record in the database. If you do not use a
database, the maximum number of labels that thermal printer internally supports
will be printed.

 l Skip. Specifies the number of labels you want to skip on the first page. The parameter is
used for printing labels on sheets of paper. When the part of the page has already been
used, you can reuse the same sheet by shifting the start location of the first label.

 l Identical label copies. Specifies how many copies of the same label must print.

 l Number of label sets. Specifies the number of times the whole printing process should
repeat itself.

NOTE: Make sure the quantity values are provided as the numeric value, not string value. Do
not enclose the value in the double quotes.

www.nicelabel.com 199

PRINTER

PRINTER <printer name>

This command overrides the printer as defined in the label file. If the printer name contains
space characters, you have to enclose it in double quotes (").

Use the printer name as displayed in the status line in the label design application. Printer
names are usually the same as the printer names in Printers and Faxes from Control Panel, but
not always. When you are using network printers, you might see the name displayed in syntax
\\server\share.

PRINTJOBNAME

PRINTJOBNAME

This command specifies the print job name you will see in Windows Spooler. If name contains
space characters or commas, you have to enclose the value in double quotes (").

SESSIONEND

SESSIONEND

This command closes print stream. Also see SESSIONSTART.

NOTE: SESSIONEND must be sent as the only item in Send Custom Command action. If you
would like to send additional commands, use separate Send Custom Command actions.

SESSIONPRINT

SESSIONPRINT <quantity> [,<skip>]

This command prints the currently referenced label and adds it into the currently open session-
print stream. You can use multiple SESSIONPRINT commands one after another and join the
referenced labels in single print stream. The stream will not close until you close it with the
command SESSIONEND. The meaning of quantity and skip parameters is the same as with
NiceCommand PRINT. Also see SESSIONSTART.

 l Quantity. Specifies the number of labels to print.

 l Skip. Specifies the number of labels you want to skip on the first page. The parameter is
used for printing labels on sheets of paper. When the part of the page has already been
used, you can reuse the same sheet by shifting the start location of the first label.

SESSIONSTART

SESSIONSTART

This command initiates the session-print type of printing.

www.nicelabel.com 200

The three session-print-related commands (SESSIONSTART, SESSIONPRINT, SESSIONEND)
are used together. When you use command PRINT, every label data will be sent to the printer in
a separate print job. If you want to join label data for multiple labels into print stream, you should
use the session print commands. You must start with the command SESSIONSTART, followed
with any number of SESSIONPRINT commands and in the end the command SESSIONEND.

Use these commands to optimize label printing process. Printing labels coming from one print
job is much faster than printing labels from a bunch of print jobs.

There some rules you have to follow so the session print will not break.

 l You cannot change the label within a session.

 l You cannot change the printer within a session.

 l You must set values for all variables from the label within a session, even if some of the
variables will have empty values.

SET

SET <name>=<value> [,<step> [,<number or repetitions>]]

This command assigns the variable name with value. The variable must be defined on the label,
or error will be raised. If the variable isn't on the label, an error will occur. Step and number of
repetitions are parameters for counter variables. These parameters specify the counter
increment and the number labels before the counter changes value.

If value contains spaces or comma characters, you must enclose the text in double quotes (").
Also see TEXTQUALIFIER.

If you want to assign multi-line value, use \r\n to encode newline character. \r is replaced with
CR (Carriage Return) and \n is replaced with LF (Line Feed).

Be careful when setting values to variables that provide data for pictures on the label, as
backslash characters might be replaced with some other characters.

EXAMPLE: I f y ou a s s ign a v a lue " c:\ My P ict ures \ ra w.jpg" t o t he v a r ia ble, t he " \ r" w ill be repla ced
wit h C R cha ra ct er .

SETPRINTPARAM

SETPRINTPARAM <paramname> = <value>

This command allows you to set fine-tune printer settings just before printing. The supported
parameter for printer settings (paramname) are:

 l PAPERBIN. Specifies the tray that contains label media. If the printer is equipped with
more than just one paper / label tray, you can control which is used for printing. The name
of the tray should be acquired from the printer driver.

 l PRINTSPEED. Specifies the printing speed. The acceptable values vary from one printer
to the other. See printer's manuals for exact range of values.

www.nicelabel.com 201

 l PRINTDARKNESS. Specifies the printing darkness / contrast. The acceptable values vary
from one printer to the other. See printer's manuals for exact range of values.

 l PRINTOFFSETX. Specifies the left offset for all printing objects. The value for parameter
must be numeric, positive or negative, in dots.

 l PRINTOFFSETY. Specifies the top offset for all printing objects. The value for parameter
must be numeric, positive or negative, in dots.

 l PRINTERSETTINGS.Specifies the custom printer settings to be applied to the print job.
The parameter requires the entire DEVMODE for the target printer, provided in a
Base64-encoded string. The DEVMODE contains all parameters from the printer driver at
once (speed, darkness, offsets and other). For more information, see topic
Understanding printer settings and DEVMODE inMissing variable referenceUser Guide.

NOTE: The Base64-encoded string must be provided inside double quotes (").

TEXTQUALIFIER

TEXTQUALIFIER <character>

Text-qualifier is the character that embeds data value that is assigned to a variable. Whenever
data value includes space characters, it must be included with text-qualifiers. The default text
qualifier is a double quote character ("). Because double quote character is used as shortcut for
inch unit of measure, sometimes it is difficult to pass the data with inch marks in the JOB files.
You can use two double quotes to encode one double quote, or use TEXTQUALIFIER.

Example

TEXTQUALIFIER %
SET Variable = %EPAK 12"X10 7/32"%

10.3 Access To Network Shared Resources
This topic defines best practice steps when using network shared resources.

 l User privileges for service mode. The execution component of NiceLabel Automation
runs in service mode under specified user account inheriting access privileges of that
account. For NiceLabel Automation to be able to open label files and user printer drivers,
the associated user account must have granted the same privileges. For more inform-
ation, see the topic Running in Service Mode.

 l UNC notation for network shares. When accessing the file on a network drive, make
sure to use the UNC syntax (Universal Naming Convention) and not the mapped drive let-
ters. UNC is a naming convention to specify and map network drives. NiceLabel Auto-
mation will try to replace the drive-letter syntax with the UNC syntax automatically.

EXAMPLE: I f t he f ile is a cces s ible a s G:\Labels\label.nlbl, ref er t o it in UNC not a t ion a s
\\server\share\Labels\label.nlbl (where G : dr iv e is ma pped t o \\server\share) .

www.nicelabel.com 202

 l Notation for accessing files in Control Center. When you open the file in the Docu-
ment Storage inside Control Center, you can use the HTTP notation as http://server-
name:8080/label.nlbl, or WebDAV notation as
\\servername@8080\DavWWWRoot\label.nlbl.

Additional notes:

 l The user account used to run NiceLabel Automation service will be used to get files
from the Document Storage. This user must be configured in Control Center Con-
figuration to have access to files in the Document Storage.

 l The WebDAV access can only be used with Windows user authentication in Con-
trol Center.

NOTE: The Document Storage is available with products NiceLabel LMS Enterprise
and NiceLabel LMS Pro.

 l Printer drivers availability. To print labels to network shared printer, you will have to
make the printer driver available on the server where NiceLabel Automation is installed
on. Make sure the user account that NiceLabel Automation Service runs under has access
to the printer driver. If the network printer was just installed on the machine, NiceLabel
Automation might not see it until your restart the Service. To allow automatic notification
of new network printer drivers, you have to enable the appropriate inbound rule in the
Windows firewall. For more information, see Knowledge Base article KB 265.

10.4 Document Storage And Versioning Of
Configuration Files
Document Storage is a functionality of NiceLabel Control Center. It enables the NiceLabel
Control Center to perform as a shared file repository on the server, where users can store their
files, retrieve them, and control their revisions.

Document Storage contextual tab enables you to perform document storage actions straight
from Automation Builder. This makes accessing and opening the Automation file in NiceLabel
Control Center unnecessary.

NOTE: This contextual tab requires connection with NiceLabel Control Center.
LMS Enterprise license is mandatory for such configurations.

Revisioning group allows you to perform the available document storage actions:

 l Check Out: checks out the file from NiceLabel Control Center document storage and
makes it available for editing. The checked-out file is marked and locked for editing for
any other user. All other users will see the current revision of the file, while the author
already works on a new draft.

www.nicelabel.com 203

http://kb.nicelabel.com/index.php?t=faq&id=265

NOTE: After opening a document from the document storage (File > Open >
Document Storage), the editing commands remain disabled until you check out the
document.

 l Check In: checks the file to NiceLabel Control Center document storage after the editing
is done. When you check in the file, its revision number increments by one. The entered
comment is added to file log.

 l Discard Checkout: discards checkout of the current file and gives other users full access
to the file.

WARNING: If you click Discard Checkout, all changes since the last file checkout will
be lost.

 l Document Storage: opens document storage location of the connected NiceLabel Con-
trol Center.

10.5 Accessing Databases
Whenever NiceLabel Automation must get the data from some database, you must make sure
that the necessary database driver is installed in the Windows system. The database drivers
are provided by the company developing the database software. The driver that you install must
match the bitness of your Windows system. NiceLabel software will always run in the bitness of
your Windows system.

32-bit Windows
If you have 32-bit Windows, you can only install 32-bit database drivers. The same database
driver will be used to configure the trigger in Automation Builder and to execute trigger
execution in NiceLabel Automation Service. All NiceLabel Automation components will run as
32-bit applications.

64-bit Windows
If you have 64-bit Windows, you can install 64-bit or 32-bit database drivers. The applications
that are running in 64-bit will use 64-bit database drivers. The applications that are running in
32-bit will use 32-bit database drivers.

By default, Automation Service runs as 64-bit process. As such, it will use 64-bit database
drivers to connect to make a database connection. When the 64-bit database drivers are not
available on the system where Automation Service is running, the database connection task will
offload to the NiceLabel Proxy process, which always run as 32-bit process.

10.6 Automatic Font Replacement
You might design your label templates to print text objects formatted as built-in printer fonts.
However, when printing such label to a different kind or printer, the selected fonts might not be
available on the new printer. The new printer probably supports an entirely different set of
internal fonts. The fonts might look alike, but are available under a different name.

www.nicelabel.com 204

The similar problem might occur when the Truetype font that is used in the label is not installed
on the target machine, where NiceLabel Automation will print labels.

NiceLabel Automation can be configured to automatically replace the fonts used on the label
with compatible fonts. You can configure the font mapping based the font names. When the
original font is not found, NiceLabel Automation will try to use the first available replacement
font as defined in the mapping table. If no suitable replacement font is found, Arial Truetype font
will be used.

NOTE: If you configure the font replacement feature, the mapping rules will execute when
the printer on the label is changed.

WARNING: The configuration of font replacement will not be preserved during the software
upgrade, so make sure you perform a backup prior to upgrade.

Configuring the Font Mapping

To configure the custom font mapping, do the following:

 1. Open File Explorer and navigate to the following folder:

%PROGRAMDATA%\NiceLabel\NiceLabel 2017

 2. Open the file fontmapping.def in your favorite text XML editor.

 3. Inside the element FontMappings, create a new element with a custom name.

 4. Inside the new element, create at least two elements with name Mapping.

 l Value of the first element Mapping must contain name of the original font.

 l Value of the second element Mapping must contain name of the replacement font.

NOTE: There can be additional Mapping elements with new font names. If the
first replacement font is not available, NiceLabel Automation will try the next. If
no replacement fonts are available, Arial Truetype will be used instead.

Sample Mapping Configuration

In this example, two mappings are defined.

 l The first mapping will convert any Avery font into matching Novexx font. For example
font Avery YT100 will be replaced with Novexx YT100, font Avery 1 will be replaced
with Novexx 1. If the Novexx font is not available, Arial Truetype will be used.

 l The second mapping will convert Avery YT100 into Novexx YT104. If that font is not
available, then font Zebra 0 will be used. If that font is also not available Arial Truetype will
be used.

 l The second mapping will override the first one.

<?xml v ers ion=" 1.0" encoding=" ut f -8" ?>

www.nicelabel.com 205

 <Av ery Nov exx>

 <Ma pping>Av ery </ Ma pping>

 <Ma pping>Nov exx</ Ma pping>

 </ Av ery Nov exx>

 <Text R epla cement >

 <Ma pping>Av ery Y T100</ Ma pping>

 <Ma pping>Nov exx Y T104</ Ma pping>

 <Ma pping>Zebra 0</ Ma pping>

 </ Text R epla cement >

</ Font Ma ppings >

10.7 Changing Multi-threaded Printing Defaults

TIP: The functionality from this topic is available in NiceLabel LMS Enterprise and NiceLabel
LMS Pro.

Every NiceLabel Automation product can take advantage of multiple cores inside the processor.
Each core will be used to run a print process. Half of the number of cores are used for
processing concurrent normal threads and the other half for processing concurrent session-
print threads.

NOTE: Under normal circumstances you never have to change the default settings. Make
sure you know what you are doing by changing these defaults.

To modify the number of the concurrent print threads, do the following:

 1. Open file product.config in text editor.
The file is here:

%PROGRAMDATA%\NiceLabel\NiceLabel 2017\product.config

 2. Change the values for elements MaxConcurrentPrintProcesses and
MaxConcurrentSessionPrintProcesses.

<configuration>
 <IntegrationService>
 <MaxConcurrentPrintProcesses>1</MaxConcurrentPrintProcesses>
 <MaxConcurrentSessionPrintProcesses>1</MaxConcurrentSessionPrintPro
cesses>

www.nicelabel.com 206

 </IntegrationService>
</configuration>

 3. Save the file. NiceLabel Automation will automatically update the service with new num-
ber of print threads.

10.8 Compatibility With NiceWatch Products
NiceLabel Automation can load the trigger configurations that were defined in one of the
NiceWatch products. In majority of cases you can run NiceWatch configuration in NiceLabel
Automation without any modification.

NiceLabel Automation products are using new .NET-based print engine optimized for
performance and low memory footprint. The new print engine does not support each label
design option that is available in the label designer. Each new release of NiceLabel Automation
is closing the gap, but you might still experience some unavailable features.

Resolving Incompatibility Issues

NiceLabel Automation will also warn you if you try to print existing label templates that contain
design functionality, not available in the new print engine.

If there are incompatibilities with the NiceWatch configuration file or label templates, you will be
notified about:

 l Compatibility with trigger configuration. While opening the NiceWatch configuration
(.MIS file), NiceLabel Automation checks it against the supported features. Not all features
from NiceWatch products are available in NiceLabel Automation. Some are not available at
all and some are configured differently. If the MIS file contains some not supported fea-
tures, you will see a list such features and they will be removed from the configuration.

In this case you have to open the .MIS file in Automation Builder and resolve the
incompatibility issues. You will have to use NiceLabel Automation functionality to re-
create the removed configuration.

 l Compatibility with the label templates. If your existing label templates contain func-
tionality not supported in the print engine provided by NiceLabel Automation, you will see
error messages in the Log pane. This information is visible in the Automation Builder
(when designing triggers) or in Automation Manager (when running the triggers).

In this case you have to open the label file in the label designer and remove the
unsupported features from the label.

NOTE: For more information about incompatibility issues with NiceWatch and label
designers, see Knowledge Base article KB251.

Opening NiceWatch Configuration for Editing

You can open the existing NiceWatch configuration (.MIS file) in Automation Builder and edit it in
Automation Builder. You can save the configuration only in the .MISX format.

www.nicelabel.com 207

http://kb.nicelabel.com/index.php?t=faq&id=251

To edit the NiceWatch configuration, do the following:

 1. Start Automation Builder.

 2. Select File>Open NiceWatch File.

 3. In Open dialog box, browse for the NiceWatch configuration file (.MIS file).

 4. Click OK.

 5. If the configuration contains unsupported functionality, a list of unsupported features will
be displayed. They will be removed from the configuration.

Opening NiceWatch Configuration for Execution

You can open NiceWatch configuration (.MIS file) in Automation Manager without conversion to
the NiceLabel Automation file format (.MISX file). If the triggers from NiceWatch are compatible
with NiceLabel Automation, you can start using them right away.

To open and deploy NiceWatch configuration, do the following:

 1. Start Automation Manager.

 2. Click +Add button.

 3. In Open dialog box, change the file type into NiceWatch Configuration.

 4. Browse for the NiceWatch configuration file (.MIS file).

 5. Click OK.

 6. In the Automation Manager, the trigger from the selected configuration will display.
To start the trigger, select it and click the Start button.

NOTE: If there is some compatibility problem with the NiceWatch configuration, you will have
to open it in Automation Builder and reconfigure it.

10.9 Controlling The Service With Command-
line Parameters
This chapter provides the information how to start or stop the Automation Services and how to
control which configurations are loaded and which triggers are active, all from the command
prompt.

NOTE: Make sure you are running Command Prompt in the elevated mode (with
administrative permissions). Right-click cmd.exe and then select Run as Administrator.

Starting and Stopping the Services

To start both services from the command line use the following commands:

net start NiceLabelProxyService2017
net start NiceLabelAutomationService2017

www.nicelabel.com 208

If you want to open configuration file when the Service is started, use:

net start NiceLabelAutomationService2017 [Configuration]

For example:

net start NiceLabelAutomationService2017 "c:\Project\configuration.MISX"

To stop services use the following commands:

net stop NiceLabelProxyService2017
net stop NiceLabelAutomationService2017

Managing the Configurations and Triggers

NiceLabel Automation service can be controlled with the Automation Manager command-line
parameters. The general syntax to use command-line parameters is as follows.

NiceLabelAutomationManager.exe COMMAND Configuration [TriggerName] [/SHOWUI]

NOTE: Note: include the full path to the configuration name, don't use the file name alone.

To ADD Configuration
The provided configuration will be loaded into service. No trigger will be started. If you include
the /SHOWUI parameter, Automation Manager UI will be started.

NiceLabelAutomationManager.exe ADD c:\Project\configuration.MISX /SHOWUI

To RELOAD Configuration
The provided configuration will be reloaded into service. The running status of all triggers will be
preserved. Reloading the configuration forces the refresh of all files cached for this
configuration. For more information, see the topic Caching Files. If you include the /SHOWUI
parameter, Automation Manager UI will be started.

NiceLabelAutomationManager.exe RELOAD c:\Project\configuration.MISX /SHOWUI

To REMOVE Configuration
The provided configuration and all its triggers will be unloaded from service.

NiceLabelAutomationManager.exe REMOVE c:\Project\configuration.MISX

To START A Trigger
The referenced trigger will be started in the already loaded configuration.

NiceLabelAutomationManager.exe START c:\Project\configuration.MISX CSVTrigger

To STOP A Trigger
The referenced trigger will be stopped in the already loaded configuration.

www.nicelabel.com 209

NiceLabelAutomationManager.exe STOP c:\Project\configuration.MISX CSVTrigger

Status Codes

Status codes provide the feedback of command-line execution. To enable the status codes
return, run the use the following command-line syntax.

start /wait NiceLabelAutomationManager.exe COMMAND Configuration [TriggerName]
[/SHOWUI]

The status codes is captured in the system variable errorlevel. To see the status code,
execute the following command.

echo %errorlevel%

List of status codes:

Status Code Description
0 No error occurred
100 Configuration file name not found
101 Configuration cannot be loaded
200 Trigger not found
201 Trigger cannot start

Providing User Credentials for Application Authentication

If you have configured the NiceLabel LMS Enterprise or NiceLabel LMS Pro system to use
Application Authentication (not Windows Authentication), you have to provide the user
credentials with enough permissions to manage the configurations and triggers.

There are two command-line parameters you can use:

 l -USER:[username]. Where [username] is a placeholder for the actual user name.

 l -PASSWORD:[password]. Where [password] is a placeholder for the actual password.

10.10 Database Connection String Replacement
A configuration file for Automation Service can include database connection string replacement
commands.

User can configure the service to replace certain parts of connection string while the trigger is
running. One instance of Automation can use same configuration, but actually use different
database server for database related functionality. This enables the user to configure triggers in
development environments and run them in the production environment without any changes
in the configuration.

The connection string replacement logic is defined in the file DatabaseConnections.Config
in the Automation system folder.

www.nicelabel.com 210

%PROGRAMDATA%\NiceLabel\NiceLabel 2017

The configuration file defines from-to pairs in the XML structure. The <Replacement> element
contains one <From> and one <To> element. During the trigger execution the "from" string is
replaced with the "to" string. You can define as many <Replacement> elements as necessary.

The configuration file is not installed with Automation. You can add it yourself using the structure
from the example. The same search & replace rules will be applied to all triggers running in the
Automation Service on this machine.

NOTE: Make sure to restart both Automation Services, after you have added the config file
into the Automation System folder.

Example

The existing trigger contains a connection to the Microsoft SQL server mySQLServer and the
database myDatabase. You want to update the connection string to use the database NEW_
myDatabase on the server NEW_mySQLServer.

Two Replacement elements have to be defined, one to change the server name and one to
change the database name.

<?xml v ers ion=" 1.0" encoding=" UTF-8" ?>

<D a t a ba s eC onnect ionR epla cement s >

 <R epla cement >

 <From>D a t a Source=my SQLServ er</ From>

 <To>D a t a Source=NEW_my SQLServ er</ To>

 </ R epla cement >

 <R epla cement >

 <From>I nit ia l C a t a log=my D a t a ba s e</ From>

 <To>I nit ia l C a t a log=NEW_my D a t a ba s e</ To>

 </ R epla cement >

</ D a t a ba s eC onnect ionR epla cement s >

10.11 Entering Special Characters (Control
Codes)
Special characters or control codes are binary characters that are not represented on the
keyboard. You cannot type them the way normal characters are because they must be encoded

www.nicelabel.com 211

using a special syntax. You would need to use such characters when communicating with serial-
port devices, receiving data on TCP/IP port, or when working with binary files, such as print files.

There are two methods of entering special characters:

 l Enter the characters manually using one of the described syntax examples:

 l Use syntax <special_character_acronim>, such as <FF> for FormFeed, or
<CR> for CarriageReturn, or <CR><LF> for newline.

 l Use syntax <#number>, such as <#13> for CarriageReturn or <#00> for null char-
acter.

For more information, see the topic List of Control Codes.

 l Insert the listed characters. Objects that support special characters as their content
have an arrow button on their right side. The button contains a shortcut to all of the avail-
able special characters. When you select a character in the list, it is added to the content.
For more information, see topic Using Compound Values.

10.12 List Of Control Codes
ASCII Code Abbreviation Description
1 SOH Start of Heading
2 STX Start of Text
3 ETX End of Text
4 EOT End of Transmission
5 ENQ Inquiry
6 ACK Acknowledgment
7 BEL Bell
8 BS Back Space
9 HT Horizontal Tab
10 LF Line Feed
11 VT Vertical Tab
12 FF Form Feed
13 CR Carriage Return
14 SO Shift Out
15 SI Shift In
16 DLE Data Link Escape
17 DC1 XON - Device Control 1
18 DC2 Device Control 2
19 DC3 XOFF - Device Control 3
20 DC4 Device Control 4
21 NAK Negative Acknowledgment
22 SYN Synchronous Idle

www.nicelabel.com 212

23 ETB End Transmission Block
24 CAN Cancel
25 EM End of Medium
26 SUB Substitute
27 ESC Escape
28 FS File Separator
29 GS Group Separator
30 RS Record Separator
31 US Unit Separator
188 FNC1 Function Code 1
189 FNC2 Function Code 2
190 FNC3 Function Code 3
191 FNC4 Function Code 4

10.13 Licensing And Printer Usage
Depending on the license type, your NiceLabel product might be limited to a number of printers
you can use simultaneously. In case of a multi-user license NiceLabel keeps a track of the
number and names of different printers you have used for printing on all NiceLabel clients in
your environment. The unique printer identifier is a combination of printer driver name (not
printer name), printer location and port.

"To use a printer" means that one of the below listed actions has been taken within an
Automation configuration:

 l Print Label

 l Set Printer

 l Send Data To Printer

 l Preview Label

 l Define Printer Settings

 l Set Print Parameter

Each of these actions signalizes that a printer has been used. The associated printer is added
to the list of used printers and remains listed for 7 days from the last usage. To remove a printer
from the list, do not use it for a period of 7 days and it will be automatically removed. The
software will display the Last Used information so you know when the 7-day will pass for each
printer. You can bind a printer seat with a specific printer, by clicking the Reserved check box.
This will ensure the printer availability at all times.

WARNING: If exceed the number of seats defined by your license, the software enters a 30-
day grace period. While in this mode, the number or allowed printers is temporarily
incremented to twice the number of purchased seats.

www.nicelabel.com 213

Grace period provides plenty of time to resolve the licensing problems without any printing
downtime or loss of the ability to design labels. This is usually an effect of replacing printers in
your environment, when the old and new printers are used simultaneously, or when you add
new printers. If you do not resolve license violation within the grace period, the number of
available printers will reduce to the number purchase seats starting from the recently used
printers in the list.

TIP: To learn more about NiceLabel 2017 licensing, read the dedicated document.

10.14 Running In Service Mode
NiceLabel Automation runs as Windows service and is designed not to require any user
intervention when processing data and executing actions. The service is configured to start
when the operating system is booted and will run in the background as long as Windows is
running. NiceLabel Automation will remember the list of all loaded configurations and active
triggers. The last-known state is automatically restored when the server restarts.

The service runs with the privileges of the user account selected during the installation. The
service will inherit all access permissions of that user account, including access to network
shared resources, such as network drives and printer drivers. Use the account of some existing
user with sufficient privileges, or even better, create a dedicate account just for NiceLabel
Automation.

You can manage the service by launching the Services from the Windows Control Panel. In
modern Windows operating system you can also manage the service in the Services tab in
Windows Task Manager. You would use Services to execute tasks such as:

 l Start and stop the service

 l Change the account under which the service logs on

Good Practices Configuring the User Account for Service
 l While possible it is considered a bad practice to run the service under the Local System

Account. This is a predefined local Windows account with extensive privileges on the
local computer, but is usually without privileges to access network resources. NiceLabel
Automation requires full access to the account's %temp% folder, which might not be avail-
able for Local System Account.

 l If creating a new user account for NiceLabel Automation service, make sure that you log
in Windows with this new user at least once. This will make sure that the user account is
fully created. E.g. when you log in, the temporary folder %temp% will be created.

 l Disable the requirement to occasionally change password for this user account.

 l Make sure the account has permissions to Log on as service.

 l Run the Service in x64 (64-bit) mode.

Accessing Resources

NiceLabel Automation inherits all privileges from the Windows user account under which the

www.nicelabel.com 214

http://www.nicelabel.com/Redirect?Id=48&Link=www.nicelabel.com

service runs. The service executes all actions under that account name. Label can be opened, if
the account has permissions to access the file. Label can be printed, if the account has access
to the printer driver.

When using revision control system and approval steps inside Document Storage in Control
Center, you have to make service's user account member of the 'Print-Only' profile, such as
Operator. Then configure access permissions for specific folder to read-only mode or profile
Operator. This will make sure that NiceLabel Automation will only use the approved labels, not
drafts.

For more information, see the topic Access to Network Shared Resources.

Service Mode: 32-bit vs 64-bit

NiceLabel Automation can run on 32-bit (x86) and 64-bit (x64) systems natively. The execution
mode is auto-determined by the Windows operating system. NiceLabel Automation will run in
64-bit mode on 64-bit Windows and it will run in 32-bit mode on 32-bit Windows.

 l Printing. There are benefits running as 64-bit process, such as direct communication
with the 64-bit printer Spooler service on 64-bit Windows. This eliminates the infamous
problems with the SPLWOW64.EXE, which is a 'middleware' for 32-bit applications to use
64-bit printer spooler service.

 l Database access. Running as 64-bit process NiceLabel Automation Service requires 64-
bit version of the database drivers to be able to access the data. For more information,
see the topic Accessing Databases.

NOTE: If you don't have 64-bit database drivers for your database, you cannot use NiceLabel
Automation in 64-bit mode. You have to install it to 32-bit system, or force it into 32-bit mode.

Forcing x86 Operation Mode on Windows x64

There might be reasons to run NiceLabel Automation as 32-bit application on 64-bit Windows.

To force NiceLabel Automation into x86 mode on Windows x64, do the following:

 l Select Start -> Run.

 l Type in regedit and press Enter

 l Navigate to the key

HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\services\NiceLabelAutomationService2017

 l Change the file name to NiceLabelAutomationService2017.x86.exe, keeping the exist-
ing path.

 l Restart NiceLabel Automation service.

WARNING: It is not recommended to change the NiceLabel Automation service mode. If you
will do it anyway, make sure you execute extensive trigger testing prior to deployment in
the production environment.

www.nicelabel.com 215

10.15 Search Order For The Requested Files
When NiceLabel Automation tries to load a specified label file or image file, it will try to locate the
requested file in the various locations.

NiceLabel Automation will try to locate the file in this order:

 1. Check, if the file exists in the location as specified by the action.

 2. Check, if the file exists in the same folder as the configuration file (.MISX).

 3. Check, if the label file exists in .\Labels folder (for graphic files check .\Graphics folder).

 4. Check, if the label file exists in ..\Labels folder (for graphic files check ..\Graphics folder).

 5. Check if the file exists in the global Labels folder (Graphics folder for graphics files) as con-
figured in the options.

If the file is not found in any of these locations, then the action fails and the error is raised.

10.16 Securing Access To Your Triggers
In some deployments you want to set up secured access to the triggers. NiceLabel Automation
allows you to enable security measures in order to allows access to triggers from trustworthy
network devices. The security configuration depends on the trigger type. Some of the trigger
types by design allow configuration of security access. For all triggers that are based on the
TCP/IP protocol, you can further define all details inside the Windows Firewall.

Configuring Firewall

When you use TCP/IP based triggers, such as TCP/IP Server Trigger, HTTP Server Trigger or
Web Service Trigger you must make sure to allow external applications connecting to the
triggers. Each trigger runs within NiceLabel Automation service, access to which is governed by
Windows Firewall. A firewall is like locking the front door to your house - it helps keep intruders
from getting in.

NOTE: By default, the Windows Firewall is configured to allow all inbound connections to the
NiceLabel Automation service. This makes it easier for you to configure and test triggers, but
can be susceptible to unauthorized access.

If the NiceLabel Automation deployment your company is a subject of strict security regulations,
you must update the firewall rules according to them.

For example:

 l You can fine-tune firewall to accept incoming traffic from well-known sources only.

 l You can allow inbound data only on pre-defined ports.

 l You can allow connection only from certain users.

 l You can define on which interfaces your will accept incoming connection.

www.nicelabel.com 216

To make changes in the Windows Firewall , open the Windows Firewall with Advanced
Security management console from Control Panel > System And Security -> Windows
Firewall > Advanced Settings.

NOTE: When you have NiceLabel Automation linked to NiceLabel Control Center products,
make sure that you enable inbound connection on port 56415/TCP. If you close this port, you
won't be able to manage NiceLabel Automation from Control Center.

Allowing Access Based on the File Access Permissions

File trigger will execute upon the time-stamp-change event in the monitored file or files. You
must put the trigger files into a folder, which the NiceLabel Automation service can access. The
user account running the Service must be able to access the files. Simultaneously, access
permissions to the location also determine, which user and/or application can save the trigger
file. You should set up access permissions in a way that only authorized users can save files.

Allowing Access Based on the IP Address & Hostname

You can protect access to TCP/IP Server trigger with two lists of IP addresses and host names.

 l The first list 'Allow connections from the following hosts' contains IP addresses or
host names of devices that can send data to the trigger. When some device has an IP
address listed here, it is allowed to send data to the trigger.

 l The second list 'Deny connections from the following hosts' contains IP addresses or
host names of devices that are not allowed to send data. When some device has an
IP address listed here, it is not allowed to send data to the trigger.

Allowing Access Based on User names & Passwords

You can protect access to HTTP Server trigger by enabling the user authentication. When
enabled, each HTTP request sent to the HTTP Server trigger must include the 'user name &
password' combination that matches the defined combination.

Allowing Access Based on Application Group Membership

You can protect access to HTTP Server trigger adding users to an application group in Control
Center. With this option enabled, only authenticated members of this group will be allowed to
access the trigger.

10.17 Session Printing
Session printing enables printing of multiple labels using a single print job. If session printing is
enabled, the printer receives, processes and prints all labels in the print job at once. As a result,
printing speed increases due to continuous process of bundled label printing.

TIP: Session printing serves as an alternative to the normally used non-session printing,
during which each label is sent to a printer as a separate print job.

www.nicelabel.com 217

NOTE: Automation activates session printing automatically based on the configuration of
actions.

How does session printing start?

Session printing automatically starts if For Loop, For Every Record or For Each Line actions are
present in the workflow. In such case, the nested Print Label action automatically enables
session printing. This means that print actions for all items in the loop are included in a single
print job.

How does session printing end?

Each session printing ends either with a finished loop or with Print Label action combined with
at least one of the following conditions:

 l Printer changes. If you select another printer using the Set Printer action, session print-
ing ends.

 l Printer port changes. If you redirect the print job to a file using the Redirect Printing to
File action, session printing ends.

 l Label changes. If you select another label to be printed using Open Label action, session
printing ends.

 l Custom command that ends session printing is sent. If you send SESSIONEND command
using the Send Custom Command action, session printing ends.

NOTE: In this case, SESSIONEND must be sent as the only item in Send Custom
Command action. If you would like to send additional commands, use separate Send
Custom Command actions.

NOTE: More complex configurations might have multiple loops nested within each other. In
such case, session printing ends when the outermost parent loop exits.

www.nicelabel.com 218

10.18 Tips And Tricks For Using Variables In
Actions
When you use variables in the actions within NiceLabel Automation, follow the next
recommendations.

 l Enclose variables in square brackets. When you have variables with spaces in their
names and refer to variables in actions, such as or enclose the variables in square brack-
ets, like [Product Name]. You would also use square brackets, if variable names are the
same as reserved names, e.g. in the SQL Statement.

 l Place colon in front of the variable name. To refer to the variable in the Execute SQL
Statement action or in a Database Trigger you have to place a colon (:) in front of variable
name, such as :[Product ID]. The SQL parser will understood it as 'variable value'.

SELECT * FROM MyTable WHERE ID = :[ProductID]

 l Convert values to integer for computation. When you want to execute some numeric
calculation with the variables, make sure that you convert the variable value into integer.
Defining the variable as numerical only limits the characters accepted for value, but
doesn't change the variable type. NiceLabel Automation treats all variables of string type.
In VBScript you would use the function CInt().

 l Set default / start up values for scripts. When you use variables in action, make sure
they have some default value, or the script checking might fail. You can define default val-
ues in variable properties, or inside the script (and remove them after you have tested
the script).

10.19 Tracing Mode
By default, NiceLabel Automation logs events into the log database. This includes higher-level
information, such as logging of action execution, logging of filter execution and logging of
trigger status updates. For more information, see the topic Event Logging Options.

However, the default logging doesn't log the deep under-the-hood executions. When the
troubleshooting is needed on the lower-level of the code execution, the tracing mode must be
enabled. In this mode NiceLabel Automation logs the details about all internal executions that
take place during trigger processing. Tracing mode should only be enabled during
troubleshooting to collect logs and then disabled to enable normal operation.

WARNING: Tracing mode will slow down processing and should only be used when
instructed so by the NiceLabel technical support team.

Enabling the tracing mode

To enable the tracing mode, do the following:

www.nicelabel.com 219

 1. Navigate to the NiceLabel Automation System folder.

%PROGRAMDATA%\NiceLabel\NiceLabel 2017

 2. Make a backup copy of the file product.config.

 3. Open product.config in a text editor. The file has an XML structure.

 4. Add the element Common/Diagnostics/Tracing/Enabled and assign value True to it.

The file should have the following contents:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <Common>
 <Diagnostics>
 <Tracing>
 <Enabled>True</Enabled>
 <Folder>c:\Troubleshooting\TracingLogs</Folder>
 </Tracing>
 </Diagnostics>
 </Common>
...
</configuration>

 5. When you save the file, NiceLabel Automation Service will automatically apply the setting.

 6. By default, the tracing files (*.LOG) will appear in the same System folder.

You can override the log folder by specifying it in the element Folder. This element is
optional.

 7. To confirm that tracing mode is enabled, start the Automation Manager. It will display the
text Tracing has been enabled in the notification pane above the trigger list.

10.20 Understanding Printer Settings And
DEVMODE

NOTE: The DEVMODE data structure is part of the GDI Print API structure in Windows. This is
a highly technical information, used only with very specific requirements.

Whenever you print the label in NiceLabel software (or any document in Windows applications
for that matter), the printing application will read the printer settings as defined in the printer
driver and apply them to the print job. The same label can be printed to different printers by just
selecting some other printer driver. Each time the printer settings of a new printer apply to the
label.

Printing some text document on one or other laser printer usually produces the same or
comparable result. Printing labels to one or another label printer could produce different result.
The same label file might require some extra settings in the printer driver, such as adjustment of
offsets, speed and temperature of printing, to produce comparable results. NiceLabel also

www.nicelabel.com 220

http://msdn.microsoft.com/en-us/library/windows/desktop/ff686802(v=vs.85).aspx

applies the printer settings with every printout. By default, the printer settings are saved inside
the label file for the selected printer.

What is the DEVMODE?

DEVMODE is a Windows structure that holds the printer settings (initialization and environment
information about a printer). It is made up of two parts: public and private. The public part
contains data that is common to all printers. The private part contains data that is specific to a
particular printer. The private part can be of variable length and contains all of the manufacturer
specific settings.

 l Public part. This part encodes the general settings that are exposed in the printer driver
model, such as printer name, driver version, paper size, orientation, color, duplex and sim-
ilar. The public part is the same for any printer driver and does not support the specifics
of label printers (thermal printers, industrial ink jet printers, laser engraving machines).

 l Private part. This part encodes the settings not available in the public part. NiceLabel
printer drivers use this part to store the printer model-specific data, such as printing
speed, temperature setting, offsets, print mode, media type, sensors, cutters, graphics
encoding, RFID support and similar. The data structure within the private part is up to the
driver developers and looks just as a stream of binary data.

Changing the DEVMODE

The DEVMODE data structure is stored in the Windows registry. There are two copies of the
structure: default printer settings and user-specific printer settings. You change the DEVMODE
(printer settings) by changing the parameters in the printer driver. The first two options are
Windows-related, the third option is available with NiceLabel software.

 l The default printer settings. They are defined in Printer properties>Advanced
tab>Printing Defaults.

 l The user specific settings. They are stored separately for each user in the user's HKEY_
CURRENT_USER registry key. By default, the user specific settings are inherited from the
printer’s default settings. The user specific settings are defined in Printer prop-
erties>Preferences. All the modifications here will affect the current user only.

 l The label specific settings. The designer using NiceLabel NiceLabel software can
choose to embed the DEVMODE into the label itself. This makes the printer settings port-
able. When the label is copied to another computer, the printer settings travel with it. To
embed printer settings into the label enable the option Use custom printer settings
saved in the label in File>Label Setup>Printer tab in the Designer Pro. You can change
the in-label printers settings by selecting File>Printer Settings.

Applying custom DEVMODE to the printout

In NiceLabel Automation you can open a label file and apply the custom DEVMODE to it. When
printing the label, the label design is taken from the .NLBL file and the DEVMODE applies the
specific printer-related formatting. This allows you to have just one label master. The printout
will be the same no matter which print you use for printing, because the optimal printer settings
for that printer are applied.

To apply the custom DEVMODE to the label, you can use two options:

www.nicelabel.com 221

 1. Using the action, more specifically the parameter Printer settings.

 2. The JOB command file, more specifically the command SETPRINTPARAM with parameter
PRINTERSETTINGS. For more information, see Using Custom Commands.

10.21 Using The Same User Account To
Configure And To Run Triggers
The NiceLabel Automation Service always runs under the credentials of the user account
configured for the service. However, Automation Builder always runs under the credentials of
the currently logged-on user. The credentials of service account and currently logged-on
account might be different. While you are able to preview the trigger in the Automation Builder
with no problem, the Service might report an error message, caused by credentials mismatch.
While currently logged-on user has permissions to access folders and printers, the user
account that the Service uses might not.

You can test the execution of the triggers in Automation Builder using the same credentials as
the Service has. To do so, run Automation Builder under the same user account as is defined for
the Service.

To run Automation Builder under a different user account, do the following:

 1. Press and hold Shift key, then right click the Automation Builder icon.

 2. Select Run as different user.

 3. Enter the credentials for the same user, that is used in NiceLabel Automation Service.

 4. Click OK.

If you frequently want to run the Automation Builder with credentials of the other user account,
see the Windows-provided command-line utility RUNAS. Use the switches /user to specify the
user account and /savecred so you will only type the password once, then it will be
remembered for the next time.

www.nicelabel.com 222

11 Examples
11.1 Examples
NiceLabel Automation ships with examples that describe the configuration procedures for
frequently used data structures and provide configuration of actions. You can quickly learn how
to configure filters to extract data from CSV (Comma Separated Values) files, from legacy data
exports, from printers files, from XML documents, from binary files, just to name a few.

Shortcut to sample folder is available in Automation Builder.

To open the sample folder in Windows Explorer do the following:

 1. Open Automation Builder.

 2. Click the question mark in the upper right corner.

 3. Select Samples.

 4. The folder with the example files will open in Windows Explorer.

 5. See the README.PDF file in each folder.

The samples are installed in the following folder:

EXAMPLE: % P UB LI C % \ D ocument s \ NiceLa bel 2017\ Aut oma t ion\ Sa mples

which would res olv e t o
c: \Us ers \Pub l ic\Do cuments \N iceLab el 2017\Auto matio n\Samp les

www.nicelabel.com 223

12 Technical Support
12.1 Online Support
You can find the latest builds, updates, workarounds for problems and Frequently Asked
Questions (FAQ) on the product web site at www.nicelabel.com.

For more information please refer to:

 l Knowledge base: http://www.nicelabel.com/support/knowledge-base

 l NiceLabel Support: http://www.nicelabel.com/support/technical-support

 l NiceLabel Tutorials: http://www.nicelabel.com/learning-center/tutorials

 l NiceLabel Forums: http://forums.nicelabel.com/

NOTE: If you have a Service Maintenance Agreement (SMA), please contact the premium
support as specified in the agreement.

www.nicelabel.com 224

http://www.nicelabel.com/support/knowledge-base
http://www.nicelabel.com/support/technical-support
http://www.nicelabel.com/learning-center/tutorials
http://forums.nicelabel.com/

Americas

+1 262 784 2456

sales.americas@nicelabel.com

EMEA

+386 4280 5000

sales@nicelabel.com

Germany

+49 6104 68 99 80

sales@nicelabel.de

China

+86 21 6249 0371

sales@nicelabel.cn

www.nicelabel.com

	1 Contents
	2 Welcome to NiceLabel Automation
	3 Typographical Conventions
	4 Setting Up Application
	4.1 Architecture
	4.2 System Requirements
	4.3 Installation
	4.4 Activation
	4.5 Trial Mode
	4.6 File Tab
	4.6.1 Open
	4.6.2 Compatibility with NiceWatch Products
	4.6.3 Save
	4.6.4 Save as
	4.6.5 Options
	4.6.6 About

	5 Understanding Filters
	5.1 Understanding Filters
	5.2 Configuring Structured Text Filter
	5.2.1 Structured Text Filter
	5.2.2 Defining Fields
	5.2.3 Enabling Dynamic Structure

	5.3 Configuring Unstructured Data Filter
	5.3.1 Unstructured Data Filter
	5.3.2 Defining Fields
	5.3.3 Defining Sub Areas
	5.3.4 Defining Assignment Areas

	5.4 Configuring XML filter
	5.4.1 XML Filter
	5.4.2 Defining XML Fields
	5.4.3 Defining Repeatable Elements
	5.4.4 Defining XML Assignment Area

	5.5 Setting Label and Printer Names from Input Data

	6 Configuring Triggers
	6.1 Understanding Triggers
	6.2 Defining Triggers
	6.2.1 File Trigger
	6.2.2 Serial Port Trigger
	6.2.3 Database Trigger
	6.2.4 TCP/IP Server Trigger
	6.2.5 HTTP Server Trigger
	6.2.6 Web Service Trigger

	6.3 Using Variables
	6.3.1 Variables
	6.3.2 Using Compound Values
	6.3.3 Internal Variables
	6.3.4 Global Variables

	6.4 Using Actions
	6.4.1 Actions
	6.4.1.1 Defining actions
	6.4.1.2 Nested actions
	6.4.1.3 Action execution
	6.4.1.4 Conditional actions
	6.4.1.5 Identifying actions in configuration error state
	6.4.1.6 Disabling actions
	6.4.1.7 Copying actions
	6.4.1.8 Navigating the action list
	6.4.1.9 Describing the actions

	6.4.2 General
	6.4.2.1 Open Label
	6.4.2.2 Print Label
	6.4.2.3 Run Oracle XML Command File
	6.4.2.4 Run SAP AII XML Command File
	6.4.2.5 Run Command File
	6.4.2.6 Send Custom Commands

	6.4.3 Printer
	6.4.3.1 Set Printer
	6.4.3.2 Set Print Job Name
	6.4.3.3 Redirect Printing to File
	6.4.3.4 Set Print Parameter
	6.4.3.5 Redirect Printing to PDF
	6.4.3.6 Printer Status
	6.4.3.7 Store Label to Printer

	6.4.4 Variables
	6.4.4.1 Set Variable
	6.4.4.2 Save Variable Data
	6.4.4.3 Load Variable Data
	6.4.4.4 String Manipulation

	6.4.5 Batch Printing
	6.4.5.1 For Loop
	6.4.5.2 Use Data Filter
	6.4.5.3 For Every Record

	6.4.6 Data & connectivity
	6.4.6.1 Open Document/Program
	6.4.6.2 Save Data to File
	6.4.6.3 Read Data from File
	6.4.6.4 Delete File
	6.4.6.5 Execute SQL Statement
	6.4.6.6 Send Data to TCP/IP Port
	6.4.6.7 Send Data to Serial Port
	6.4.6.8 Read Data from Serial Port
	6.4.6.9 Send Data to Printer
	6.4.6.10 HTTP Request
	6.4.6.11 Web Service

	6.4.7 Other
	6.4.7.1 Get Label Information
	6.4.7.2 Execute Script
	6.4.7.2.1 Script Editor

	6.4.7.3 Message (Configuration)
	6.4.7.4 Verify License
	6.4.7.5 Try
	6.4.7.6 XML Transform
	6.4.7.7 Group
	6.4.7.8 Log Event
	6.4.7.9 Preview Label
	6.4.7.10 Create Label Variant

	6.5 Testing Triggers
	6.5.1 Testing Triggers

	6.6 Protecting Trigger Configuration from Editing
	6.7 Configuring Firewall for Network Triggers
	6.8 Using Secure Transport Layer (HTTPS)

	7 Running and Managing Triggers
	7.1 Deploying Configuration
	7.2 Event Logging Options
	7.3 Managing Triggers
	7.4 Using Event Log

	8 Performance and Feedback Options
	8.1 Parallel Processing
	8.2 Caching Files
	8.3 Error Handling
	8.4 Synchronous Print Mode
	8.5 Print Job Status Feedback
	8.6 Using Store/Recall Printing Mode
	8.7 High-availability (Failover) Cluster
	8.8 Load-balancing Cluster

	9 Understanding Data Structures
	9.1 Understanding Data Structures
	9.2 Binary Files
	9.3 Command Files
	9.4 Compound CSV
	9.5 Legacy Data
	9.6 Text Database
	9.7 XML Data

	10 Reference and Troubleshooting
	10.1 Command File Types
	10.1.1 Command Files Specifications
	10.1.2 CSV Command File
	10.1.3 JOB Command File
	10.1.4 XML Command File
	10.1.5 Oracle XML Specifications
	10.1.6 SAP AII XML Specifications

	10.2 Custom Commands
	10.2.1 Using Custom Commands

	10.3 Access to Network Shared Resources
	10.4 Document Storage and Versioning of Configuration Files
	10.5 Accessing Databases
	10.6 Automatic Font Replacement
	10.7 Changing Multi-threaded Printing Defaults
	10.8 Compatibility with NiceWatch Products
	10.9 Controlling the Service with Command-line Parameters
	10.10 Database Connection String Replacement
	10.11 Entering Special Characters (Control Codes)
	10.12 List of Control Codes
	10.13 Licensing and Printer Usage
	10.14 Running in Service Mode
	10.15 Search order for the Requested Files
	10.16 Securing Access to your Triggers
	10.17 Session Printing
	10.18 Tips and Tricks for Using Variables in Actions
	10.19 Tracing Mode
	10.20 Understanding Printer Settings and DEVMODE
	10.21 Using the Same User Account to Configure and to Run Triggers

	11 Examples
	11.1 Examples

	12 Technical Support
	12.1 Online Support

	Bookmarks
	Trigger_Types
	WSDL
	ForEachLine
	Addition
	SESSIONE

